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Abstract ─ Two distributed-memory schemes for 
efficiently parallelizing the explicit marching-on-
in-time based solution of the time domain volume 
integral equation on the IBM Blue Gene/P 
platform are presented. In the first scheme, each 
processor stores the time history of all source 
fields and only the computationally dominant step 
of the tested field computations is distributed 
among processors. This scheme requires all-to-all 
global communications to update the time history 
of the source fields from the tested fields. In the 
second scheme, the source fields as well as all 
steps of the tested field computations are 
distributed among processors. This scheme 
requires sequential global communications to 
update the time history of the distributed source 
fields from the tested fields. Numerical results 
demonstrate that both schemes scale well on the 
IBM Blue Gene/P platform and the memory-
efficient second scheme allows for the 
characterization of transient wave interactions on 
composite structures discretized using three 
million spatial elements without an acceleration 
algorithm.  
  
Index Terms ─ Distributed-memory 
parallelization, explicit solvers, IBM Blue Gene/P, 
marching-on-in-time, time domain volume integral 
equation.  
 

I. INTRODUCTION 
Time domain volume integral equation 

(TDVIE) solvers [1- 6] are becoming an attractive 
alternative to time domain finite element [7, 8] and 
finite-difference time domain [8, 9] methods for 
analyzing transient electromagnetic wave 
interactions on inhomogeneous dielectric 
structures. TDVIEs, which relate total electric 
fields to equivalent polarization source 
fields/currents induced in the dielectric volume, 
are constructed using the volume equivalence 
principle. Often times, marching-on-in-time 
(MOT) schemes are the method of choice for 
discretizing the TDVIEs and solving the resulting 
system of equations. The MOT scheme requires, at 
each time step, tested (retarded scattered) fields to 
be computed from the discretized spatial and 
temporal convolutions of the source 
fields/currents’ time history with the free-space 
time-domain Green function. Unlike the 
differential equation based finite element and 
finite difference time domain methods, the Green 
function approach requires discretization of only 
the dielectric volume, avoids the need for 
absorbing boundary conditions, and virtually 
eliminates numerical phase dispersion. On the 
other hand, it renders MOT-TDVIE solvers 
susceptible to late-time instabilities and 
significantly increases their computational 
complexity. The computational cost of the MOT-
TDIE solvers has been reduced with the 
development of the plane wave time domain 
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(PWTD) algorithm [2, 3] and the (blocked) fast 
Fourier transform (FFT) based schemes [10-13] 
aimed at accelerating the computation of the 
discretized spatial and temporal convolutions. The 
problem of late-time instability has been 
practically alleviated with the development of 
implicit MOT schemes [1-3], which make use of 
accurate temporal interpolation rules [14, 15] and 
highly accurate (semi-) analytic integration 
techniques [16, 17]. 

When compared to the implicit techniques, 
explicit MOT schemes are less stable but more 
efficient: they do not require a matrix inversion at 
every time step and also, as a consequence, they 
do not suffer from possible ill-conditioning 
problems [18-20]. Until recently, instability of the 
explicit MOT-TDVIE solvers has been alleviated 
using effective but computationally expensive 
temporal filtering techniques [4]. To eliminate the 
use of these filtering techniques while maintaining 
the stability and explicitness of the solver, a 
predictor-corrector scheme is proposed in [5, 6]. 

In this work, to allow for the application of 
this predictor-corrector based TDVIE solver to the 
analysis of transient electromagnetic wave 
interactions with electrically large dielectric 
structures, two distributed-memory schemes are 
proposed. It should be noted here that the research 
efforts on the development of parallelization 
strategies for MOT-TDIE solvers are as recent as 
the work on the development of PWTD and FFT-
based acceleration engines [11, 12, 21]. 

Especially, efficient distributed-memory 
parallelization schemes have been as indispensable 
as the acceleration engines in enabling the use of 
MOT-TDIE solvers in the analysis of transient 
electromagnetic wave interactions on electrically 
large structures.  

