
 CUDA-OpenGL Interoperability to Visualize Electromagnetic
Fields Calculated by FDTD

Veysel Demir1 and Atef Z. Elsherbeni2

1Department of Electrical Engineering
Northern Illinois University, DeKalb, IL 60115, USA

vdemir@niu.edu

2Department of Electrical Engineering
The University of Mississippi, University, MS 38677, USA

atef@olemiss.edu

Abstract ─ In this contribution, a compute unified
device architecture (CUDA) implementation of a
two-dimensional finite-difference time-domain
(FDTD) program is presented along with the
OpenGL interoperability to visualize
electromagnetic fields as an animation while an
FDTD simulation is running. CUDA, which runs
on a graphics processing unit (GPU) card, is used
for electromagnetic field data generation and
image manipulation, while OpenGL is used to
draw field distribution on the screen. Since CUDA
and OpenGL both run on GPU and share data
through common memory in the framebuffer, the
CUDA-OpenGL interoperability is very efficient
in visualization of electromagnetic fields. Step by
step details of implementation of this
interoperability are demonstrated.

Index Terms ─ FDTD, GPGPU, visualization.

I. INTRODUCTION
Recently, graphics processing units (GPUs)

have become a viable alternative to multi-core
central processing units (CPUs) for parallel
processing architectures to perform high
performance scientific computing. Due to the
increasing demand from the scientific community,
vendors have been improving both the hardware
and the required software platforms, thus
introducing a new generation of general purpose
computing on graphic processing unit (GPGPU)
cards.

Initially, the GPUs were not designed for
general purpose computing and programming
these cards required the use of programming
platforms such as OpenGL, Brook [1], and High
Level Shader Language (HLSL), which require a
steep learning curve. Recently, NVIDIA
introduced the Compute Unified Device
Architecture (CUDA) [2] development
environment as a general purpose parallel
computing architecture which makes GPU
computing much easier. Developers can use C
language to write functions that can achieve high
performance on a CUDA enabled graphics
processor.

The computational electromagnetics
community as well has started to utilize the
computational power of these cards, and in
particular, several implementations of finite-
difference time-domain (FDTD) method [3,4,5]
have been reported by academic researchers and
commercial software vendors including the
implementations based on CUDA [6-11].

CUDA and OpenGL are two software
platforms both of which operate on the GPU
hardware, while their intended use are different;
CUDA is suitable for improving the performance
of data parallel computations, while OpenGL is for
producing 2D and 3D computer graphics. While
running a FDTD simulation, it is possible to
capture electromagnetic fields and visualize them
as an on-the-fly animation. If the FDTD
calculations are performed on a graphics card,
which is used also to perform OpenGL operations

206ACES JOURNAL, VOL. 27, NO. 2, FEBRUARY 2012

1054-4887 © 2012 ACES

Submitted On: Oct. 26, 2011
Accepted On: Jan. 16, 2012

to display the fields, one can copy the field data
from the graphics card memory (device memory)
to the computer's main memory (host memory)
that is processed by the CPU, process the data to
create an image, and copy the image back to the
GPU memory to display via OpenGL. It is
possible to avoid the back and forth data transfer
between the host and device memories, and
perform all the processing required for the display
on the graphics card by employing CUDA-
OpenGL interoperability provided by CUDA.
Performing field calculations and processing the
fields to create images for visualization
simultaneously can considerably slow down the
FDTD simulations and hinder the efficiency. The
goal is to balance the tradeoff between a fast
simulation and a high quality and smooth
visualization. In this context, as presented in this
contribution, CUDA-OpenGL interoperability
improves the simultaneous calculation and
visualization efficiency significantly. An
implementation of CUDA-OpenGL
interoperability is presented in the subsequent
sections.

II. CUDA-OPENGL
INTEROPERABILITY IN FDTD

A. Integration of FDTD with GLUT

The FDTD method is an iterative method in
which the progressions of electromagnetic fields in
time are simulated in a time marching loop. The
time marching loop typically consists of functions
to update sources, update electric and magnetic
fields, apply boundary conditions, and capture
fields. Many times the captured fields can be
displayed on the fly as an animation of the fields.
Such a FDTD algorithm is illustrated in Fig. 1. It is
usually straightforward to program this algorithm in
a programming language where a programmer can
simply call a built-in function to display the fields.
An example is Matlab [12], in which several
plotting functions, such as plot and imagesc,
are provided to the programmer to display data
while the program is running. However in many
other languages, such as C++ and Fortran, such
functions are not available and one has to program
the details of visualization code as well. OpenGL
has been one of the most popular platforms to
facilitate programming with visualization.

