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Abstract ─ In this contribution, a compute unified 
device architecture (CUDA) implementation of a 
two-dimensional finite-difference time-domain 
(FDTD) program is presented along with the 
OpenGL interoperability to visualize 
electromagnetic fields as an animation while an 
FDTD simulation is running. CUDA, which runs 
on a graphics processing unit (GPU) card, is used 
for electromagnetic field data generation and 
image manipulation, while OpenGL is used to 
draw field distribution on the screen. Since CUDA 
and OpenGL both run on GPU and share data 
through common memory in the framebuffer, the 
CUDA-OpenGL interoperability is very efficient 
in visualization of electromagnetic fields. Step by 
step details of implementation of this 
interoperability are demonstrated.  
  
Index Terms ─ FDTD, GPGPU, visualization.  
 

I. INTRODUCTION 
Recently, graphics processing units (GPUs) 

have become a viable alternative to multi-core 
central processing units (CPUs) for parallel 
processing architectures to perform high 
performance scientific computing. Due to the 
increasing demand from the scientific community, 
vendors have been improving both the hardware 
and the required software platforms, thus 
introducing a new generation of general purpose 
computing on graphic processing unit (GPGPU) 
cards. 

Initially, the GPUs were not designed for 
general purpose computing and programming 
these cards required the use of programming 
platforms such as OpenGL, Brook [1], and High 
Level Shader Language (HLSL), which require a 
steep learning curve. Recently, NVIDIA 
introduced the Compute Unified Device 
Architecture (CUDA) [2] development 
environment as a general purpose parallel 
computing architecture which makes GPU 
computing much easier. Developers can use C 
language to write functions that can achieve high 
performance on a CUDA enabled graphics 
processor. 

The computational electromagnetics 
community as well has started to utilize the 
computational power of these cards, and in 
particular, several implementations of finite-
difference time-domain (FDTD) method [3,4,5] 
have been reported by academic researchers and 
commercial software vendors including the 
implementations based on CUDA [6-11]. 

CUDA and OpenGL are two software 
platforms both of which operate on the GPU 
hardware, while their intended use are different; 
CUDA is suitable for improving the performance 
of data parallel computations, while OpenGL is for 
producing 2D and 3D computer graphics. While 
running a FDTD simulation, it is possible to 
capture electromagnetic fields and visualize them 
as an on-the-fly animation. If the FDTD 
calculations are performed on a graphics card, 
which is used also to perform OpenGL operations 
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to display the fields, one can copy the field data 
from the graphics card memory (device memory) 
to the computer's main memory (host memory) 
that is processed by the CPU, process the data to 
create an image, and copy the image back to the 
GPU memory to display via OpenGL. It is 
possible to avoid the back and forth data transfer 
between the host and device memories, and 
perform all the processing required for the display 
on the graphics card by employing CUDA-
OpenGL interoperability provided by CUDA. 
Performing field calculations and processing the 
fields to create images for visualization 
simultaneously can considerably slow down the 
FDTD simulations and hinder the efficiency. The 
goal is to balance the tradeoff between a fast 
simulation and a high quality and smooth 
visualization. In this context, as presented in this 
contribution, CUDA-OpenGL interoperability 
improves the simultaneous calculation and 
visualization efficiency significantly. An 
implementation of CUDA-OpenGL 
interoperability is presented in the subsequent 
sections. 
 

II. CUDA-OPENGL 
INTEROPERABILITY IN FDTD 

 
A. Integration of FDTD with GLUT 

The FDTD method is an iterative method in 
which the progressions of electromagnetic fields in 
time are simulated in a time marching loop. The 
time marching loop typically consists of functions 
to update sources, update electric and magnetic 
fields, apply boundary conditions, and capture 
fields. Many times the captured fields can be 
displayed on the fly as an animation of the fields. 
Such a FDTD algorithm is illustrated in Fig. 1. It is 
usually straightforward to program this algorithm in 
a programming language where a programmer can 
simply call a built-in function to display the fields. 
An example is Matlab [12], in which several 
plotting functions, such as plot and imagesc, 
are provided to the programmer to display data 
while the program is running. However in many 
other languages, such as C++ and Fortran, such 
functions are not available and one has to program 
the details of visualization code as well. OpenGL 
has been one of the most popular platforms to 
facilitate programming with visualization. 

 

 
Fig. 1. FDTD algorithm. 
 