Before reading the description of the 
parallelization schemes, one should be reminded 
here that the predictor-corrector based TDVIE 
solver parallelized in this work does not pre-
compute or store any interaction matrices, which 
represent discretized retarded field interactions [5, 
6]. Since it utilizes a nodal discretization scheme, 
the computation of the interactions is rather fast 
and it can be repeated without increasing the MOT 
time drastically. This approach makes the 
predictor-corrector based TDVIE solver memory 
efficient since only the time history of the source 
fields are stored. It should also be added here that 
the predictor-corrector based TDVIE solver 
approximates space and time derivatives, which 
operate on the scattered field by finite differences. 
It is well known that in parallel implementations 
of finite-difference time-domain method, 
computation of spatial finite differences require 
“halo” type localized communications between 
processors [22, 23]. Similar types of 
communications are needed in parallelized 
computation of the spatial finite differences in 
implementations of the TDVIE solver.  The cost of 
these localized communications is much smaller 
than the global communications needed for 
parallel computation of the discretized integral 
present in the retarded field interactions. 
Therefore, the focus of this work is on comparing 
the performance of two different distributed-
memory parallelization schemes for computing 
this integral discretized in space and time.  

The first parallelization scheme implemented 
in this work is rather straightforward; each 
processor stores the time history of all source 
fields and only the computationally dominant step 
of the test field computations is distributed among 
processors. In this scheme, all processors compute 
the part of the tested fields that is assigned to them 
from the time history of all the source fields they 
store. “All-to-all” global communications are 
needed to update, from the tested fields, the time 
history of the source fields, which will be used in 
the computation of the next time step’s tested 
fields. The second parallelization scheme is 

     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Pictorial description of the volumetric 
scatterer in a background medium with relative 
permittivity bε . 
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slightly more difficult to implement; the source 
fields as well as all steps of the tested field 
computations are distributed among the 
processors. In this scheme, all processors compute 
in parallel the tested fields of a given processor 
only from the history of the source fields they 
store. After this step, tested fields are 
communicated to the given processor via an ‘all 
reduce sum’ operation to update the history of the 
source fields stored on that processor. These steps 
are repeated in a sequential manner for all 
processors storing different parts of the tested and 
source fields.  

The two distributed-memory parallelization 
schemes described above run efficiently on 
Shaheen, an IBM Blue Gene/P platform, located at 
the Supercomputing Laboratory of the King 
Abdullah University of Science and Technology. 
The IBM Blue Gene/P platform possesses 
software and hardware optimizations that 
significantly improve MPI global communication 
operations, which form the essential core of both 
parallelization schemes. The hardware support 
comes in the form of a low latency tree network 
specifically dedicated to MPI global 
communication operations.  This tree network is a 
unique defining feature of the IBM Blue Gene/P 
platform.  Additionally, IBM has included its own 
MPI implementation, which is called DCMF (deep 
computing message framework) and provides 
optimized global MPI operations such as “MPI 
All-to-All” and “MPI Reduce”. All of these 
optimizations result in substantial performance 
benefits for the proposed parallelization schemes 
as shown in Section IV.  

Numerical results demonstrate that both 
schemes scale well on the IBM Blue Gene/P 
platform and the memory-efficient second scheme 
allows for characterization of transient 
electromagnetic wave interactions on dielectric 
structures discretized using three million spatial 
elements without any acceleration engine. 
Additionally, the effectiveness of the parallelized 
predictor-corrector based TDVIE solver is 
demonstrated via its application to the 
characterization of scattering of light from a red 
blood cell [24-26].   

 
II. FORMULATION 

In this section, the formulation and the space-
time discretization scheme underlying the 

predictor-corrector based TDVIE solver is 
reviewed. For more details on the formulation and 
the discretization scheme, the reader is referred to 
[6]. 

Consider a scatterer compromising potentially 
inhomogeneous dielectric volumes represented by 
V  with relative permittivity and permeability, 

( )ε r  and µ  (Fig. 1). The scatterer resides in an 
infinite homogeneous (background) medium with 
relative permittivity and permeability, bε  and bµ . 
It is assumed that ( )ε r , bε , µ , and bµ , are 
frequency independent and 1bµ = µ = . The wave 
speed in the background medium is given by 

0b b bc c= ε µ , where 0c  is the wave speed in free 
space. Let 0 ( , )tE r  represent an incident electric 
field that is vanishingly small for V∈r and 0t ≤ . 

