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Abstract – Wireless power transfer (WPT) is a safe,
convenient, and intelligent charging solution for elec-
tric vehicles. To address the problem of the suscepti-
bility of transmission efficiency to large uncertainties
owing to differences in coil and circuit element process-
ing and actual driving levels, this study proposes the use
of adaptive Gaussian process regression (aGPR) for the
uncertainty quantification of efficiency. A WPT system
efficiency aGPR surrogate model is constructed with a
set of selected small-sample data, and the confidence
interval and probability density function of the transmis-
sion efficiency are predicted. Finally, the reptile search
algorithm is used to optimize the structure of the WPT
system to improve efficiency.

Index Terms – Adaptive Gaussian process regres-
sion (aGPR), electric vehicle (EV), optimal design,
uncertainty quantification (UQ), wireless power transfer
(WPT).

I. INTRODUCTION
With the rapid development of electric vehicle (EV)

technology, its charging methods have also improved [1].
In response to the drawbacks of cable charging methods,
wireless power transfer (WPT) technology was designed
to remove the mechanical interface, improve safety, and
enable dynamic charging. The technology is advanced,
maturing gradually [2, 3], and a promising mainstream
EV charging technology in the future [4]. Many schol-
ars examined the issues related to EV-WPT systems and
developed international standards [5]. However, owing
to the complex design and control of the transfer system

and differences in actual driving levels, each factor in
the coil structure, transfer distance, misalignment, and
compensation topology design can directly or indirectly
impact the efficiency of the system [6–8]. As the uncer-
tainty of the aforementioned relevant factors as input
parameters will have a significant impact on WPT system
efficiency, conducting uncertainty quantification (UQ)
evaluation and optimization studies on the efficiency of
EV-WPT systems is important.

Parametric UQ methods include statistical and non-
statistical methods, among which the statistical methods
are dominated bv the Monte Carlo (MC) method and
its improvements, which are typically used to verify the
accuracy of other UQ methods [9]. Owing to the com-
plexity and high computational cost of an experimental
system, nonstatistical methods based on the generalized
polynomial chaos expansion (gPCE) method, machine
learning, deep learning, and the Kriging surrogate model
are widely used in UQ studies. Rossi et al. [10] com-
bined gPCE theory with an effective model of interac-
tions among devices in the radiative near field to build
a UQ framework for the efficiency of WPT systems and
demonstrated that the method is more flexible and effi-
cient than the stochastic configuration method, based on
a single gPCE and direct MC analysis; however, the
mapping solving process of the PCE surrogate model
suffers from the problem of the “curse of dimensional-
ity” [11]. With the development of artificial intelligence,
machine learning has gradually been employed in the
field of WPT electromagnetic compatibility. Trinchero
et al. [12] examined leastsquares support vector machine
(LS-SVM) regression and its optimized form for WPT
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efficiency UQ and demonstrated that LS-SVM regres-
sion, based on kernel technology, can effectively solve
the high-dimensional spatial nonlinear UQ problem, but
the hyperparameter selection lacks a priori knowledge
and cannot be realized based on a rigorous mathemat-
ical basis. Larbi et al. [13] employed LS-SVM regres-
sion, combined with Gaussian process regression (GPR),
for WPT system UQ. Based on the quantification results,
the authors used partial least squares regression for the
sensitivity analysis of the parameters and system effi-
ciency optimization but obtained poor prediction results
for the regions with a low probability of occurrence.
Other scholars applied the Kriging surrogate model [14]
and deep learning [15] to the UQ and optimization of
simplified WPT systems, but UQ capability for the com-
plex structure of WPT simulation models remains to be
verified. The GPR method, based on Gaussian stochas-
tic processes, kernel techniques, and Bayesian inference
theory, can overcome the “curse of dimensionality” and
follows a strict mathematical derivation of the hyperpa-
rameters while giving a more comprehensive uncertainty
analysis than LS-SVM regression and adaptive sparse
PCE [16]; however, the number of training samples can
be further reduced to lessen the computational cost.

In terms of WPT efficiency optimization, Chen et al.
[17] proposed a series-parallel hybrid resonant structure
and optimized capacitor parameters to improve WPT
efficiency while achieving a long transfer distance. Yang
et al. [18] optimized the voltage gain and transmis-
sion efficiency by designing compensation parameters
for series/series-parallel inductive power transfer sys-
tems. Meanwhile, Zhou et al. [19] employed a con-
strained adaptive particle swarm algorithm with a multi-
objective function, using DC−DC input voltage as the
decision variable to perform the multi-objective opti-
mization of the output power and efficiency of a WPT
system. The above studies showed that the optimization
of the efficiency of WPT systems is influenced by a vari-
ety of parameters. Therefore, the optimization of EV-
WPT transmission efficiency based on UQ can, on the
one hand, fully consider the practical application of WPT
systems and, on the other hand, provide a reference for
improving the robustness of such systems.

