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Abstract ─ This paper aims to illustrate the current 
interest about the use of stochastic techniques for 
electromagnetic compatibility (EMC) issues. This 
problem may be handled from various methods. 
First, we may focus on the Monte Carlo (MC) 
formalism but other techniques have been 
implemented more recently (the unscented 
transform, UT, or stochastic collocation, SC, for 
instance). This work deals with solving a 
stochastic EMC problem (transmission line) with 
the UT and SC techniques and to compare them 
with the reference MC results. 
  
Index Terms ─ Sensibility analysis, stochastic 
collocation, stochastic electromagnetic 
compatibility, unscented transform.  
 

I. INTRODUCTION 
Nowadays, although one may note the 

growing interest of the electromagnetic (EM) 
community for measurement techniques and 
numerical codes with increasing accuracy, the 
trend is to improve their efficiency by optimizing 
them. Most of the computational works in 
electromagnetics remain deterministic (i.e., one 
single result per set of exact input data). Although 
the uncertainties are intrinsic in EM analysis 
(slight variations from large production, 
environmental factors, reproducibility drifts), very 
few studies are achieved to efficiently take them 
into account. One of the most spread techniques 
relies on Monte Carlo (MC) simulations [1]. The 

aim of this work is to focus on two additional 
methods which present the simplicity of MC 
method with faster convergence rates. Thus, the 
unscented transform (UT) method [2, 3] and the 
stochastic collocation (SC) technique [4] will be 
detailed from their foundations to an 
electromagnetic compatibility (EMC) application. 
 

II. THEORETICAL BASIS  
Many methods are used to take uncertainties 

into account in EM simulations; one of the 
simplest ways to do so may remain as the use of 
MC developments. Some probabilistic techniques 
are also available: we can mention, without 
exhaustiveness, the polynomial chaos [5] or the 
kriging technique [6]. In this article, we focus on 
the interest of the UT [2] and SC [4] methods to 
solve EMC problems. They are two non-intrusive 
methods whose main advantages are simplicity 
and efficiency. Contrary to a classical MC 
simulation, well known for its slow convergence 
rate, the collocation methods are computationally 
very interesting since they need a limited number 
of well-chosen points related to the distribution of 
the random variables (RV). Thus, the UT and SC 
techniques share many similarities; they only 
differ regarding two or more random parameters. 
In our model, a stochastic parameter Z will be 
defined according to a RV 𝑢� following 

  𝑍 = 𝑍0 + 𝑢�,             (1) 
with 𝑍0 the initial value (mean) and without any 
loss of generality 𝑢� follows a certain distribution 
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law (zero-mean and a given variance). The random 
value Z may stand for different parameters: 
material characteristics (dielectric), geometry (for 
instance size or location of a target) or the source 
parameters (magnitude, frequency ...). 

 
A. UT principles 

As explained in [3], the UT method is similar to 
the MC technique. The main difference relies on the 
number of realizations needed to obtain the 
statistical moments of a given output. Instead of 
several thousands of repetitions, only a few selected 
ones are necessary.  

A single RV UT case. Some conditions are 
required to compute UT for a single RV: we may 
know both the moments of the RV 𝑢� and the 
nonlinear mapping of the random output. Its nth 
order moment may be expressed as follows: 
 𝐸{𝐼(𝑢�)𝑛} = ∫ 𝐼(𝑢)𝑛𝑝𝑑𝑓(𝑢)𝑑𝑢,            (2) 
where pdf(u) is the probability density function of 
the RV 𝑢�. A discrete equivalent of the relation (2) 
is used for the integration 

 ∫ 𝐼(𝑢)𝑛𝑝𝑑𝑓(𝑢)𝑑𝑢 ≈ ∑ 𝜔𝑖𝐼(𝑆𝑖)𝑛𝑖 ,         (3) 
where Si are the so-called sigma points (for the 
integration). If the nonlinear mapping 𝐼(𝑢�) is well 
behaved, it could be expressed from Taylor 
polynomial series (gj coefficients) as 
∫ 𝐼(𝑢)𝑛𝑝𝑑𝑓(𝑢)𝑑𝑢 = ∑ 𝑔𝑗 ∫𝑢𝑗𝑝𝑑𝑓(𝑢)𝑑𝑢∞