0 ( , )tE r  excites the scatterer; in return the 
equivalent currents induced in V  generate the 
scattered electric field sca ( , )tE r . Expressing 

sca ( , )tE r  in terms of equivalent currents, currents 
in terms of the total electric field ( , )tE r , and 
enforcing the fundamental field electric relation 

sca
0( , ) ( , ) ( , )t t t= +E r E r E r  for V∈r  yields the 

TDVIE in the unknown ( , )tE r , V∈r [6]: 
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Here, R ′= −r r  is the distance between the 
observation and source points, ˆ ˆ ˆx y z= + +r x y z  
and ˆ ˆ ˆx y z′ ′ ′= + +r x y z  located in V , bt t R c′ = −  
is the retarded time, and 2

t∂  represents the second 
order partial derivative with respect to time. 

Equation (1) is discretized using a nodal 
discretization scheme to approximate the volume 
integral and finite differences to approximate the 
second order derivatives in space and time. 
Consider a spatial discretization, where cubic 
elements of dimension d∆  are used to divide V  
into eN  number of elements and a uniform time 
discretization, where t∆  and tN  represent the time 
step size and the number of total time steps. 
Electric field is sampled at the centers of the cubic 
elements at i=r r , 1,.., ei N=  and at times 

nt t n t= = ∆ , 1,.., tn N= . Following the detailed 
derivation in [6], the final form of the predictor-
corrector algorithm is provided below in pseudo-
code format:  
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  Update ( , )i ntf r  for ( , ) | 2 ,i j i j bc t∀ − < ∆r r r r  (10) 

end for 
 
 
In the algorithm provided above  
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ij i jR = −r r  is the distance between the test and 
the source points, ir  and jr , the singular integral 
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i
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where iV  is the support of the thi  cubic element, is 
evaluated analytically as described in [27], and  
the operators “∇∇⋅  ” and “ 2

t∂ ” are finite 
difference approximations of the continuous 
operators “∇∇⋅” and “ 2

t∂ ”. Several comments 
about the above algorithm are in order: (i) Steps 
(5) and (8) are the predictor and the corrector 
steps, respectively, and the samples ( , )p

i ntE r  and 
( , )c

i ntE r  are collectively termed “tested fields” 
while the samples ( , )i ntE r  are termed “source 
fields”. (ii) At step (4), 2

t∂  is evaluated using a 
backward difference formula for test-source point 
pairs ( , )i jr r , which satisfy the condition 

2i j bc t− < ∆r r  and using a central difference 
formula for all other pairs. At step (7), 2

t∂  is re-
evaluated using a central difference formula for 
test-source point pairs ( , )i jr r , which satisfy the 
condition 2i j bc t− < ∆r r . The use of central 
difference is now possible since ( , )i ntE r  that were 
not known at step (4) (due to causality) are 
replaced by ( , )p

i ntE r  obtained at the predictor 
step. Also note that, at step (10), ( , )i ntf r  is 
“corrected” only for the same test-source point 
pairs since now ( , )i ntE r  are replaced by ( , )c

i ntE r  
computed at the corrector step. The corrected 

( , )i ntf r  is used at step (8) of the next time step. 
This approach increases the accuracy of the finite 
difference approximations while maintaining the 
explicitness of the MOT scheme. (iii) When 

n ij bt R c−  is not an integer multiple of t∆ , 
( , )j n ij bt R c−E r  is approximated using a linear 

interpolation between ( , )j ntE r  and 1( , )j nt −E r . (v) 
Note that, in (2), ( , )j n ij bt R c−E r , which satisfy 
the condition 0n ij bt R c− <  do not contribute to 

( , )i ntF r  since the fields radiated from the source 
point jr  have not yet reached the test point jr  at 
time nt t= . (iv) The length of the temporal history 
of the source fields stored, in terms of time steps, 
is min( 1, )gn N− ; i.e., only ( , )j n mt −E r , 

1,...,min( 1, )gm n N= −  are stored. Here, 
max 2g bN D c t= ∆ +   , where maxD  is the 

maximum distance between any test-source point 
pair on V . (vi) Unlike the classical MOT schemes, 
the scheme described above does not pre-compute 
or store any interaction matrices; the full 
computation of ( , )i ntf r  at step (4) and its 
correction at steps (7) and (10), in a sense, 
replaces the multiplication of these interaction 
matrices with the samples of the source fields’ 
temporal history. (vii) Numerical results presented 
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here and in [5, 6] show that the MOT scheme 
described above is stable when ( ) bε ε−r  is not 
large. 
 