Fig. 1. FDTD algorithm.

Fig. 2. FDTD algorithm integrated with GLUT.

Both CUDA and OpenGL can be programmed

in C language. There are methods to integrate
OpenGL in a program developed for an event
driven operating system such as Microsoft
Windows or Linux. One of the methods is to use
GLUT. GLUT is the OpenGL Utility Toolkit, a
window system independent toolkit for writing
OpenGL programs. It implements a simple

update sources
update fields

apply boundary conditions
capture fields

display fields

time_step = time_step+1

begin

end

Initialize FDTD/CUDA

glutDisplayFunc(runIterationAndDisplay);

update sources
update fields

apply boundary conditions

display fields

time_step = time_step+1

begin

end

Initialize FDTD/CUDA/GLUT

glutMainLoop

207 ACES JOURNAL, VOL. 27, NO. 2, FEBRUARY 2012

windowing application programming interface
(API) for OpenGL [13]. In this contribution,
CUDA/OpenGL interoperability is presented
through the use of GLUT.

GLUT makes OpenGL programming simple
yet platform independent, however, GLUT
implements its own event loop. Therefore, mixing
GLUT with an algorithm that demands its own
event handling structure may be difficult. In order
to integrate the FDTD algorithm with GLUT, the
algorithm in Fig. 1 is modified as the one in Fig. 2.
In this algorithm, first of all, FDTD, CUDA, and
GLUT are initialized. CUDA-OpenGL
interoperability also requires additional
initialization at this stage as will be discussed. Then
GLUT loop is started. Whenever GLUT loop
triggers a display event, first a single iteration (or a
number of iterations) of FDTD time marching loop
is performed, and then results are displayed on a
window.

B. Initialization of OpenGL with CUDA

CUDA is GPU programming platform
developed and introduced by Nvidia. Nvidia
provides extensive support to CUDA programmers.
An article titled as "What Every CUDA
Programmer Should Know about OpenGL" [14] is
a good reference for beginners who want to learn
CUDA-OpenGL interoperability. In this
contribution, guidelines in [14] are followed to
achieve interoperability between OpenGL and
CUDA in an FDTD code. The details are presented
in the steps below.

Listing 1. Initialization of FDTD, CUDA, and
OpenGL
// global parameters
GLuint pbo_destination;
struct cudaGraphicsResource
*cuda_pbo_destination_resource;
GLuint cuda_result_texture;

bool runFdtdWithFieldDisplay
 (int argc, char** argv)
{
// Initialize CUDA context
cudaGLSetGLDevice
(cutGetMaxGflopsDeviceId());

// Initialize GL context
initializeGL(argc, argv);

// Initialize GL buffers
initializeGLBuffers();

// colormap used to map field
intensity
createColormapOnGpu();

// Display list of objects in problem
space
createDisplayListForObjects();

// copy data from CPU RAM to GPU
global memory
copyFdtdArraysToGpuMemory();

glutMainLoop(); // GLUT loop
}

Listing 2. Creating GL context
void initializeGL
 (int argc, char **argv)
{
setImageAndWindowSize();

// Create GL context
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_RGBA |
 GLUT_ALPHA | GLUT_DOUBLE |
 GLUT_DEPTH);
glutInitWindowSize(window_width,
 window_height);
iGLUTWindowHandle =
 glutCreateWindow
 ("CUDA OpenGL FDTD");

// initialize necessary OpenGL
extensions
glewInit();

// Initialize GLUT event functions
glutDisplayFunc
 (runIterationAndDisplay);
glutKeyboardFunc(keyboard);
glutReshapeFunc(reshape);
glutIdleFunc(idle);
}

Initialize CUDA

Listing 1 shows a function in which several
functions are called to initialize FDTD, CUDA, and
OpenGL and then FDTD simulations are started
through GLUT. The first step is to initialize CUDA:
the GPU device with maximum Gflops is set as the
active device to run the FDTD calculations by a call
to the function cudaGLSetGLDevice().