𝑗=0 .   (4) 
From the discrete sum (3), each integration 

term of (4) may be expressed from k+1 (k=0, 1 ...) 
equations as 

∫𝑢𝑘𝑝𝑑𝑓(𝑢)𝑑𝑢 ≈ ∑ 𝜔𝑖𝑖 𝑆𝑖𝑘 = 𝐸�𝑢�𝑘�.          (5) 
The nonlinear system depicted in (5) allows 

the computation of the sigma points Si and weights 
𝜔𝑖 from the moments of the RV 𝑢�. As detailed in 
[2], the minimum number of Si points for a given 
order of the UT technique may be derived using 
the Gauss quadrature schemes. Indeed, 
considering (5), the solution is not unique and 
different sets of (𝑆𝑖,  𝜔𝑖) may be obtained as 
illustrated in the following. 

UT for multi-RV. Based upon the results 
obtained for a single RV, the Taylor polynomial 
representation is still suitable for two RV. In the 
two variables case, the system (5) may be written 
using statistical moments cross terms [2] following 

∑ 𝜔𝑖�𝑆𝑖1�
𝑚�𝑆𝑖2�

𝑛 = 𝐸{𝑢�1𝑚𝑢�2𝑛}𝑖 .            (6) 
The sigma points and weights are computed 

for the two RV 𝑢�1 and 𝑢�2 and derived from the 
possible power combinations of m and n (natural 

numbers) with 0 ≤ 𝑚 + 𝑛 ≤ 4. Once more there 
are several possible solutions: in the following we 
will give different sets of sigma points and weights 
solving the system (6). 

 
B. SC foundations 

This section is dedicated to the presentation of 
the SC technique [4]. 

SC basis for a single random parameter. 
The idea of the technique is to find a polynomial 
approximation of a given output I depending on a 
random parameter Z (1). In a first time, the 
function 𝑆 → 𝐼(𝑍0; 𝑆) is split up a Lagrangian 
basis with n the approximation order 

𝐼(𝑍0; 𝑆) ≈ ∑ 𝐼𝑖(𝑍0)𝐿𝑖(𝑆)𝑛
𝑖=0 ,            (7) 

with 𝐿𝑖(𝑆) = ∏ 𝑆−𝑆𝑗
𝑆𝑖−𝑆𝑗

𝑛
𝑗=0
𝑗≠𝑖

. One of the most 

interesting properties of the Lagrangian basis 
relies on its reducing characteristic: 𝐿𝑖�𝑆𝑗� = 𝛿𝑖𝑗 
(Kronecker δ) and we may write 𝐼𝑖(𝑍0) =
𝐼(𝑍0; 𝑆𝑖). Then, the integration computation is 
based upon the Gauss quadrature with identical 
points Si than the ones previously needed by the 
SC method 

∫ 𝑝𝑑𝑓(𝑢)𝐷 𝑓(𝑢)𝑑𝑢 ≈ ∑ 𝜔𝑖𝑓(𝑆𝑖)𝑛
𝑖=0 .           (8) 

Similarly to the UT case, the real numbers ωi are 
called integration weights. From (7), we may 
detail I with its polynomial approximation 
𝐸{𝐼(𝑍0; 𝑆)} = ∑ 𝐼𝑖(𝑍0)∫ 𝐿𝑖(𝑠)𝑝𝑑𝑓(𝑠)𝑑𝑠𝐷

𝑛
𝑖=0 . (9) 

From (9), we may straightforward compute 
weights following 

𝜔𝑖 = ∫ 𝐿𝑖(𝑠)𝑝𝑑𝑓(𝑠)𝐷 𝑑𝑠.           (10) 
We will detail in Section II-D the statistical 
moments computation enabled by the pair (Si, ωi). 

Multi-RV SC case. The previous theoretical 
elements may be generalized to the multivariate 
case. Therefore, by considering a two-variable 
random problem, for instance involving two RV 
𝑢�1 and 𝑢�2 standing for two random parameters, 
respectively Y and Z, we may write Y and Z from 
the relation (1) including two initial values (𝑌0 
and 𝑍0) and potentially two random distributions. 
From the same theoretical foundations, we may 
project the function (𝑠, 𝑡) → 𝐼�𝑌0,𝑍0; 𝑠𝑖, 𝑡𝑗� on a 
Lagrangian basis 
𝐼�𝑌0,𝑍0; 𝑠𝑖, 𝑡𝑗�≈∑ ∑ 𝐼𝑖𝑗(𝑌0,𝑍0)𝐿𝑖(𝑠)𝐿𝑗(𝑡)𝑛

𝑗=0
𝑛
𝑖=0 , 

               (11) 
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with 𝐼𝑖𝑗(𝑌0,𝑍0) = 𝐼�𝑌0,𝑍0; 𝑠𝑖, 𝑡𝑗�. It is rather 
simple from (11) to compute the moments of the 
output I through a tensor product in each direction 
(i.e., for each RV) based upon the generalization 
of (8). Comparatively to MC, the technique may 
appear limited when the number of RV increases. 
Other methods exist [7, 8] to ensure efficiency 
with a good level of accuracy but for few RV, UT, 
and SC reveal particularly precise. 

