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Abstract ─ A novel, efficient, and simple 
modification to standard marching-on-in-time 
(MOT)–based time-domain integral equation 
(TDIE) solvers is presented. It allows for the use of 
high-order temporal interpolators without the need 
to extrapolate and predict future unknowns. The 
order of these temporal interpolators is increased as 
the distance of source and testing quadrature points 
increases. The proposed TDIE solver significantly 
increases the accuracy of solutions by exploiting 
high-order temporal interpolation at no significant 
extra computational cost. Numerical examples are 
presented to validate the proposed method.

Index Terms - Marching-on-in-time (MOT), 
temporal interpolator, and time-domain integral 
equation (TDIE). 

I. INTRODUCTION 
MOT–based TDIE solvers represent an 

increasingly mature technology for analyzing 
transient electromagnetic wave interactions with 
perfect electrically conducting (PEC) surfaces. To 
allow for the solution of large-scale scattering 
problems, these solvers often are accelerated by 
multilevel plane wave time domain (PWTD) [1] or 
time-domain adaptive integral methods (TD-AIM) 
[2]. Their stability and accuracy has been observed 
to be closely related to the method used for 
discretizing the surface current in both space and 
time as well as the method used for evaluation of 

MOT matrix elements [3-5]. To increase the 
accuracy of the spatial discretization, high-order 
interpolatory [6, 7] or hierarchical [8] spatial basis 
functions are often used. To enhance the solver’s 
stability, smooth temporal basis functions are 
preferred [9, 10]. Two basis functions often used for 
this purpose are Lagrange [11] and Quadratic B-
Spline (QBS) interpolants [10]. Their frequency 
spectra decay as 1/f 2 and 1/f 3, respectively; this 
renders the QBS slightly preferable. 

In this paper a new MOT scheme that allows 
for the use of different temporal interpolators 
depending on the distance between source and test 
points, is presented. The advantages of the 
proposed method are threefold: (i) It increases the 
accuracy of a TDIE solver without sacrificing its 
stability or computational efficiency. (ii) It 
alleviates the introduction of spurious high-
frequency modes into the solution without the need 
to extrapolate and/or predict future unknowns. (iii) 
When applied to TDIE solvers based on time 
domain Green’s functions (TDGFs) of layered 
media [12-15], in addition to the above-mentioned 
advantages, which lead to more stable TDIE 
solvers, the proposed method significantly 
decreases the computational expense of taking the 
convolution of TDGFs with temporal interpolators 
by increasing the temporal smoothness. 
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II. STANDARD TIME DOMAIN EFIE 
Consider a perfect electrically conducting 

(PEC) surface S with unit normal vector n̂ that 
resides in a homogeneous medium with 
permittivity �  and permeability � . The incident 
electric field ( , )inc tE r induces a current ( , )tJ r  on 
S, which generates the scattered electric field 

sca ( , )tE r . The total electric field 
sca( , ) ( , )inc t t�E r E r  tangential to S  vanishes.  The 

same therefore is true for its time derivative,  
inc scaˆ ( , ) ( , ) 0 .t t S� �� � � 	
 �n E r E r r0�( , ) ( , )( , ) ( , )) ( , )) ( ,

fore is true for its time de
00�inc sca( ) ( )sca) ( )sca 0inc ( ) ( )) (sca 0inc ( ) ( )) (scainc ( , ) ( , )) ( ,(sca  (1) 

Here, a dot on a symbol implies temporal 
differentiation, and 

sca 1
( , ) ( , ) ( , )t t t�

�
� � � 

�E r A r A r( , )( , )( ,( )( , )( ,(sca ( , ))Esca ( , ))  (2) 

with 

( , )
( , ) ,

4S

Rt
ct d

R�

� �
�� ��

J r
A r r  (3) 

1 /c ��� is the speed of light, and R �� �r r . To 
solve equation (1), ( , )tJ r  is spatially discretized 
as, 

1

( , ) ( ) ( ) ;
sN

n n
n

t I t
�

��J r S r  (4) 
( )nI t is the temporal signature of the nth spatial 

basis function ( )nS r . Assuming that ( , )inc tE r  is 
temporally quasi-bandlimited to frequency maxf
and vanishingly small for S	r and 0t � , ( )nI t
can be reconstructed from its samples, 

( ) , 1,2,...,n n j tI j t I j N� � �  (5) 
as

1

( ) ( )
tN

n n j
j

I t I T t j t
�

� � ��  (6) 

where the time step max1 (2 )t f�� � , �  is a 
temporal oversampling factor typically chosen in 
the range 3 20,�� �  and ( )T t j t� � is a suitably 
chosen interpolator. Equation (6) and (4) imply the 
following space-time discretization of ( , )tJ r ,