III. PARALLELIZATION 
The per-time-step computational cost of the 

predictor-corrector based MOT scheme described 
in Section II is dominated by the computational 
cost of evaluating the discrete convolutions 

( , )i ntF r , 1,..., ei N=  at step (2). At the th
gN  time 

step, the fields radiated from all source points jr , 
1,..., ej N=  reach all test points ir , 1,..., ei N= . 

From this time step onwards, the cost of 
evaluating ( , )i ntF r , 1,..., ei N=  at time step nt  for 

gn N>  is 2( )eO N , since all source points interact 
with all test points. All other operations that are 
carried out at steps (2)-(10) of the MOT scheme 
are localized in space and time. Their contribution 
to the computational cost is very limited especially 
for large eN . As a result, the total computational 
cost of the predictor-corrector based MOT scheme 
scales as 2( )t eO N N  under the assumption that 

t gN N . This high computational cost could be 
reduced by integrating PWTD- [2, 3] or blocked 
FFT-based [10-13] schemes into the predictor-
corrector based MOT scheme. Another way of 
rendering the MOT scheme applicable to the 
analysis of transient electromagnetic wave 
interactions on electrically large dielectric 
structures is through parallelization; which allows 
for executing the scheme on distributed memory 
clusters with thousands of cores. 

In this section, two distributed-memory 
parallelization schemes are proposed for 
accelerating the predictor-corrector based MOT-
TDVIE solver. Scheme 1 is a straightforward 
MPI/OpenMP hybrid parallelization scheme that 
involves global all-to-all operations; and scheme 2 
is a slightly more complex algorithm that involves 
sequential global reductions. Both schemes are 
fundamentally aimed at accelerating the 
computation of ( , )i ntF r ,  at step (2).  
Detailed descriptions of the schemes are presented 
next.  

 
A. Scheme 1 

The partitioning of the geometry has no effect 
on the parallelization efficiency of scheme 1. The 
space sampling points, ir , 1,..., ei N=  can be 
randomly assigned to processors; as long as they 
are equally distributed, the scheme will provide 
the highest efficiency. For the sake of simplicity in 
the visualization, one can assume that the space 
sampling points on a rectangular scatterer are 
assigned to processors as shown in Fig. 2. In this 
figure, each box of sampling points (shown with a 
different color on the left) is assigned to a 
processor.  

In this scheme, each processor computes and 
stores all tested fields, ( , )p

i ntE r  and ( , )c
i ntE r ,

1,..., ei N=  at a given time step nt , and updates 
and stores the time history of all source fields, 

( , )j n mt −E r , 1,..., ej N= , 1,...,min( 1, )gm n N= − . 
Only the computation of ( , )i ntF r , 1,..., ei N=  at 
step (2) is parallelized. At time step nt , each 

1,..., ei N=

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2. Pictorial description of scheme 1. Each box of sampling points (represented with a different color) 
is assigned to a processor. Only computation of ( , )i ntF r , 1,..., ei N= , at time step nt  is parallelized; every 
processor computes ( , )i ntF r  for all ir  that reside in its box using the time history of the all source fields, 

( , )j n mt −E r , 1,..., ej N= , 1,...,min( 1, )gm n N= − , which all processors store (represented with solid 
yellow blocks).  
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processor independently computes ( , )i ntF r  for all 
ir  that reside in its box. The parts of ( , )i ntF r , 

1,..., ei N= , which are computed and stored on  
different processors are communicated to every 
processor via a global all-to-all operation. At this 
point, each processor stores ( , )i ntF r , for all 

1,..., ei N= . Thereafter, computations at steps (3), 
(4), and (5) are replicated on all processors. 

( , )p
i ntE r , 1,..., ei N=  is computed and stored on 

all processors. At step (6), ( , )i ntE r , 1,..., ei N=  is 
updated and stored on all processors. At step (7), 
each processor updates ( , )i ntf r  for every test-
source pair ( , )i jr r  that satisfies 2i j bc t− < ∆r r . 
At step (8), ( , )p

i ntE r , 1,..., ei N=  is computed and 
stored on all processors. At step (9), ( , )i ntE r , 

1,..., ei N=  is updated and stored on all processors. 
Step (10) is the same as step (7).  