 
C. Sigma points/weights computation 

Although the UT and SC appear very similar 
considering the computation of their respective 
sigma points/weights, they differ from their basis. 
From the different solutions proposed in one-
variable case, the minimum number of (Si, ωi) 
pairs (for a given order n) is straightforward 
available by the Gauss quadrature scheme 
(identical to the SC case [4, 9]). Therefore, the 
expression of the integration points/weights is 
similar for the UT [2] and SC [10], and the results 
will be identical. The Table 1 gives an overview of 
the points/weights in single RV case following a 
standard normal distribution. We may construct 
similarly the multi-RV set of points/weights for 
UT and SC. Based upon [2], it is possible to 
extend the previous set of points (Table 1) to the 
numerical examples presented in the following 
(one or two RV) including the distribution law 
variance. As depicted in [2], the UT solution is not 
unique when solving the system (6) and we may 
obtain (for a same order) different sets of 
sigma/weights points. 

 
Table 1: Sigma/weights points (one RV) for a 
standard normal law (UT/SC) 
n  Pt1 Pt2 Pt3 Pt4 Pt5 

2 Si -√3 0 √3   
ωi 1/6 2/3 1/6   

4 Si -2.9 -1.4 0 1.4 2.9 
ωi 0.01 0.22 0.53 0.22 0.01 

  
D. Calculation of the statistical moments 

The collocation technique gives the 
collocation points (Si) and weights (ωi) necessary 
to entirely compute the nth-order (n=1, 2 ...) Z 
statistical moments [10]. From previous notations 
(𝐸{𝑍} for instance), in order to simplify the 
discussion, the brackets 〈𝑍〉 and 𝜎𝑍 symbol will 

stand respectively for the mean and standard 
deviation of the Z output. 

 
Table 2: Statistical moments computation with the 
UT/SC for one-dimensional RV case 

Moment n Computation 

Mean 1 〈𝒁〉 = �𝝎𝒊𝑺𝒊

𝒏

𝒊=𝟎

 

Variance 2 𝜎𝑍2 = �𝜔𝑖𝑆𝑖2
𝑛

𝑖=0

− 〈𝑍〉2 

 
The Table 2 gives the computation of the first and 
second statistical moments from UT/SC (one RV). 
The computation of the sigma points and weights 
(multi-RV) may be found respectively in [2, 9]. In 
the following, we will present the numerical 
differences existing between the UT and SC. 

 
III. A STOCHASTIC EMC PROBLEM  

The case of a simple transmission line of 
diameter d, at frequency f, length L, placed at a 
height h above an infinite ground plane and 
illuminated by a uniform linearly polarized plane 
wave is considered (Fig. 1). An analytical 
formulation can be obtained for the current 𝐼(𝐿) at 
load ZL=1kΩ [6], Z0 is set to 50Ω. 

 

 
 

Fig. 1. Transmission line striken by a plane wave. 
 
A. Accuracy of the UT and SC methods (single 
RV case) 

Both for the UT and SC, the accuracy of the 
stochastic techniques presented in this paper 
depends on the order n of the approximation as 
presented in (8). Thus, in the following, we will 
talk about UT and SC “order n” which means a 
polynomial approximation with n+1 pairs (Si, ωi). 
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Using the Gauss quadrature to compute weights 
and sigma points leads to a similar (Si, ωi) set both 
for the UT and SC. The single variable uncertainty 
is first introduced considering L. The line length is 
associated to a RV 𝑢� following a normal 
distribution (zero-mean, variance=0.053); different 
𝐿0  mean values are regarded in the set DL=[1.2m; 
4.5m]. In this example, the values of parameters 
are set following: d=1mm, f=50MHz, h=20mm, 
with initial electric field amplitude 𝐸0=1kV/m, a 
normal striking is considered here. 