1 1

( , ) ( ) ( ).
s tN N

n j n
n j

t I T t j t
� �

� � ���J r S r  (7) 

Substituting equation (7) into equations (1-3) and 
enforcing the resulting equation by Galerkin testing 
in space and point matching in time yields [1, 2,16-
18], 

1

, 1,2,...,
tN

i j j i t
j

i N�
�

� ��Z I V  (8) 

where 

� � ( ) ( , ) , .inc
i m j mjm m

S

V i t ds I I� �� � � �
 ��� S r E r( ,inc ( ,(((  (9) 
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� �

( ) ( )
( )

4

( ) ( )1
( )

4
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S S
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Z
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R c
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R c

�
�

��

�

�

�

�� �� �

� �
 � 
 � �� � �

�� ��

�� ��

S r S r

S r S r

(T k((

.
 (10) 

A temporal interpolator ( )T t satisfying,  
( ) 0,T t t t� � ��  (11) 

is said to be causal. For causal interpolators, 
0, 1,2,3,...k k� � �Z  (12) 

and equation (8) reduces to the standard MOT 
equations from which the expansion coefficients Inj
can be retrieved, one time step at a time, 

1

0
1

, 1,2,..., .
i

i i i j j t
j

i N
�

�
�

� � ��Z I V Z I  (13) 

Next we demonstrate that condition (11) can be 
relaxed without relinquishing the MOT form of 
equation (13). 

III. DISTANCE-DEPENDENT 
TEMPORAL INTERPOLATORS  

A. Concept 
By discretizing the spatial integrations in 

equation (10) by Ntqp test quadrature points and Nsqp 
source quadrature points, equation (8) can be 
rewritten as,

� �
1 1

1 1 1
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with ,mq nq mq nqR � ��� �r r  , mqr and nq ��r  are position 
vectors of qth quadrature point of mth spatial basis 
function and thq � quadrature point of nth spatial 
basis functions, respectively, wmq and wnq' are the 
corresponding quadrature weights.  

The two summations inside brackets of 
equation (14) are nothing but the temporal 
interpolation of ( )nI t

re noth
( )nI (n and ( )nI t , respectively at 

time , /mq nqt i t R c�� � � . More clearly from 
equation (6) we have, 

, ,

1

, ,

1

( ) (( ) )

( ) (( ) )

t

t

N
mq nq mq nq

n n j
j

N
mq nq mq nq

n n j
j

R R
I i t I T i j t

c c
R R

I i t I T i j t
c c

� �

�

� �

�

� � � � � �

� � � � � �

�

�( ) (( )mq nq
n n j

R tN

I i t(n j(( )(( )n j

t

� � ) (( )(( )mq nq,t (( )(( ))�

.

(16) 

It is easy to see that by replacing T(t) by any other 
interpolatory function, equations (14)-(16) still 
remain valid. Moreover, this replacement can be 
done based on the position of source and test 
quadrature points. Therefore, a more flexible 
restriction on T(t) to satisfy equation (12) is, 

,( ) 0, mq nqR
T t t t

c
�� � �� � .            (17) 

This condition means that as the distance of source 
and test quadrature points increases, it is allowed to 
choose wider temporal interpolator T(t) that 
contradicts equation (11) and still use the MOT 
scheme of equation (13). 

In the next section B-Spline functions of 
arbitrary order, which are used in numerical results 
as distance-dependent interpolators are defined. 

B. B-Spline functions 
B-Spline functions of order m are defined as, 

( ) (0) ( 1)1
( ) ( ) ( ), 1,2,3,m mb t b t b t m

t
�� � � �

�
 (18) 

where ‘*’ denotes temporal convolution and

(0) 1 , 1
( ) ( ) .

0 , otherwise

t
tb t rect t
t

�
��� � ��� ��

 (19) 

Consider the shifted B-Spline functions defined as, 
( ) ( ) ( / 2) , 2,3,4,m mb t b t t m� � � � �

,
 (20) 

Given the definition in equation (18), the spectrum 
of shifted B-Spline functions of equation (20) is, 

 !

( ) 1

1

( ) Sinc ( )

1 sin( )

m m j f t

m
j f t

m

b f t f t e

f t e
ft

�

��
�

� � �

�
� �

� � � �

�" #� $ %
& '�

( )b f( ) ( )(�

 (21) 

which indicates that the spectrum of B-Spline 
function of order m, decays as  1/f (m+1) . 