To address the shortcomings of the above studies, an
information entropy adaptive sampling strategy is used
in this study to build an adaptive GPR (aGPR) surro-
gate model to quantify the transmission efficiency uncer-
tainty and compare it with the MC method and GPR
UQ results. Based on the UQ, the efficient reptile search
algorithm (RSA) is combined to optimize the compo-
nent parameters in the compensation network to improve
transmission efficiency and system robustness.

The main contents of this paper are as follows:
Section II introduces the EV-WPT system numerical

simulation model, and Section III builds an aGPR-based
transmission efficiency UQ framework for an EV-WPT
system. Section IV presents the application of the RSA
in the transmission efficiency prediction and overall sys-
tem optimization, and Section V describes the specific
experimental procedure for verifying the UQ capability
of the aGPR model and effectiveness of the optimization
scheme. Finally, Section VI summarizes the whole work.

II. NUMERICAL SIMULATION MODEL OF
EV-WPT SYSTEM

Based on the principle of magnetic coupling reso-
nance, this study uses space alternating magnetic fields
to transfer power and establishes a simulation model
of a magnetically coupled resonant EV-WPT system by
COMSOL software. The working frequency of the sys-
tem is 85kHz and the output power is 3 kW.

Figure 1 (a) presents an overall model of EVs, refer-
ring to most family car models on the market, with a
design body size of 4500 mm × 2000 mm × 1500 mm
and material of mainly aluminum, ignoring other non-
electromagnetic materials. Figure 1 (b) shows a square
magnetic coupling mechanism, the inner side of which is
the power transfer coil group consisting of transmitting
and receiving coils, with an outer contour size of 600 mm
×600 mm and an inner contour size of 300 mm× 300
mm. The vertical distance d of the transceiver coil is
within the range of 100-150 mm, the number of turns of
the coil on each side is 11, the conductor material is cop-
per, and the radius of the cross-section ro is 0.8 mm. The
outer side of the coil group is covered with ferrite of the
same size as the outer contour of the transfer coil, with
a thickness of 10 mm, which can improve the coupling
coefficient and reduce magnetic field leakage, thereby
improving transmission efficiency. The scale factor l is

(a)

(b) (c)

Fig. 1. EV with WPT and magnetically coupled mecha-
nism.
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defined as the scaling of the dimensions of the square
transceiver coils to their square centers (e.g., the dot
in Fig. 1 (b)), and ∆x and ∆y are the misalignment of
the coupling mechanism in the horizontal x - and y-axis
directions, respectively, as shown in Fig. 1 (c).

As WPT coils typically have a small coupling coef-
ficient, S-S and parallel-series topologies are highly suit-
able for efficient WPT systems [20]. To further enhance
the transmission power, an S-S compensation circuit is
used in this study, as shown in Fig. 2, where IS is the
AC current source, RT is the equivalent resistance of
the transmitting loop, RR is the equivalent resistance of
the receiving loop, RL is the load resistance, CT and
CR are compensation capacitors at the transmitting and
receiving end, respectively, LT and LR are the equiva-
lent inductance of the transmitting and receiving coils,
respectively, and M is the mutual inductance between the
two coils. When resonance is generated between the two
coils, the efficiency of the power transfer in the system
will be [21]:

η =
RL

RR +RL

ω2M2

ω2M2 +RT (RR +RL)
, (1)

where RZ =RR+RL,ω is the resonant angular frequency.
In practice, differences exist in the manufacturing

of coils and circuit components and in the operations
of the driver, which may lead to uncertainty in the coil
dimensions and circuit element parameters and mis-
alignment of the transmitting and receiving coil packs,
thereby affecting the mutual inductance and mutual cou-
pling coefficient. Such differences may also inevitably
cause uncertainty in the transmission efficiency of EV-
WPT systems. Therefore, typical deterministic studies
are not representative, and UQ studies on EV-WPT effi-
ciency must be conducted statistically to analyze the
extent to which efficiency is affected by multiple fac-
tors. This study focuses on the UQ of EV-WPT sys-
tem efficiency under misalignment, physical dimensions,
and component parameters and further optimizes it. In
the next section, a UQ framework for the transmission
efficiency of an EV-WPT system is developed based on
aGPR machine learning.

Fig. 2. Series-series (S-S) compensation circuit.

III. UQ OF EV-WPT TRANSMISSION
EFFICIENCY BASED ON AGPR

A. GPR for transmission efficiency prediction GPR
is a parameter-free stochastic process regression based
on a Gaussian distribution, which can give probabilis-
tic approximate predictions on the quantity of interest
and calculate the predicted variance at each sample point
in the input parameter space [22]. The Gaussian process
is entirely determined by the mean function (trend) and
covariance function (kernel function). The hyperparam-
eters of the covariance function can be optimized when
training the GP model. This study uses GPR to estab-
lish the correspondence between the d-D column vector
of input parameters xxxp×d and transmission efficiency of
the WPT system ηηηn×1, then builds a surrogate model and
quantifies the uncertainty.