 
Statistical moments from stochastic study. 

The Fig. 2 clearly shows the convergence of the 
stochastic techniques (UT/SC). Indeed, from the 
3/5/7-points discretization (i.e., respectively 
n=2/4/6), the 〈𝐼〉 curves almost overlap. For n=2, 
the different (Si; ωi) points may be summarized 
following (-0.4; 1/6), (0; 2/3) and (0.4; 1/6). As 
expected from Table 2, the 2nd order statistical 
moment is also computed from UT/SC. The 
current I standard deviation (𝜎𝐼) also appears 
through the numerical dispersion around the mean 
value 〈𝐼〉. The 2nd order results (𝜎𝐼) agree well 
regarding the UT/SC 5 and 7-points accuracy and 
check the 2nd order convergence. Obviously, it 
may have been expected that the 2nd order 
convergence requires a higher accuracy from 
stochastic treatments. Moreover, one may put the 
focus on the interest of these stochastic 
formalisms. A faster approach may have been to 
only consider the mean value (central value 
𝐿0 ∈ 𝐷𝐿): it is given on Fig. 3 by the pink curve. It 
may be noticed that the central data gives a trend 
of the uncertainty impact but does not fit well to 
the converged stochastic (UT/SC) behavior. The 
differences appearing (for a relatively weak 
randomness uncertainty) between a single 
deterministic simulation (mean value) and UT/SC 
results (〈𝐼〉 ± 𝜎𝑖 overruns) confirm the importance 
of the stochastic modeling. 

Figure 3 gives an overview of the convergence 
of the UT/SC methods comparatively with a MC 
reference. In order to compute the relative error 
due to stochastic computing, we consider a 
converged set of MC data (here with 100,000 
realizations). Then, a criterion is defined standing 
for this relative error 

 𝑒𝑟𝑟𝑖 = 100 ×
�𝑧𝑖
𝑈𝑇/𝑆𝐶−𝑧𝑖

𝑀𝐶�

�𝑧𝑖
𝑀𝐶�

,          (12) 

where i corresponds to the considered random 
length 𝐿𝑖 (𝐿𝑖 ∈ 𝐷𝐿) and 𝑧𝑈𝑇/𝑆𝐶, 𝑧𝑀𝐶 stand for a 
given statistical moment, for instance mean or 
variance (standard deviation), of the random 
output (current I) obtained respectively from 
UT/SC and MC. The results from Fig. 3 show the 
convergence of the stochastic formulations since 
respectively less than 0.25% and 2% errors appear 
from the current mean and standard deviation 
computations.  

 

 
 

Fig. 2. 〈𝐼〉 ± 𝜎𝐼 from UT / SC convergence (n=2, 
4, 6) for normally distributed randomness (𝜎𝑢� =
0.231). 

 

 
 

Fig. 3. Relative error between SC and 100,000 MC 
realizations (reference) with 𝜎𝑢� = 0.231. 
 

High-order statistical moments. As detailed 
in Table 2, both the UT and SC techniques allow 
computing straightforward high-order moments. 
The Fig. 4 shows the kurtosis convergence of the 
UT/SC techniques comparing to MC data. 
Therefore, although the results from 5-points 
UT/SC are in a good agreement with reference 
(MC), we may need an accuracy level from 7-
points (n=6) UT/SC to fit with reference. The 
same kind of conclusion could be obtained from 
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the skewness (3rd order) computation. Of course, 
for higher statistical moments needs, the UT/SC 
will require higher precision. 

 

 
 

Fig. 4. Stochastic convergence from UT/SC and 
100,000 MC realizations (𝜎𝑢� = 0.231). 

 
B. Stochastic EMC expectations 

The aim of this part is to illustrate the ability 
of the SC method to handle various randomness 
patterns (distribution, intensity ...) needed for 
EMC problems. 

Variations around statistical distributions. 
In this case, we focus on two additional random 
distributions: uniform and log-normal ones (Figs. 
5 and 6). The mean and variance of the example 
from Section III-A remain unchanged. For 
instance, comparatively to previous case, the pairs 
(Si; ωi) are (-0.31; 0.28), (0; 0.44) and (0.31; 0.28) 
for a uniform law and n=2. The example of the 
log-normal law needs (Si; ωi) following (-0.39; 
1/6), (-0.01; 2/3) and (0.41; 1/6). 