 
Fig. 2. FDTD algorithm integrated with GLUT. 

 
Both CUDA and OpenGL can be programmed 

in C language. There are methods to integrate 
OpenGL in a program developed for an event 
driven operating system such as Microsoft 
Windows or Linux. One of the methods is to use 
GLUT. GLUT is the OpenGL Utility Toolkit, a 
window system independent toolkit for writing 
OpenGL programs. It implements a simple 

update sources
update fields

apply boundary conditions
capture fields

display fields

time_step = time_step+1

begin

end

Initialize FDTD/CUDA

glutDisplayFunc(runIterationAndDisplay);

update sources
update fields

apply boundary conditions

display fields

time_step = time_step+1
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end

Initialize FDTD/CUDA/GLUT

glutMainLoop
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windowing application programming interface 
(API) for OpenGL [13]. In this contribution, 
CUDA/OpenGL interoperability is presented 
through the use of GLUT. 

GLUT makes OpenGL programming simple 
yet platform independent, however, GLUT 
implements its own event loop. Therefore, mixing 
GLUT with an algorithm that demands its own 
event handling structure may be difficult. In order 
to integrate the FDTD algorithm with GLUT, the 
algorithm in Fig. 1 is modified as the one in Fig. 2. 
In this algorithm, first of all, FDTD, CUDA, and 
GLUT are initialized. CUDA-OpenGL 
interoperability also requires additional 
initialization at this stage as will be discussed. Then 
GLUT loop is started. Whenever GLUT loop 
triggers a display event, first a single iteration (or a 
number of iterations) of FDTD time marching loop 
is performed, and then results are displayed on a 
window.  

 
B. Initialization of OpenGL with CUDA 

CUDA is GPU programming platform 
developed and introduced by Nvidia. Nvidia 
provides extensive support to CUDA programmers. 
An article titled as "What Every CUDA 
Programmer Should Know about OpenGL" [14] is 
a good reference for beginners who want to learn 
CUDA-OpenGL interoperability. In this 
contribution, guidelines in [14] are followed to 
achieve interoperability between OpenGL and 
CUDA in an FDTD code. The details are presented 
in the steps below. 

 
Listing 1. Initialization of FDTD, CUDA, and 
OpenGL 
// global parameters 
GLuint pbo_destination; 
struct cudaGraphicsResource 
*cuda_pbo_destination_resource; 
GLuint cuda_result_texture;  
 
bool runFdtdWithFieldDisplay 
 (int argc, char** argv) 
{ 
// Initialize CUDA context 
cudaGLSetGLDevice 
(cutGetMaxGflopsDeviceId()); 
 
// Initialize GL context 
initializeGL(argc, argv); 
 

// Initialize GL buffers 
initializeGLBuffers(); 
 
// colormap used to map field 
intensity 
createColormapOnGpu(); 
 
// Display list of objects in problem 
space 
createDisplayListForObjects(); 
 
// copy data from CPU RAM to GPU 
global memory 
copyFdtdArraysToGpuMemory(); 
 
glutMainLoop(); // GLUT loop 
} 

 
Listing 2. Creating GL context 
void initializeGL 
 (int argc, char **argv ) 
{ 
setImageAndWindowSize(); 
 
// Create GL context 
glutInit(&argc, argv); 
glutInitDisplayMode(GLUT_RGBA | 
 GLUT_ALPHA | GLUT_DOUBLE | 
 GLUT_DEPTH); 
glutInitWindowSize(window_width, 
 window_height); 
iGLUTWindowHandle = 
 glutCreateWindow 
  ("CUDA OpenGL FDTD"); 
 
// initialize necessary OpenGL 
extensions 
glewInit(); 
  
// Initialize GLUT event functions 
glutDisplayFunc 
 (runIterationAndDisplay); 
glutKeyboardFunc(keyboard); 
glutReshapeFunc(reshape); 
glutIdleFunc(idle); 
} 

 
Initialize CUDA 

Listing 1 shows a function in which several 
functions are called to initialize FDTD, CUDA, and 
OpenGL and then FDTD simulations are started 
through GLUT. The first step is to initialize CUDA: 
the GPU device with maximum Gflops is set as the 
active device to run the FDTD calculations by a call 
to the function cudaGLSetGLDevice(). 
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Initialize GL and Create a Window 
The next step is initialization of OpenGL and 