208DEMIR, ELSHERBENI: CUDA-OPENGL INTEROPERABILITY TO VISUALIZE ELECTROMAGNETIC FIELDS CALCULATED BY FDTD

Initialize GL and Create a Window
The next step is initialization of OpenGL and

GLUT and creation of a window to display
captured electromagnetic fields. GL initialization is
performed in the function initializeGL()
shown in Listing 2. The first part of Listing 2
initializes the GLUT. Next is an important step for
CUDA-OpenGL interoperability in which OpenGL
extensions are loaded to support buffers by calling
the function glewInit() in Listing 2. Then event
functions for GLUT are defined, thus GL
initialization is completed. Here one should notice
that glutDisplayFunc() is defined as
runIterationAndDisplay(). As will be
discussed later, when GLUT triggers a display
event, the runIterationAndDisplay() will
be executed, which will perform an iteration of
FDTD time marching loop and display the
electromagnetic field distribution in the problem
space.

Listing 3. Initializing GL buffers
void initializeGLBuffers()
{
// create pixel buffer object
createPixelBufferObject
(&pbo_destination,
&cuda_pbo_destination_resource);

// create texture that will receive
the result of CUDA
createTextureDestination
 (&cuda_result_texture,
 image_width, image_height);
}

Listing 4. Creating pixel buffer object
void createPixelBufferObject(GLuint*
pbo, struct cudaGraphicsResource
**pbo_resource)
{
unsigned int texture_size =
sizeof(GLubyte) * image_width *
image_height * 4;

void *data = malloc(texture_size);

// create buffer object
glGenBuffers(1, pbo);
glBindBuffer(GL_ARRAY_BUFFER, *pbo);
glBufferData(GL_ARRAY_BUFFER,
texture_size, data, GL_DYNAMIC_DRAW);
free(data);

glBindBuffer(GL_ARRAY_BUFFER, 0);

// register this buffer object with
CUDA
cudaGraphicsGLRegisterBuffer
(pbo_resource, *pbo,
cudaGraphicsMapFlagsNone);
}

Listing 5. Create texture
void createTextureDestination
(GLuint* cuda_result_texture,
unsigned int size_x,
unsigned int size_y)
{
// create a texture
glGenTextures(1,cuda_result_texture);
glBindTexture(GL_TEXTURE_2D,
*cuda_result_texture);

// set basic parameters
glTexParameteri(GL_TEXTURE_2D,
GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D,
GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D,
GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D,
GL_TEXTURE_MAG_FILTER, GL_NEAREST);

glTexImage2D(GL_TEXTURE_2D, 0,
GL_RGBA8, size_x, size_y, 0, GL_RGBA,
GL_UNSIGNED_BYTE, NULL);
}

Create an OpenGL Buffer

CUDA and OpenGL will use common
resources on GPU for interoperability. Basically,
these resources are buffers on the GPU's memory
space. These buffers shall be created and initialized.
In Listing 1, initializeGLBuffers()
function, shown in Listing 3, is called for buffer
initialization. Implementation of
initializeGLBuffers() is shown in Listing
3. First, createPixelBufferObject()
function, shown in Listing 4, is called, which
creates a pixel buffer object and allocates memory
for this buffer. The buffer will hold image data. The
image is a field distribution in a two dimensional
problem space composed of xx yyn n× cells. The
field in each cell will be displayed with a single
pixel, thus the image size is image_width *
image_height, where image_width =

209 ACES JOURNAL, VOL. 27, NO. 2, FEBRUARY 2012

nxx; image_height = nyy;. Each pixel will
hold red, green, blue, and alpha (RGBA) value of
the pixel, thus each pixel uses four bytes of
memory. Thus, the allocated memory is 4 *
image_width * image_height. CUDA will
create the image and write to this buffer through the
pixel buffer object, and then OpenGL will access to
the same memory space and process it as a texture
and display the image.

The texture as well needs to be initialized. The
createTextureDestination(), shown in
Listing 5, is used to initialize the texture.

Register Buffers for CUDA

The last step in initialization of the pixel buffer
object is to register the created buffer for CUDA.
This is done in the last line of Listing 4 by calling
the cudaGraphicsGLRegisterBuffer().
This command simply informs the OpenGL and
CUDA drivers that this buffer will be used by both.