Shifted B-Spline functions of different orders 
are depicted in Fig. 1. An arbitrary function s(t) can 
be expanded in terms of B-Spline functions of 
equations (18) and (19) as, 

( )( ) ( ) ( ), {0,1,2, }m

n
s t s n t b t n t m

�(

��(

� � � 	� ( )( ) ( ), {0,1,2, }( ) ( ),( ) ( ),( )
�(

) ( ),) ( ),) (( )��
.(22) 

Note that for the special case of m=1, equation (18) 
is the standard triangular (hat) function and 
equation (22) is nothing but a piecewise linear 
interpolation of s(t). Considering equations (20)and 
(22), it is obvious that an arbitrary function s(t) can 
also be expanded in terms of shifted B-Spline 
functions of equation (20) as,

( )( / 2) ( ) ( )

, {2,3,4, }

m

n
s t t s n t b t n t

m

�(

��(

�� � � � �

	

� ((
�(

�
}.

 (23) 

By applying the restriction in equation (17) it is 
seen that ( ) ( )mb t� can be safely used in TDIE 
solvers for distances R satisfying, 

( 2)
.

2

mR c t�
) �  (24) 

Note that (2) ( )b t� is the only shifted B-Spline 
temporal interpolator defined in equation (20) that 
satisfies equation (17) for the worst case of 

, 0mq nqR � �  and therefore is selected as temporal 
interpolator for near distances of source and test 
quadrature points in numerical results. 

Fig. 1. Shifted B-Spline functions of different order. 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.80.8

t/� t

T

Quadratic B-Spline (QBS)
Cubic B-Spline (CBS)
4th order B-Spline (4BS)

OJAROUDI, MEHRANPOUR, ET.AL.: TIME-DOMAIN INTEGRAL EQUATION USING TEMPORAL INTERPOLATORS 118



IV. NUMERICAL RESULTS 
In parts A and B of this section, the above 

solver is applied to the analysis of scattering from a 
sphere and cube illuminated by the modulated 
Gaussian plane wave,  

2[( )/ 2 ]
0ˆ(r, ) cos(2 ).ptinc t e f* + � *� ��E x  (25) 

with ˆ /t c* � � �r z , the center frequency 
0 40 MHzf � , the delay 60.5 10pt s�� � , and 

6 / (2 )BWf+ �� with the nominal bandwidth 
20 MHzBWf � . The MOT time step is 

106.25 10t s�� � � and the number of time steps 
1600tN � . In these examples, shifted B-Splines of 

order 2, 3,m � and 4 are used for 0.0938 mR � ,
0.1875 m 0.0938 mR) , , and 0.1875mR , ,
respectively, in agreement with the condition of 
equation (24). Frequency-domain results attributed 
to the solver were obtained by Fourier transforming 
time-domain data while accounting for the spectral 
content of the incident field. 

In part C of this section the proposed distance-
dependent temporal interpolation scheme is applied 
to a recently developed TDIE solver for analyzing 
planar structures in layered media. 

A. Sphere 
The surface of a PEC sphere of radius 1 m

(centered about the origin) is discretized using 48 
curvilinear patches, resulting in 72sN � spatial 
RWG basis functions [19]. Each patch is obtained 
by means of an exact mapping from a reference 
RWG patch onto the sphere surface. 

Fig. 2 (a) shows the bistatic radar cross section 
(RCS) for 0- �  and 180 0.� / /  for frequency 

43f � MHz and different choices of temporal 
interpolating functions. 

Fig. 2 (b) shows the relative error of the 
computed RCS with respect to Mie series solution. 
The norm of current vector jI is plotted in 

Fig. 2 (c). Clearly the use of a shifted QBS 
temporal interpolator results in more accurate 
results compared to Lagrange interpolators [11, 20].
Moreover, as expected, using distance-dependent 
variable order B-Splines of Fig. 1 as temporal 
interpolators, significantly increases the accuracy 
without affecting the stability of solutions. By 
exploiting variable order B-Splines as temporal 
interpolators, the worst case relative error in RCS is 
decreased by 48 % with respect to the case where 
only QBS is used as temporal interpolator. 

B. Cube 
The surface of a PEC cube with side length of 

1 m (centered about the origin and with cube edges 
aligned with the major coordinate axes) is 
discretized using 256 flat patches, resulting in 

384sN � spatial RWG basis functions. Since there 
is no analytical solution for the cube example, the 
results of the TDIE solver when the surface current 
of the cube is densely discretized using 1773 RWG 
spatial basis functions are considered as reference 
solution for comparison. The results for frequency 

50f � MHz and different choices of temporal 
interpolating functions are plotted in 

Fig. 3. Accuracy improvements on par with 
those observed in the previous example when using 
distance-dependent high-order B-Splines are
obtained here leading to 45% decrease in worst case 
relative error in RCS with respect to the case where 
only QBS is used as temporal interpolator. 