GLUT and creation of a window to display 
captured electromagnetic fields. GL initialization is 
performed in the function initializeGL() 
shown in Listing 2. The first part of Listing 2 
initializes the GLUT. Next is an important step for 
CUDA-OpenGL interoperability in which OpenGL 
extensions are loaded to support buffers by calling 
the function glewInit() in Listing 2. Then event 
functions for GLUT are defined, thus GL 
initialization is completed. Here one should notice 
that glutDisplayFunc() is defined as 
runIterationAndDisplay(). As will be 
discussed later, when GLUT triggers a display 
event, the runIterationAndDisplay() will 
be executed, which will perform an iteration of 
FDTD time marching loop and display the 
electromagnetic field distribution in the problem 
space. 

 
Listing 3. Initializing GL buffers 
void initializeGLBuffers() 
{ 
// create pixel buffer object 
createPixelBufferObject 
(&pbo_destination, 
&cuda_pbo_destination_resource); 
 
// create texture that will receive 
the result of CUDA 
createTextureDestination 
 (&cuda_result_texture,  
 image_width, image_height); 
} 

 
Listing 4. Creating pixel buffer object 
void createPixelBufferObject(GLuint* 
pbo, struct cudaGraphicsResource 
**pbo_resource) 
{ 
unsigned int texture_size = 
sizeof(GLubyte) * image_width * 
image_height * 4; 
 
void *data = malloc(texture_size); 
 
// create buffer object 
glGenBuffers(1, pbo); 
glBindBuffer(GL_ARRAY_BUFFER, *pbo); 
glBufferData(GL_ARRAY_BUFFER, 
texture_size, data, GL_DYNAMIC_DRAW); 
free(data); 

glBindBuffer(GL_ARRAY_BUFFER, 0); 
 
// register this buffer object with 
CUDA 
cudaGraphicsGLRegisterBuffer 
(pbo_resource, *pbo, 
cudaGraphicsMapFlagsNone); 
} 
 
Listing 5. Create texture  
void createTextureDestination 
(GLuint* cuda_result_texture, 
unsigned int size_x,  
unsigned int size_y) 
{ 
// create a texture 
glGenTextures(1,cuda_result_texture); 
glBindTexture(GL_TEXTURE_2D, 
*cuda_result_texture); 
 
// set basic parameters 
glTexParameteri(GL_TEXTURE_2D, 
GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); 
glTexParameteri(GL_TEXTURE_2D, 
GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); 
glTexParameteri(GL_TEXTURE_2D, 
GL_TEXTURE_MIN_FILTER, GL_NEAREST); 
glTexParameteri(GL_TEXTURE_2D, 
GL_TEXTURE_MAG_FILTER, GL_NEAREST); 
 
glTexImage2D(GL_TEXTURE_2D, 0, 
GL_RGBA8, size_x, size_y, 0, GL_RGBA, 
GL_UNSIGNED_BYTE, NULL); 
} 

 
Create an OpenGL Buffer 

CUDA and OpenGL will use common 
resources on GPU for interoperability. Basically, 
these resources are buffers on the GPU's memory 
space. These buffers shall be created and initialized. 
In Listing 1, initializeGLBuffers() 
function, shown in Listing 3, is called for buffer 
initialization. Implementation of 
initializeGLBuffers() is shown in Listing 
3. First, createPixelBufferObject() 
function, shown in Listing 4, is called, which 
creates a pixel buffer object and allocates memory 
for this buffer. The buffer will hold image data. The 
image is a field distribution in a two dimensional 
problem space composed of xx yyn n×  cells. The 
field in each cell will be displayed with a single 
pixel, thus the image size is image_width * 
image_height, where image_width = 
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nxx; image_height = nyy;. Each pixel will 
hold red, green, blue, and alpha (RGBA) value of 
the pixel, thus each pixel uses four bytes of 
memory. Thus, the allocated memory is 4 * 
image_width * image_height. CUDA will 
create the image and write to this buffer through the 
pixel buffer object, and then OpenGL will access to 
the same memory space and process it as a texture 
and display the image.  

The texture as well needs to be initialized. The 
createTextureDestination(), shown in 
Listing 5, is used to initialize the texture.  