 

 
 

Fig. 5. Convergence (n=2, 4, 6) with a uniform 
random distribution, 〈𝑢�〉 = 0 and 𝜎𝑢� = 0.231. 

 
The SC convergence is obtained from 5-

points (n=4). Even if some slight differences 

appear both on the levels and the convergence 
rate, the SC method allows modeling different 
kind of uncertainties. The randomness distributed 
from a log-normal law seems to require a different 
SC order to converge (Fig. 6) comparatively to 
normal or uniform distributions. 

 

 
 

Fig. 6. Convergence (n=2, 4, 6) with a log-normal 
random law, 〈𝑢�〉 = 0 and 𝜎𝑢� = 0.231. 
 

Randomness intensity and convergence. 
Obviously, increasing the level of uncertainty of 
the studied random parameter will lead the 
analysis close to a “working” threshold. For a 
given problem, the SC method will operate well 
until a certain boundary. This may be easily 
understood since we are talking about stochastic 
and random parameters far from a complete 
parametric study. After all, we may wonder if the 
SC method is robust. In the following, we consider 
that 𝑢� follows a uniform law U[-1;1] (〈𝑢�〉 = 0 and 
𝜎𝑢� = 0.577). For n=2, the different (Si; ωi) points 
may be summarized following (-0.78; 0.28), (0; 
0.44) and (0.78; 0.28). In comparison with Fig. 5, 
the results from Fig. 7 show the convergence of 
the SC technique. Obviously, it is more difficult 
since the magnitude of variations is huge (  1m 
over the line length for each initial value 𝐿0). As 
expected, the central data (Fig. 7, pink curve) does 
not fit at all with the SC mean computation. Even 
if the variations are great due to randomness, the 
Fig. 8 shows the well accuracy of SC results in 
comparison with 100,000 MC realizations. Indeed, 
〈𝐼〉 and 𝜎𝐼 are close to reference data: the SC 
relative error from (12) is respectively lower than 
0.45% and 1.5% for the current mean and standard 
deviation (Fig. 8). The lengths L1=1.5m and 
L2=4.5m are particular points (resonances). As 
depicted in Fig. 3 and Fig. 8, the highest error 
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levels are obtained for L1 and L2 (both around 
1.5%) according to the current standard deviation.  

 

 
 

Fig. 7. Convergence (n=2, 4, 6) with a uniform 
random distribution (𝜎𝑢� = 0.577, legend Fig. 5). 
 

 
 

Fig. 8. Relative error between SC and 100,000 MC 
realizations for 〈𝐼〉 and 𝜎𝐼 (randomness following a 
uniform distribution U[-1;1]). 
 
C. A multivariate random problem 

Since the Taylor polynomial expansion is still 
usable for two RV, the UT may be used to achieve 
multivariate stochastic problem (see Section II-A). 
Moreover, as illustrated in [10], the single-variable 
SC technique may be generalized to multi-RV 
problems. Based upon their distinct foundations, 
for the multivariate case, the different two RV (Si, 
ωi) sets jointly with the different moments 
computation involve variations around the 
numerical results. In this section, we will add the 
source frequency f to the line length L to achieve a 
stochastic treatment of the EMC problem (Fig. 1). 
Both L and f will be given by two independent RV 
(𝑢�1 and 𝑢�2) following a normal distribution (zero-
mean). The variances are respectively given by 
𝜎𝑢�1
2 = 2.083. 10−2 and 𝜎𝑢�2

2 = 2.083. 1010. Based 
upon the relation (1), we may write 

  𝐿 = 𝐿0 + 𝑢�1
𝑓 = 𝑓0 + 𝑢�2

,           (13) 

where 𝑓0 and 𝐿0 stand respectively for the f and L 
initial values. As depicted in Fig. 9, the current 
variance var(I) is calculated in a straightforward 
manner for a large set of points. Thus, each 
element of the set {𝐿𝑖0𝜖𝐷𝐿 = [1.2; 4.5]m; 
𝑓𝑖0𝜖𝐷𝑓=[1; 35]𝑀𝐻𝑧} is subjected to the previous 
random variations. The SC convergence and 
sensibility of the model appears in Fig. 9. The 
results depicted show the convergence of the SC 
method (from the I variance). Considering the SC 
accuracy for 32 and 52 points (respectively SC3 
and SC5), the two data sets almost overlap. 
Convergence is obtained considering the current 
mean and the SC technique approximates well the 
random behaviour of the system. 
 