C. Microstrip patch antenna array
As the last example, to show the ability of the 

proposed variable-order and distance-dependent 
temporal interpolator scheme in increasing the 
accuracy and therefore the stability of the TDIE 
solvers, this scheme is incorporated into a recently 
developed TDIE solver based on the TDGFs of the 
layered media [15]. In this solver the direct 
convolution of the TDGFs with temporal 
interpolators are computed using a novel and highly 
efficient 2D finite difference scheme. 

Consider a 2 by 1 array of microstrip patch 
antenna as shown in 

Fig. 4 (a). The units in this figure are in 
millimeter. The patch antenna is located over a PEC 
backed dielectric substrate with relative 
permittivity of 2.2r� � and thickness of h=1.524 
mm. The antenna is fed by a modulated Gaussian 
voltage signal of, 

2[( )/ 2 ]
0( ) cos(2 ).pt teV t f t+ �� ��  (26) 

With the center frequency f0 = 4.5 GHz, the delay 
80.5 10pt s�� � , and 6 / (2 )BWf+ �� with the 

nominal bandwidth fBW = 2 GHz. The surface of the 
antenna array is discretized using 468 triangular 
patches, resulting in Ns=614 spatial RWG basis 
functions. The MOT time step is set to 

125 10t s�� � � .
First, we only use QBS as temporal interpolator 

for all distances of the source to test quadrature 
points as is used in standard TDIE solvers. 

For comparison we also run the solver when 
shifted B-Splines of order 2, 3,m � and 4 are used 
for 1mmR � ,1mm <1.6 mmR/ , and 
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1.6mmR , , respectively as temporal interpolators 
in agreement with the condition of equation (24). 
The TDIE solver runs for Nt=10000 time steps. 
The stability of the TDIE solver is shown in 

Fig. 4 (b) where the norm of current vector is 
plotted. As can be seen from this figure, the 
standard TDIE solver is instable while the proposed 
TDIE solver based on variable order and distance-
dependent temporal interpolators gives stable 
results. 

(a) 

(b) 

(c) 

Fig. 2. Bistatic RCS of a unit PEC sphere at 43 MHz 
for different choices of temporal interpolators. The 
surface of the sphere is modeled using 48 
curvilinear triangular patches. (a) Bistatic RCS, (b) 
relative error in the RCS with respect to Mei’s 
series solution, and (c) norm of current vector at 
each time step. 

(a) 

(b) 

(c) 

Fig. 3. Bistatic RCS of a PEC cube with side length 
of 1 m at 50 MHz for different choices of temporal 
interpolators. The surface of the cube is modeled 
using 256 flat triangular patches. (a) Bistatic RCS, 
(b) relative error in the RCS with respect to 
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reference solution, and (c) norm of current vector at 
each time step. 

It is worth mentioning that in the second run the 
only change with respect to the first run is that a 
fixed temporal interpolator i.e., QBS is replaced 
with the high-order and distance-dependent 
temporal interpolators. This replacement not only 
may increase the accuracy of the solver but also 
significantly decreases the cost of computing the 
convolution of temporal interpolators with the 
TDGFs of layered media by using much more 
smooth temporal interpolators for non-near pair of 
source-testquadrature points. 

Fig. 4 (c) shows the reflection amplitude |S11| of 
the patch antenna achieved by using a proper post 
processing technique applied to the stable time 
domain surface currentoutput of the proposed TDIE 
solver based on distance-dependent temporal 
interpolators. The results are being compared with 
that of the commercial software ADS-Momentum, 
which is based on frequency domain method of 
moments (MoM). A good agreement between the 
results of two methods is observed. 

V. CONCLUSION 
A new MOT-TDIE solver that uses distance-

dependent high-order temporal interpolators was 
introduced. The solver tunes the basis functions’ 

temporal support to the distance between source 
and observer points, maximizing temporal 
smoothness and avoiding non-causal excitations 
along the way. When compared to classically 
formulated MOT-TDIE schemes, the new method 
can markedly improve solution accuracy by 
suppressing high-frequency, out-of-band spurious 
solution components stemming from the use of 
temporal interpolators with spectral support far 
exceeding that of the excitation. The proposed 
distance-dependent interpolation scheme is also 
very advantageous in TDIE solvers for analyzing 
electromagnetic interactions with structures 
residing in layered media. In this case the proposed 
method not only may increase the solution accuracy 
but also can significantly decrease the cost of 
computing the convolution of temporal 
interpolators with the TDGFs. 

19.34
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18.53

19.03

6.354.73

80

(a) 

(b) 

(c) 

Fig. 4. TDIE analysis of the patch antenna array (a) 
antenna layout (the units are in millimeter), (b) 
norm of current vector at each time step using 
proposed TDIE solver and standard TDIE solver,
and (c) the amplitude of the reflection coefficient 
|S11| achieved using the proposed TDIE solver and 
its comparison with the results of ADS-Momentum. 
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