 
Register Buffers for CUDA 

The last step in initialization of the pixel buffer 
object is to register the created buffer for CUDA. 
This is done in the last line of Listing 4 by calling 
the cudaGraphicsGLRegisterBuffer(). 
This command simply informs the OpenGL and 
CUDA drivers that this buffer will be used by both. 

 
Listing 6. Display function of GLUT 
void runIterationAndDisplay() 
{ 
// run an FDTD iteration on GPU using 
CUDA 
for (int i=0; i< plotting_step; i++) 
if (time_step<number_of_time_steps) 
 fdtdIterationOnGpu(); 
 else 
 { 
 fetchResultsFromGpuMemory(); 
 deallocateArrays(); 
 saveSampledFieldsToFile(); 
 Cleanup(EXIT_SUCCESS); 
 } 
 
// Create image of field using CUDA 
unsigned int* image_data; 
// map the GL buffer to CUDA 
cudaGraphicsMapResources(1, 
&cuda_pbo_destination_resource, 0); 
cudaGraphicsResourceGetMappedPointer 
((void **)&image_data, 
&number_of_bytes, 
cuda_pbo_destination_resource); 
 
// execute CUDA kernel 
createImageOnGpu(image_data); 
// unmap the GL buffer 
cudaGraphicsUnmapResources(1, 
&cuda_pbo_destination_resource, 0); 
 

// Create a texture from the buffer 
glBindBuffer(GL_PIXEL_UNPACK_BUFFER_A
RB, pbo_destination); 
glBindTexture(GL_TEXTURE_2D, 
cuda_result_texture); 
glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 
0, image_width, image_height, 
GL_RGBA, GL_UNSIGNED_BYTE, NULL); 
glBindBuffer(GL_PIXEL_PACK_BUFFER_ARB
, 0); 
glBindBuffer(GL_PIXEL_UNPACK_BUFFER_A
RB, 0); 
 
// draw the image 
displayTextureImage 
 (cuda_result_texture); 
 
cudaThreadSynchronize(); 
 
// swap the front and back buffers 
glutSwapBuffers(); 
} 
 
Listing 7. Updating electric fields  
__global__ void 
update_electric_fields_on_kernel_TMz 
(float* Ceze, float* Cezhy, float* 
Cezhx, float* Hx,  float* Hy,  
float* Ez, int nxx) 
{ 
__shared__ float 
sHy[TILE_SIZE][2*TILE_SIZE+1]; 
 
int tx = threadIdx.x; 
int ty = threadIdx.y; 
int i = blockIdx.x * blockDim.x + tx; 
int j = blockIdx.y * blockDim.y + ty; 
 
int ci = (j+1)*nxx+i; 
  
sHy[ty][tx+TILE_SIZE] = Hy[ci]; 
sHy[ty][tx] = Hy[ci-TILE_SIZE]; 
 
__syncthreads(); 
Ez[ci] = Ceze[ci] * Ez[ci] + 
Cezhy[ci] * (sHy[ty][tx+TILE_SIZE]-
sHy[ty][tx+TILE_SIZE-1]) + Cezhx[ci] 
* (Hx[ci]-Hx[ci-nxx]); 
} 
 
Listing 8. Launch kernel to create the image  
extern "C" void 
createImageOnGpu 
(unsigned int* image_data) 
{ 
dim3 block(TILE_SIZE, TILE_SIZE, 1); 
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dim3 grid(nxx/block.x,  
 nyy/block.y, 1); 
createImageOnKernel 
<<< grid, block>>>(image_data, dvEz, 
nxx, min_value, max_value); 
} 
 
Listing 9. The kernel to create the image 
__global__ void 
createImageOnKernel(unsigned int* 
image_data, float* Ez, int nxx,  
float minval, float maxval) 
{ 
int i = blockIdx.x * blockDim.x + 
threadIdx.x; 
int j = blockIdx.y * blockDim.y + 
threadIdx.y; 
int color_ind; float F; 
int ci = j*nxx+i; 
int ti = (j+1)*nxx+i; 
 
F = Ez[ti] - minval; 
color_ind = floor(255 * F/(maxval-
minval)); 
image_data[ci] = dvrgb[cind]; 
} 
 