Listing 6. Display function of GLUT
void runIterationAndDisplay()
{
// run an FDTD iteration on GPU using
CUDA
for (int i=0; i< plotting_step; i++)
if (time_step<number_of_time_steps)
 fdtdIterationOnGpu();
 else
 {
 fetchResultsFromGpuMemory();
 deallocateArrays();
 saveSampledFieldsToFile();
 Cleanup(EXIT_SUCCESS);
 }

// Create image of field using CUDA
unsigned int* image_data;
// map the GL buffer to CUDA
cudaGraphicsMapResources(1,
&cuda_pbo_destination_resource, 0);
cudaGraphicsResourceGetMappedPointer
((void **)&image_data,
&number_of_bytes,
cuda_pbo_destination_resource);

// execute CUDA kernel
createImageOnGpu(image_data);
// unmap the GL buffer
cudaGraphicsUnmapResources(1,
&cuda_pbo_destination_resource, 0);

// Create a texture from the buffer
glBindBuffer(GL_PIXEL_UNPACK_BUFFER_A
RB, pbo_destination);
glBindTexture(GL_TEXTURE_2D,
cuda_result_texture);
glTexSubImage2D(GL_TEXTURE_2D, 0, 0,
0, image_width, image_height,
GL_RGBA, GL_UNSIGNED_BYTE, NULL);
glBindBuffer(GL_PIXEL_PACK_BUFFER_ARB
, 0);
glBindBuffer(GL_PIXEL_UNPACK_BUFFER_A
RB, 0);

// draw the image
displayTextureImage
 (cuda_result_texture);

cudaThreadSynchronize();

// swap the front and back buffers
glutSwapBuffers();
}

Listing 7. Updating electric fields
__global__ void
update_electric_fields_on_kernel_TMz
(float* Ceze, float* Cezhy, float*
Cezhx, float* Hx, float* Hy,
float* Ez, int nxx)
{
__shared__ float
sHy[TILE_SIZE][2*TILE_SIZE+1];

int tx = threadIdx.x;
int ty = threadIdx.y;
int i = blockIdx.x * blockDim.x + tx;
int j = blockIdx.y * blockDim.y + ty;

int ci = (j+1)*nxx+i;

sHy[ty][tx+TILE_SIZE] = Hy[ci];
sHy[ty][tx] = Hy[ci-TILE_SIZE];

__syncthreads();
Ez[ci] = Ceze[ci] * Ez[ci] +
Cezhy[ci] * (sHy[ty][tx+TILE_SIZE]-
sHy[ty][tx+TILE_SIZE-1]) + Cezhx[ci]
* (Hx[ci]-Hx[ci-nxx]);
}

Listing 8. Launch kernel to create the image
extern "C" void
createImageOnGpu
(unsigned int* image_data)
{
dim3 block(TILE_SIZE, TILE_SIZE, 1);

210DEMIR, ELSHERBENI: CUDA-OPENGL INTEROPERABILITY TO VISUALIZE ELECTROMAGNETIC FIELDS CALCULATED BY FDTD

dim3 grid(nxx/block.x,
 nyy/block.y, 1);
createImageOnKernel
<<< grid, block>>>(image_data, dvEz,
nxx, min_value, max_value);
}

Listing 9. The kernel to create the image
__global__ void
createImageOnKernel(unsigned int*
image_data, float* Ez, int nxx,
float minval, float maxval)
{
int i = blockIdx.x * blockDim.x +
threadIdx.x;
int j = blockIdx.y * blockDim.y +
threadIdx.y;
int color_ind; float F;
int ci = j*nxx+i;
int ti = (j+1)*nxx+i;

F = Ez[ti] - minval;
color_ind = floor(255 * F/(maxval-
minval));
image_data[ci] = dvrgb[cind];
}

Listing 10. Displaying the image using OpenGL
void displayTextureImage
(GLuint texture)
{
glBindTexture(GL_TEXTURE_2D,
texture);
glEnable(GL_TEXTURE_2D);
glTexEnvf(GL_TEXTURE_ENV,
GL_TEXTURE_ENV_MODE, GL_REPLACE);