Several remarks about scheme 1 are in order: 
(i) The scheme is straightforward to implement. 
The parallelization can be carried out on the serial 
version of the predictor-corrector based MOT 
scheme by simply incorporating calls to 
“MPI_Allgatherv” subroutine after step (2). (ii) 
Since ( , )j n mt −E r , 1,..., ej N= , 1,...,m =
min( 1, )gn N−  is stored on every processor, the 
largest spatial discretization that can be handled by 
this approach is limited by the memory available 
on a given processor. (iii) Storing ( , )p

i ntE r , 
( , )c

i ntE r , and ( , )i ntF r , 1,..., ei N=  as well as 
( , )j n mt −E r , 1,..., ej N= , 1,...,min( 1, )gm n N= −  

on all processors avoids the local communications 
needed to compute the finite differences in steps 

(4), (7), and (10). This simplifies the 
implementation considerably and provides the 
flexibility in geometry partitioning mentioned at 
the beginning of Section III-A. (iv) The extension 
of the scheme to include shared memory 
hybridization is straightforward: OpenMP is used 
throughout, that is in steps (2)-(10) to parallelize 
the computations when they are distributed over 
multi-core processors.  

 
B. Scheme 2 

Unlike scheme 1, the partitioning of the 
geometry has an effect on the parallelization 
efficiency, even though it is small, as explained in 
the text below. Similar to the description of 
scheme 1, for the sake of simplicity in the 
visualization, one can assume that the space 
sampling points on a rectangular scatterer are 
assigned to processors as shown in Fig. 3. In this 
figure, each box of sampling points is assigned to 
a processor. 

In this scheme, each processor stores, for all ir  
that reside in its box, the tested fields, ( , )p

i ntE r  
and ( , )c

i ntE r  at a given time step nt  and the 
corresponding time history of source fields, 

( , )i n mt −E r , 1,...,min( 1, )gm n N= − . Note that 
unlike scheme 1, all steps of the MOT scheme are 
parallelized. The computation of ( , )i ntF r , 

1,..., ei N=  at step (2) is parallelized in a sequential 
manner (over processors) that makes use of global 
reductions. Assume that, at time step nt , ( , )i ntF r  
is being computed for all i RB⊂r , i.e., all 

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3. Pictorial description of scheme 2. Each box of sampling points (represented with a different color) 
is assigned to a processor. All steps in the computation of tested fields ( , )p

i ntE r  and ( , )c
i ntE r , 

1,..., ei N= , at time step nt  is parallelized; every processor stores the tested fields ( , )p
i ntE r , ( , )c

i ntE r , 
and the time history of the source fields, ( , )j n mt −E r , 1,..., ej N= , 1,...,min( 1, )gm n N= − , for all ir  that 
reside in its box.  
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sampling points reside in red box (Fig. 4(a) left 
side); and let RP  represent the processor assigned 
to RB . Note that each ( , )i ntF r  with i RB⊂r  is a 
summation of sampled field contributions radiated 
from all source points, jr , 1,..., ej N= , which are 
distributed among the processors. Each processor 
independently computes its contributions to 

( , )i ntF r , for all i RB⊂r , from only ( , )j n mt −E r ,  1,...,min( 1, )gm n N= −  that it stores. Then, these 
contributions are communicated to RP  via a global 
reduction call, which is executed with the “sum” 
flag. At this point, ( , )i ntF r  for all i RB⊂r  is fully 
computed and stored on RP . Then, the scheme 
moves, for example, to the purple box, represented 
with PB (Fig. 4(b), left side), and repeats the 
parallel computation of ( , )i ntF r , for all i PB⊂r . 
This step is repeated processor by processor until 

( , )i ntF r , for all 1,...,i eN=r  is computed and 
stored part-by-part on all processors. Step (3) is 
executed independently on every processor 
without any communications. At step (4), if the 
computation of ( , )i nt∇∇⋅F r   requires a (local) 
finite difference grid that strides across the 
boundary of two partitioning boxes, then a local 
communication must occur between the two 
processors that are assigned to those boxes. At 
step (5), each processor computes and stores 