Listing 10. Displaying the image using OpenGL  
void displayTextureImage 
(GLuint texture) 
{ 
glBindTexture(GL_TEXTURE_2D, 
texture); 
glEnable(GL_TEXTURE_2D); 
glTexEnvf(GL_TEXTURE_ENV, 
GL_TEXTURE_ENV_MODE, GL_REPLACE); 
 
glMatrixMode(GL_PROJECTION); 
glLoadIdentity(); 
glOrtho(domain_min_x, 
domain_min_x+nxx*dx, domain_min_y, 
domain_min_y+nyy*dy, -1.0, 1.0); 
 
glMatrixMode( GL_MODELVIEW); 
glViewport(0, 0, window_width, 
window_height); 
 
glBegin(GL_QUADS); 
 glTexCoord2f(0.0, 0.0); 
 glVertex3f(domain_min_x, 
 domain_min_y, 0.0); 
 glTexCoord2f(1.0, 0.0); 
 glVertex3f(domain_min_x+nxx*dx, 
 domain_min_y, 0.0); 

 glTexCoord2f(1.0, 1.0); 
 glVertex3f(domain_min_x+nxx*dx, 
 domain_min_y+nyy*dy, 0.0); 
 glTexCoord2f(0.0, 1.0); 
 glVertex3f(domain_min_x, 
 domain_min_y+nyy*dy, 0.0); 
glEnd(); 
 
glDisable(GL_TEXTURE_2D); 
 
glCallList(objects_display_list); 
} 

 
Copy Colormap to GPU Memory 

After OpenGL and CUDA initializations are 
completed in Listing 1, a colormap is constructed 
on the GPU constant memory in 
createColormapOnGpu(). The colormap is 
basically a one dimensional array of 4 bytes integer 
including RGB values of colors that begin with 
blue, and pass through cyan, yellow, orange, and 
red. The colormap will be used to reflect the 
intensity of the displayed fields. The colormap array 
will be accessed at every iteration of the FDTD 
time marching loop in a CUDA kernel to generate 
the image of field distribution; thus, its access by 
CUDA has to be fast. To achieve fast access, the 
colormap array is stored in the constant memory of 
GPU. 

 
Create a Display List of Objects 

It is possible to display an outline of objects 
that exist in the problem space as polygons together 
with the field distribution. An OpenGL display list 
is created in the function 
createDisplayListForObjects(). This 
display list is drawn on the field distribution image 
at every iteration, so it is more efficient to create it 
once at the beginning and use it during the time 
marching loop. 

 
Copy FDTD Arrays to GPU Memory 

A CUDA program is a hybrid code which 
mainly runs on CPU, while parallel processing 
sections run on GPU. Therefore, the FDTD 
problem space, i.e. coefficient arrays, and field 
arrays, are initially constructed and allocated on the 
CPU RAM. These arrays need to be copied to GPU 
global memory to have them available for CUDA 
computations on GPU. These arrays are copied to 
GPU global memory in the 
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copyFdtdArraysToGpuMemory() function 
in Listing 1. 

 
C. Field calculations using CUDA and 
visualization of fields  

As discussed before, whenever the display 
event (glutDisplayFunc()) is triggered in the 
GLUT loop, the associated function 
runIterationAndDisplay() is executed. 
Implementation of this function is shown in Listing 
6. In Listing 6, a check is performed to see if the 
FDTD iterations are complete. If the iterations are 
complete, results are copied from the GPU global 
memory to the CPU memory, other post-processing 
operations are performed, and FDTD simulation is 
ended. If iterations are not complete, a number of 
iterations of the FDTD time marching loop are 
performed on GPU using CUDA by a call to the 
fdtdIterationOnGpu() function. An iteration 
includes usual steps such as an update of sources, 
an update of electric fields and magnetic fields, 
application of boundary conditions, and capture of 
electromagnetic fields. For instance, Listing 7 
shows the kernel function that updates the electric 
field for the ZTM  case. 

 

 
Fig. 3. A snapshot from the 2D FDTD program 
display. 
 

After the field calculations, the new field 
distribution can be displayed on the created 
window, however, the field data cannot be 
displayed directly; data needs to be converted to an 
image first and the image needs to be stored in a 
texture in a form to be used by OpenGL. First, the 
GL buffer is mapped to CUDA, as shown in Listing 
6, such that CUDA can process the field data and 

create image data. A GPU kernel function needs to 
be called to process the field data, thus the 
createImageOnGpu() function is called to 
launch the kernel function. Implementation of 
createImageOnGpu() is shown in Listing 8. 
The kernel function is 
createImageOnKernel() and is shown in 
Listing 9. This kernel basically maps the field value 
at each cell from a range between a minimum and a 
maximum to one of the 256 colors in the colormap, 
and stores to the image buffer. 