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(domain_min_x,
domain_min_x+nxx*dx, domain_min_y,
domain_min_y+nyy*dy, -1.0, 1.0);

glMatrixMode(GL_MODELVIEW);
glViewport(0, 0, window_width,
window_height);

glBegin(GL_QUADS);
 glTexCoord2f(0.0, 0.0);
 glVertex3f(domain_min_x,
 domain_min_y, 0.0);
 glTexCoord2f(1.0, 0.0);
 glVertex3f(domain_min_x+nxx*dx,
 domain_min_y, 0.0);

 glTexCoord2f(1.0, 1.0);
 glVertex3f(domain_min_x+nxx*dx,
 domain_min_y+nyy*dy, 0.0);
 glTexCoord2f(0.0, 1.0);
 glVertex3f(domain_min_x,
 domain_min_y+nyy*dy, 0.0);
glEnd();

glDisable(GL_TEXTURE_2D);

glCallList(objects_display_list);
}

Copy Colormap to GPU Memory

After OpenGL and CUDA initializations are
completed in Listing 1, a colormap is constructed
on the GPU constant memory in
createColormapOnGpu(). The colormap is
basically a one dimensional array of 4 bytes integer
including RGB values of colors that begin with
blue, and pass through cyan, yellow, orange, and
red. The colormap will be used to reflect the
intensity of the displayed fields. The colormap array
will be accessed at every iteration of the FDTD
time marching loop in a CUDA kernel to generate
the image of field distribution; thus, its access by
CUDA has to be fast. To achieve fast access, the
colormap array is stored in the constant memory of
GPU.

Create a Display List of Objects

It is possible to display an outline of objects
that exist in the problem space as polygons together
with the field distribution. An OpenGL display list
is created in the function
createDisplayListForObjects(). This
display list is drawn on the field distribution image
at every iteration, so it is more efficient to create it
once at the beginning and use it during the time
marching loop.

Copy FDTD Arrays to GPU Memory

A CUDA program is a hybrid code which
mainly runs on CPU, while parallel processing
sections run on GPU. Therefore, the FDTD
problem space, i.e. coefficient arrays, and field
arrays, are initially constructed and allocated on the
CPU RAM. These arrays need to be copied to GPU
global memory to have them available for CUDA
computations on GPU. These arrays are copied to
GPU global memory in the

211 ACES JOURNAL, VOL. 27, NO. 2, FEBRUARY 2012

copyFdtdArraysToGpuMemory() function
in Listing 1.

C. Field calculations using CUDA and
visualization of fields

As discussed before, whenever the display
event (glutDisplayFunc()) is triggered in the
GLUT loop, the associated function
runIterationAndDisplay() is executed.
Implementation of this function is shown in Listing
6. In Listing 6, a check is performed to see if the
FDTD iterations are complete. If the iterations are
complete, results are copied from the GPU global
memory to the CPU memory, other post-processing
operations are performed, and FDTD simulation is
ended. If iterations are not complete, a number of
iterations of the FDTD time marching loop are
performed on GPU using CUDA by a call to the
fdtdIterationOnGpu() function. An iteration
includes usual steps such as an update of sources,
an update of electric fields and magnetic fields,
application of boundary conditions, and capture of
electromagnetic fields. For instance, Listing 7
shows the kernel function that updates the electric
field for the ZTM case.

Fig. 3. A snapshot from the 2D FDTD program
display.

After the field calculations, the new field
distribution can be displayed on the created
window, however, the field data cannot be
displayed directly; data needs to be converted to an
image first and the image needs to be stored in a
texture in a form to be used by OpenGL. First, the
GL buffer is mapped to CUDA, as shown in Listing
6, such that CUDA can process the field data and

create image data. A GPU kernel function needs to
be called to process the field data, thus the
createImageOnGpu() function is called to
launch the kernel function. Implementation of
createImageOnGpu() is shown in Listing 8.
The kernel function is
createImageOnKernel() and is shown in
Listing 9. This kernel basically maps the field value
at each cell from a range between a minimum and a
maximum to one of the 256 colors in the colormap,
and stores to the image buffer.

Once the image is created in the buffer, the
buffer is unmapped and released from CUDA. Then
a texture is created from this buffer as shown in
Listing 6. Once the texture is created, it is ready to
get displayed by OpenGL. The function
displayTextureImage(), shown in Listing
10, is called to perform the final display operations.
Then glutSwapBuffers() is executed to show
the image on the screen.

Figure 3 shows a snapshot from an animation
of a two-dimensional FDTD simulation. The image
is generated through the CUDA-OpenGL
interoperability.