( , )p
i ntE r  for all ir  that reside in its box. At step 

(6), each processor updates ( , )i ntE r  from 
( , )p

i ntE r  for all ir  that reside in its box. At step 
(7), each processor updates ( , )i ntf r  for every test-
source pair ( , )i jr r  that satisfies 2i j bc t− < ∆r r . 
Similar to step (4), local communications are 
required. At step (8), each processor computes and 
stores ( , )c

i ntE r  for all ir  that reside in its box. At 
step (9), each processor updates ( , )i ntE r  from 

( , )c
i ntE r  for all ir  that reside in its box. Step (10) 

is the same as step (7).  
Several remarks about scheme 2 are in order: 

(i) Scheme 2 is slightly more complicated to 
implement than scheme 1. The global reduction 
call at step (2) is implemented by incorporating 
calls to “MPI_Reduce” subroutine with a “sum” 
flag. (ii) Since, ( , )j n mt −E r , 1,..., ej N= , 1,...,m =
min( 1, )gn N−  are distributed among processors in 
scheme 2, it is more memory efficient when 
compared to scheme 1. (iii) The halo type local 
communications needed at steps (4), (7), and (10) 
which are also used in many other parallelization 
schemes [22, 23] have little effect on the scheme’s 
overall parallelization performance. Note that to  

 
minimize halo type communications; one may 
need to find an optimal strategy to partition the 
geometry. 
 

IV. NUMERICAL EXPERIMENTS 
Scalability tests of the two parallelization 

schemes proposed in this paper for accelerating 
the predictor-corrector based MOT TDVIE solver 
are performed on the IBM Blue Gene/P platform 
located at Supercomputing Laboratory of the King 
Abdullah University of Science and Technology. 
The IBM Blue Gene/P platform, named Shaheen, 
possesses an IBM design, which was awarded the 
National Medal of Technology and Innovation in 
U.S. in 2009. Shaheen has 16384 compute nodes, 
each of which contains four processing cores and 4 
GB shared physical memory. Each processing core 
runs at a modest clock rate of 850 MHz. However, 
the addition of a double floating-point unit, an 
8MB high speed cache memory, and a fast main 
memory bandwidth of 13.6 GB/sec raises the peak 
processing limit of each core to a respectable 13.6 
GF/sec. Superior connectivity between the IBM 
Blue Gene/P platform’s compute nodes is 

 
 
 
 
 
 
 
 
 
 

(a) 
 
 
 
 
 
 
 
 
 
 
 

(b) 
Fig. 4. Pictorial description of the parallelization 
of the computation of ( , )i ntF r ,  at time step nt  in 
scheme 2. (a) ( , )i ntF r  for all ir  that reside in the 
red box (on the left) is computed in parallel. (b) 

( , )i ntF r  for all ir  that reside in the purple box is 
computed in parallel.  
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provided via two dedicated communication 
networks. A 3D torus network is available for fast 
point-to-point MPI communication between 
compute nodes. This network has a peak 
bandwidth of 5.1 GB/sec and a low latency of only 
3.5 microseconds. The second network is 
dedicated to MPI global communication 
operations. Every compute node possesses three 
connections to this tree-based network providing a 
low latency of 2.5 microseconds per MPI message. 
Lastly, installed on the IBM Blue Gene/P is a 
software stack that includes the MPI library called 
DCMF (deep computing message framework). 
DCMF library provides optimized versions of 
normal MPI operations including ‘MPI All-to-All’ 
and ‘MPI Reduce’, which are heavily optimized to 
run efficiently on the Blue Gene/P platform 
including the two dedicated networks 
interconnecting the compute nodes. It should be 
emphasized here that the parallelization schemes 
proposed in this work benefit from the superiority 

of the second network dedicated to global 
communications and the optimized DCMF library, 
since the schemes extensively utilize global MPI 
communications. 

In the remainder of this section, first the weak 
scalability of the two parallelization schemes are 
compared, then the effectiveness of the 
parallelized predictor-corrector based MOT 
TDVIE solver is demonstrated via its application 
to the characterization of scattering of light from a 
red blood cell [24-26].   