Once the image is created in the buffer, the 
buffer is unmapped and released from CUDA. Then 
a texture is created from this buffer as shown in 
Listing 6. Once the texture is created, it is ready to 
get displayed by OpenGL. The function 
displayTextureImage(), shown in Listing 
10, is called to perform the final display operations. 
Then glutSwapBuffers() is executed to show 
the image on the screen. 

Figure 3 shows a snapshot from an animation 
of a two-dimensional FDTD simulation. The image 
is generated through the CUDA-OpenGL 
interoperability. 

 
III. PERFORMANCE OF CUDA-
OPENGL INTEROPERABILITY 

Two parametric sweep tests are performed by 
running the presented FDTD code in different 
modes to assess the performance improvement 
provided by CUDA-OpenGL interoperability. The 
following four modes are considered:  
1. program is run on CPU only without field 

visualization 
2. program is run on GPU using CUDA without 

field visualization 
3. program is run on GPU using CUDA with field 

visualization and with CUDA-OpenGL 
interoperability 

4. program is run on GPU using CUDA with field 
visualization, but without CUDA-OpenGL 
interoperability (the image data is transferred 
from device memory to host memory and 
displayed using OpenGL)  
 

The analyses are performed on an NVIDIA® 
Tesla™ C1060 Computing Processor installed on 
a 64 bit Windows XP computer. This card has 240 
streaming processor cores operating at 1.3 GHz. 
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The CPU results obtained using an Intel Xeon 
processor at 2 GHz.   

Here, it should be noted that it is not necessary 
to display the images at every time step of the 
FDTD loop. Often it is sufficient to display a 
frame after a few time steps. A parameter denoted 
as plotting_step, shown in Listing 6, is used 
to control how often the images are displayed. 

As the first parameter sweep test, the problem 
size of the two-dimensional space is increased, and 
each time the simulations are performed for the 
four modes with 1 frame per 5 iterations rate. 
Then, the throughputs of the simulations are 
calculated as [15] 

610steps xx yy

s

n n n
NMCPS

t
−× ×

= × ,   (1) 

where NMCPS is the number of million cells 
processed per second, stepsn is the total number of 
time steps the program has been run, and st is the 
total computation time in seconds. Here, xxn  and 

yyn  are the number of cells in an FDTD problem 
space in x and y directions, respectively.  The 
results are shown in Fig. 4. Throughput is a 
measure of how fast the computations are 
performed, thus it can be used to assess the 
efficiency of the codes. The computation on GPU 
without any field visualization is much faster, as 
expected. Computation on CPU, even without 
visualization, is not comparable with GPU 
computation. In the presented Fig. 4, the 
computation with visualization is faster by 30% 
with CUDA-OpenGL interoperability. The results 
verify the efficiency improvement achieved by 
interoperability.  

In the second parameter sweep test, the frame 
display rate is reduced (the image frames are 
displayed less often) and each time the simulations 
are performed for the four modes for a problem 
size of 6 million cells. The throughput results are 
shown in Fig. 5. Results again verify that 
visualizations are considerably faster with CUDA-
OpenGL interoperability. The data transfers from 
the device memory to the host memory take 
considerable time when CUDA-OpenGL 
interoperability is not utilized. Moreover, as image 
display rate is reduced, the computations on GPU 
with visualizations converge to that of GPU 
without visualization.  
 

 
Fig. 4. Throughputs of different modes vs. 
problem size. 1 frame displayed per 5 time steps.  
 

 
Fig. 5. Throughputs of different modes vs. image 
display rate. Problem size is 6 million cells. 

 
The results in Fig. 5 also show that displaying 

the frames more often slows down the 
computations significantly. It is not necessary to 
display the frames very often. It has been observed 
that it is sufficient to display one frame per 5-10 
iterations to achieve a smooth visual animation 
simultaneously with fast computation.  

 
IV. CONCLUSION 

An implementation of CUDA-OpenGL 
interoperability to visualize electromagnetic fields 
in a two-dimensional FDTD simulation is 
developed and presented. It is shown that 
interoperability can improve the visualization 
efficiency significantly. Interoperability can be 
extended to three-dimensional FDTD and more 
complicated field visualizations can be achieved.  
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