III. PERFORMANCE OF CUDA-
OPENGL INTEROPERABILITY

Two parametric sweep tests are performed by
running the presented FDTD code in different
modes to assess the performance improvement
provided by CUDA-OpenGL interoperability. The
following four modes are considered:
1. program is run on CPU only without field

visualization
2. program is run on GPU using CUDA without

field visualization
3. program is run on GPU using CUDA with field

visualization and with CUDA-OpenGL
interoperability

4. program is run on GPU using CUDA with field
visualization, but without CUDA-OpenGL
interoperability (the image data is transferred
from device memory to host memory and
displayed using OpenGL)

The analyses are performed on an NVIDIA®
Tesla™ C1060 Computing Processor installed on
a 64 bit Windows XP computer. This card has 240
streaming processor cores operating at 1.3 GHz.

212DEMIR, ELSHERBENI: CUDA-OPENGL INTEROPERABILITY TO VISUALIZE ELECTROMAGNETIC FIELDS CALCULATED BY FDTD

The CPU results obtained using an Intel Xeon
processor at 2 GHz.

Here, it should be noted that it is not necessary
to display the images at every time step of the
FDTD loop. Often it is sufficient to display a
frame after a few time steps. A parameter denoted
as plotting_step, shown in Listing 6, is used
to control how often the images are displayed.

As the first parameter sweep test, the problem
size of the two-dimensional space is increased, and
each time the simulations are performed for the
four modes with 1 frame per 5 iterations rate.
Then, the throughputs of the simulations are
calculated as [15]

610steps xx yy

s

n n n
NMCPS

t
−× ×

= × , (1)

where NMCPS is the number of million cells
processed per second, stepsn is the total number of
time steps the program has been run, and st is the
total computation time in seconds. Here, xxn and

yyn are the number of cells in an FDTD problem
space in x and y directions, respectively. The
results are shown in Fig. 4. Throughput is a
measure of how fast the computations are
performed, thus it can be used to assess the
efficiency of the codes. The computation on GPU
without any field visualization is much faster, as
expected. Computation on CPU, even without
visualization, is not comparable with GPU
computation. In the presented Fig. 4, the
computation with visualization is faster by 30%
with CUDA-OpenGL interoperability. The results
verify the efficiency improvement achieved by
interoperability.

In the second parameter sweep test, the frame
display rate is reduced (the image frames are
displayed less often) and each time the simulations
are performed for the four modes for a problem
size of 6 million cells. The throughput results are
shown in Fig. 5. Results again verify that
visualizations are considerably faster with CUDA-
OpenGL interoperability. The data transfers from
the device memory to the host memory take
considerable time when CUDA-OpenGL
interoperability is not utilized. Moreover, as image
display rate is reduced, the computations on GPU
with visualizations converge to that of GPU
without visualization.

Fig. 4. Throughputs of different modes vs.
problem size. 1 frame displayed per 5 time steps.

Fig. 5. Throughputs of different modes vs. image
display rate. Problem size is 6 million cells.

The results in Fig. 5 also show that displaying

the frames more often slows down the
computations significantly. It is not necessary to
display the frames very often. It has been observed
that it is sufficient to display one frame per 5-10
iterations to achieve a smooth visual animation
simultaneously with fast computation.

IV. CONCLUSION

An implementation of CUDA-OpenGL
interoperability to visualize electromagnetic fields
in a two-dimensional FDTD simulation is
developed and presented. It is shown that
interoperability can improve the visualization
efficiency significantly. Interoperability can be
extended to three-dimensional FDTD and more
complicated field visualizations can be achieved.

213 ACES JOURNAL, VOL. 27, NO. 2, FEBRUARY 2012

REFERENCES
[1] I. Buck, Brook Spec v0.2, Stanford Univ. Press,

2003.
[2] NVIDIA CUDA ZONE:

www.nvidia.com/object/cuda_home.html.
[3] K. S. Yee, “Numerical Solution of Inital Boundary

Value Problems Involving Maxwell's Equations in
Isotropic Media,” IEEE Transactions on Antennas
and Propagation, vol. 14, pp. 302–307, May
1966.

[4] A. Taflove and S. C. Hagness, Computational
Electrodynamics: The Finite-Difference Time-
Domain Method, 3rd edition, Artech House, 2005.