 
A. Scalability  

Weak scalability for the proposed schemes is 
investigated here for two scenarios: a moderately 
sized problem with 531441eN =  and a much 
larger problem with 3048625eN = . For both 
examples, scalability results are presented in 
Tables 1 and 2 and plotted in Figs. 5 and 6. Here, 

pN  represents the number of compute nodes of 

Table 2: Tabulated scaling results for the problem 
with 3048625eN =  

4 pN  1
pNS  2

pNS  

512 0 0 
1024 0.9884 0.9257 
2048 1.9783 1.7916 
4096 2.9376 2.5422 
8192 3.8745 3.4167 
16384 4.7459 4.4652 
32768 5.5259 5.2762 

       

 
 
Fig. 6.   Scalability of schemes 1 and 2 for a large 
problem with 3048625eN = . 

Table 1: Tabulated scaling results for the problem 
with 531441eN =  

4 pN  1
pNS  2

pNS  

512 0 0 
1024 0.9781 0.9865 
2048 1.9561 1.9931 
4096 2.8087 2.8004 
8192 3.6827 3.6994 
16384 4.2971 4.8783 
32768 4.7659 5.1977 

      

 
 
Fig. 5. Scalability of schemes 1 and 2 for a 
moderate-size problem with 531441eN = . 
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the IBM Blue Gene/P platform used in the 
simulations. This means that for scheme 1, which 
is hybridized with OpenMP that uses four threads 
per node, the number of parallel tasks is 4 pN . 
Similarly, scheme 2, which is a pure distributed 
memory implementation, is executed on 4 pN  
cores since each compute node of the IBM Blue 
Gene/P platform has four processing cores. The 
weak scaling is defined as 2log ( )

N pp

k k k
N refS T T= . 

Here, the subscript “ pN ” refers to the simulation 
carried on pN  nodes, and the superscript “ k ” 
refers to the parallelization scheme used. The 
recorded total times, 

p

k
NT , include both 

communication and computation times. k
refT  is the 

reference total time recorded for the simulation 
that is executed with the lowest pN . It is clear 
from Fig. 5 that, for the smaller size problem, the 
scalability of scheme 1 is hindered by the 
communication costs when 4 pN  is larger than 
8192. On the other hand, Fig. 5 shows that, for the 
larger problem, the scalability of scheme 1 carries 
over even for large values of  4 pN  around 32768. 
Figs. 5 and 6 also demonstrate that there is no 
distinct difference in scheme 2’s scalability 
behaviour for the two problems up to 

3 7684 2pN = . Even if the scalability behaviour of 
the two schemes is different, as clearly 
demonstrated by the results presented here, they 
both scale very well on the IBM Blue Gene/P 
platform. 

It should be noted here that, to be able to run 
the large problem with parallelization scheme 1, 

gN  was artificially set to a small number. If the 
actual gN  was used in the simulation, 4GB 
memory of a single node of the IBM Blue Gene/P 
platform would not be large enough to store the 
time history of the source fields. Note that this 
problem does not exist for the parallelization 
scheme 2; its memory efficient implementation 
allows for storing the time history of the source 
fields using the actual value of gN . 

 
B. Light scattering from red blood cells  

Over the last two decades many biomedical 
devices utilizing lasers for disease diagnosis have 
been developed. Consequently, there is an 
increasing interest in understanding how 
electromagnetic waves interact with biological 
cells and tissue. In particular, the analysis of light-
scattering from red blood cells (RBCs) have 
attracted the interest of many researchers [24-26] 

                      
      

 (a) 
 

                                                                  
(b) 

 

 
(c) 

 

 
(d) 

 
Fig. 7. Analysis of light scattering from an RBC. 
(a) Cross-section of the RBC model along the xz
- plane and the plane wave excitation. (b) Three 
dimension view of the model. (c) The amplitude 
of the transient electric field induced at the center 
of the RBC. (d) Normalized amplitude of the 
electric far-field on the xz - plane. 

x 
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since this type of analysis may provide essential 
information for the diagnosis of blood related 
diseases [26]. 