 
 

Fig. 9. Variance(I) from SC3 and SC5 
(respectively colored slice and black asterisks). 

 

 
 

Fig. 10. Mean(I) from SC3, UT5 and UT8. 
 
In Fig. 10, the results from UT fit very well 

with the “converged” data from SC. Thus, Fig. 10-
a shows the agreement for 〈𝐼〉 between SC3 and 
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the UT approximation (2nd order) involving 6 
(=5+1) points (UT5). A great agreement appears 
also from Fig. 10-b considering the slight 
differences existing between a same UT accuracy 
(2nd order) involving 5+1 or 8+1 points 
(respectively UT5 or UT8). The UT5 and UT8 
differences rely on the non-uniqueness of the 
solution in (6). In order to properly define the 
accuracy of each stochastic formalism (UT/SC), 
one may refer to MC simulations. First, it is 
necessary to determine a reference set of 〈𝐼〉 
values: empirically, 100,000 MC realizations are 
necessary. Relying on the relation (12) obtained 
for a single RV, we may define for each pair (fk, 
Lk) (k=1... Np with Np the total number of 
frequency/length points) a similar parameter in 
bidimensional RV case. 
 

 
 

Fig. 11. Mean(I) error from MC data for 
SC3/UT8. 

 
Figure 11 shows the gap between SC3 and 

UT8 accuracies. Even if the SC/UT numerical 
precision is high (less than 0.08% from MC 
reference), the precision remains widely better for 
SC (3 times) comparatively to UT. The time and 
memory saves appear clearly from previous 
examples since UT and SC need less than 10 
realizations compared to the MC technique which 
requires about 100,000 simulations. Furthermore, 
it would be possible to improve the SC efficiency 
using techniques from [11] to reduce the number 
of SC realizations needed; it could be particularly 
interesting for multivariate stochastic problems 
involving many RV [12]. Another solution may be 
to reduce this number to a minimum regarding 
their relative influence. From [2], the comparison 
of results from 1-RV simulation with those 
involving a set of RV provides information on 
significant parameters. 

D. A random sensibility analysis 
This part illustrates the SC ability to achieve 

sensibility analysis in a random EMC problem. 
Among all the variables depicted on Fig. 1, we 
will focus on the parameters h and f. The other 
values are given by the previous example except 
the line length L which is set to 1.65m. An 
influence criterion is defined in [2] to characterize 
the sensibility of one RV. Based upon the SC 
results, a similar parameter is  

𝐼𝑛𝑍𝑘 = −log ��1 − 𝑣𝑎𝑟�𝐼(𝑍𝑘)�
𝑣𝑎𝑟�𝐼(𝑍1,𝑍2,…,𝑍𝑛)�

��,          (14) 

with 𝑣𝑎𝑟�𝐼(𝑍𝑘)� and 𝑣𝑎𝑟�𝐼(𝑍1,𝑍2, … ,𝑍𝑛)� the 
current I variances given respectively from one 
RV Zk (k=1, ..., n) and n RV. The two random 
outputs are given considering two RV (RV1 → h 
and RV2 → f), respectively 𝑢�1 and 𝑢�2 both 
following a uniform distribution with 𝜎𝑢�1

2 =
2.083. 10−10 and 𝜎𝑢�2

2 = 2.083. 1010.  
 

 
 

Fig. 12. Influence of RV1 (h). 
 

 
 

Fig. 13. Influence of RV2 (f). 
 

The influence of each parameter is shown in 
Figs. 12 and 13. The computation of the influence 
from (14) lays emphasis on the dominant effect of 
height. As expected, the impact of the frequency is 
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relatively smooth outside resonance frequencies. 
The f-effect should not be neglected around them 
with influence levels In>1dB. Comparatively to f-
influence, the Fig. 12 shows the global h-impact 
(1dB<In<5dB almost everywhere). 

 
VI. CONCLUSION 

In this paper, both UT and SC techniques to 
solve stochastic EMC problems are presented. 
Uncertainties involving source parameters 
(frequency) and geometry of a transmission line 
(length, height) have been defined considering 
various RV following uniform, normal and log-
normal distributions. The UT and SC methods 
appear similar to well chosen MC simulations: 
their main advantages rely on their effectiveness 
(minimizing CPU time more than 20,000 times) 
and non-intrusive characteristic. Directly linked to 
computational electromagnetics, we may perfectly 
apply these methods considering other EM 
simulation/experimental tools. 
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