[5] A. Elsherbeni and V. Demir, The Finite Difference
Time Domain Method for Electromagnetics: with
MATLAB Simulations, SciTech Publishing, 2009.

[6] P. Sypek, A. Dziekonski, and M. Mrozowski,
“How to Render FDTD Computations More
Effective Using a Graphics Accelerator,” IEEE
Transactions on Magnetics, vol. 45, no. 3, pp.
1324-1327, 2009.

[7] V. Demir and A. Z. Elsherbeni, “Compute Unified
Device Architecture (CUDA) Based Finite-
Difference Time-Domain (FDTD)
implementation,” Journal of the Applied
Computational Electromagnetics Society (ACES),
vol. 25, no. 4, pp. 303-314, April 2010.

[8] C. Y. Ong, M. Weldon, S. Quiring, L. Maxwell,
M. C. Hughes, C. Whelan, and M. Okoniewski,
“Speed it Up,” IEEE Microwave Magazine, vol.
11, no. 2, pp. 70-78, April 2010.

[9] M. Ujaldon, “Using GPUs for Accelerating
Electromagnetic Simulations,” Journal of the
Applied Computational Electromagnetics Society
(ACES), vol. 25, no. 4, pp. 294-302, April 2010.

[10] N. Takada, T. Shimobaba, N. Masuda, and T. Ito,
“Improved Performance of FDTD Computation
Using a Thread Block Constructed as a Two-
Dimensional Array with CUDA,” Journal of the
Applied Computational Electromagnetics Society
(ACES), vol. 25, no. 12, pp. 1061-1069, December
2010.

[11] M. R. Zunoubi and J. Payne, “Analysis of 3-
Dimensional Electromagnetic Fields in Dispersive
Media using CUDA,” Progress In
Electromagnetics Research M, vol. 16, pp. 185-
196, 2011.

[12] http://www.mathworks.com.
[13] M. J. Kilgard, “The OpenGL Utility Toolkit

(GLUT) Programming Interface, API Version 3”.
Silicon Graphics, Inc. November 13, 1996.

[14] J. Stam, “What Every CUDA Programmer Should
Know About OpenGL,” in GPU Technology
Conference, San Jose, CA, October 1, 2009.

[15] Acceleware: www.acceleware.com

Veysel Demir is an Assistant
Professor at The Department of
Electrical Engineering, Northern
Illinois University. He received his
B.Sc. degree in Electrical
Engineering from Middle East
Technical University, Ankara,
Turkey, in 1997. He studied at
Syracuse University, New York,

where he received both a M.Sc. and Ph.D. in Electrical
Engineering in 2002 and 2004, respectively. During his
graduate studies, he worked as research assistant for
Sonnet Software, Inc., Liverpool, New York. He
worked as a visiting research scholar in the Department
of Electrical Engineering at the University of
Mississippi from 2004 to 2007. He joined Northern
Illinois University in August 2007. His research
interests include numerical analysis techniques as well
as microwave and radiofrequency (RF) circuit analysis
and design. Dr. Demir is a member of IEEE and ACES
and has coauthored more than 20 technical journal and
conference papers. He is the coauthor of the books
Electromagnetic Scattering Using the Iterative
Multiregion Technique (Morgan & Claypool, 2007) and
The Finite Difference Time Domain Method for
Electromagnetics with MATLAB Simulations (SciTech
2009).

Atef Z. Elsherbeni is a Professor
of Electrical Engineering and
Associate Dean for Research and
Graduate Programs, the Director
of The School of Engineering
CAD Lab, and the Associate
Director of The Center for Applied
Electromagnetic Systems Research
(CAESR) at The University of

Mississippi. In 2004, he was appointed as an adjunct
Professor, at The Department of Electrical Engineering
and Computer Science of the L.C. Smith College of
Engineering and Computer Science at Syracuse
University. On 2009, he was selected as Finland
Distinguished Professor by the Academy of Finland and
TEKES. Dr. Elsherbeni is a Fellow member of the
Institute of Electrical and Electronics Engineers (IEEE)
and a Fellow member of The Applied Computational
Electromagnetics Society (ACES). He is the Editor-in-
Chief for ACES Journal and an Associate Editor to the
Radio Science Journal.

214DEMIR, ELSHERBENI: CUDA-OPENGL INTEROPERABILITY TO VISUALIZE ELECTROMAGNETIC FIELDS CALCULATED BY FDTD