For this example, the parallelized predictor-
corrector MOT-TDVIE solver is used to analyze 
light scattering from an RBC residing in plasma. 
The membrane of RBCs has a negligible effect on 
the scattered field [24], and hence the RBC model 
does not include the membrane or any other 
internal structure and is formulated as a biconcave 
volume as described in [24]. Figures 7 (a) and (b) 
depict the xz -cross section and three-dimensional 
view of this model, respectively. The diameter of 
the cell is 7.82 mµ , its largest and smallest 
thickness values on xz -plane are 2.565 mµ  and 
0.81 mµ , respectively, producing a volume of 

394 mµ . The relative permittivities of the RBC 
and the background plasma are ( ) 1.9768ε =r  and 

1.8089bε = , respectively [24]. Note that while 
absorption can also be handled by the 
implemented MOT-TDVIE scheme, for the 
excitation frequencies considered, it is very small 
and thus is neglected [24, 25]. The excitation is an 
x̂  polarized plane wave with a modulated 
Gaussian time signature, which propagates in the 
ẑ  direction; the incident electric field is then 
expressed as  

 0 0ˆ( , ) ( ),bt E G t z c= −E r x  (13) 

  

2 2( ) cos 2 ( ) exp ( ) / ,o p pG t f t t t t  = π − − − ς     (14) 

where 0 1 V/mE =  is the electric field amplitude 
and ( )G t  represents a Gaussian pulse, 

637.2 THzof = , 3 / (2 )bwfς = π , 0 15bwf f= , and 
6pt = ς  are its modulation frequency, duration, 

bandwidth, and delay, respectively. The grid space 
is chosen as 0.045 md∆ = µ , which produces 

1031550eN =  discretization elements within the 
volume of the RBC. The time step 0.15 fst∆ =  
and the simulation is carried out for 2666tN =  
time steps.  

The amplitude of the electric field at the center 
of the RBC, o( , )tE r , o (0,0,0)=r , which is 
recorded during the simulation, is presented in Fig. 
7(c); the figure clearly demonstrates the late-time 
stability of the scheme. Additionally, frequency-
domain scattered farfields on the xz -plane are 
computed. For this purpose, at 473.8 THzf =
( 0.6328 mλ = µ , in the plasma), the Fourier 
transform of the currents induced in the RBC 
volume is computed during time marching using a 

running discrete Fourier transform (DFT) 
summation. Note that the DFT of the currents is 
normalized by the Fourier transform of ( )G t  to 
produce the time-harmonic currents. Then, as a 
post-processing step, the farfields are easily 
computed from the frequency-domain currents. 
Figure 7(d) plots the normalized amplitude of the 
electric farfield on the xz -plane. The results agree 
well with those generated in [24] using the finite 
difference time domain method.  

 
V. CONCLUSIONS 

Two distributed-memory schemes are 
proposed to efficiently parallelize the predictor-
corrector based MOT-TDVIE solver on the IBM 
Blue Gene/P platform. The first scheme distributes 
the computationally dominant step of the tested 
field computations among the processors using the 
MPI standard. To achieve an easy-to-implement 
and highly-scalable parallelization scheme, the 
time history of the source fields are stored 
simultaneously on all processors. Within each 
multi-core processor, OpenMP standard is used to 
further accelerate the computation of the tested 
fields. Obviously, the fundamental limitation of 
this scheme is its high memory requirement due to 
the storage of the time history of all the source 
fields on each processor.  

The second scheme alleviates this limitation by 
distributing the time history of the source fields as 
well as all steps of the tested field computations 
among the processors. Even though the 
implementation of scheme 2 is slightly more 
complicated than scheme 1, numerical results 
demonstrate that scheme 2 scales as well as 
scheme 1 on the IBM Blue Gene/P platform. The 
memory efficient scheme 2 allows the predictor-
corrector based MOT-TDVIE solver to simulate 
transient electromagnetic wave interactions on 
electrically large structures discretized using more 
than three million spatial elements.  

It should be emphasized here again that both 
methods benefit from the IBM Blue Gene/P 
platform’s superior tree network dedicated to 
global communications and optimized MPI library 
since they heavily utilize “MPI_Allgatherv” and 
“MPI_Reduce” subroutines. Other computing 
platforms do not have this level of hardware and 
software support for MPI global communications. 
Development of the extensions to the method 
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proposed here, which would scale well on other 
platforms, is underway.  
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