Based on the function space perspective, the Gaus-
sian process can be expressed as:

f (xxx)∼ GP
(
m(xxx),kθ

(
xxx,xxx′

))
, (2)

where θ is the hyperparameter of the covariance func-
tion, and m(xxx) and kθ (xxx,xxx′) are the mean and covari-
ance functions of the stochastic process f (xxx), respec-
tively [23]. The GPR learning problem for transmission
efficiency is:

η = f + ε. (3)

The GPR training process is shown in Fig. 3, where
f is considered as a potential function, ε is the estimated
noise of the GP, ε ∼ N

(
0,σ2

n
)
, and f1, f2, . . . , fn satisfy

the joint Gaussian distribution.
To simplify the calculation, let the prior trend of ηηη

constructed from the n training samples (xxxn×α ,ηηηn×1) be
η ∼ N

(
0,K f f +σn

2I
)

and the potential function con-
structed from the m testing samples be f ∗. The joint prior
distribution of ηηη and fff ∗ is:

Fig. 3. GPR prediction process for transmission effi-
ciency.
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[
ηηη

fff ∗

]
∼ N

(
000,
[

KKK fff fff +σ2
n I KKKT

fff fff ∗

KKK fff fff ∗ KKKψ∗

])
(4)

where KKK fff fff ,KKK∗∗,KKK fff fff ∗ are the covariance matrices
between the training samples, testing samples, and the
training and testing samples, respectively. The mean f ∗
and variance σ2

∗ of the predicted distribution can be
derived from Bayesian theory as:

fff ∗ = KKK fff fff ∗
(
KKK fff fff +σ

2
n I
)−1

ηηη , (5)

σ
2
∗ = KKK∗∗−KKK fff fff ∗

(
KKK fff fff +σ

2
n I
)−1

KKKT
fff fff ∗ , (6)

where f ∗ gives the probabilistic approximate predicted
value of the transmission efficiency, and σ2

∗ gives the
uncertainty of the prediction.

1) Kernel function
Commonly used kernel functions are square ker-
nels, that is, SE covariance, Matérn 3/2 kernel,
and so on. As square kernels have a low solution
complexity and low computational cost, this study
applies the square kernel function to the regression
analysis, as shown in (7):

kSE
(
xxx,xxx2)= σ

2
f exp

(
− 1

2v2

∥∥xxx− xxx′
∥∥2
)
. (7)

2) Hyperparameters
In GPR, the various parameters and noise σ2

n in
the kernel function are variable and collectively
referred to as hyperparameters. The hyperparame-
ters of the covariance function, mean function, and
nugget factor are learned by finding the maximum
value of the log marginal likelihood function (8)
of the training samples (xxxn×0,ηηηn×1), leading to the
optimal hyperparameters:

logp(ηηη | xxx)

=−1
2

ηηη
T (KKK fff fff +σ

2
n I
)−1

ηηη

− 1
2

log
∣∣KKK fff fff +σ

2
n I
∣∣− n

2
log2π. (8)

Unconstrained nonlinear optimization algorithms
can solve the GPR maximum likelihood estimation
problem. Common methods are the conjugate gradient
method and quasi-Newton method, but the solution com-
plexity enhances as dimensionality increases. The Fmin-
con algorithm uses the interior point method, which is
highly accurate and converges well but requires a suit-
able assigned initial value when optimizing. Classical
stochastic optimization methods, such as genetic algo-
rithms and particle swarm algorithms, have the advan-
tage of not relying on initial values and using global
search for optimality, which are less likely to fall into
local optimality but prone to premature convergence and
low accuracy [24]. However, the RSA has superior con-
vergence and can improve accuracy [25]. Therefore, in

this study, the RSA is used for the GPR hyperparameter
solution and compared with other stochastic optimiza-
tion algorithms to verify the optimization-seeking capa-
bility.

A. Sampling strategy for aGPR training
The aGPR method allows the standard deviation σ∗

at the transmission efficiency prediction point x to be
the entropy IE(x), according to the information entropy
adaptive sampling strategy [26], as shown in (9). First,
this strategy collects the specified samples from the can-
didate pool Xcand to the training pool and adds a new
input parameter point xk+1 at the maximum value of the
transmission efficiency prediction entropy, that is, the
maximum standard deviation, as shown in (10), where
k is the number of training samples. Second, the ter-
mination condition for the adaptive sampling is deter-
mined based on the transmission efficiency prediction
accuracy, as shown in (11), which terminates the sam-
pling when the maximum entropy decreases to δ . Each
iteration fits and constructs a new GP such that the mean
of the transmission efficiency prediction points can effec-
tively approximate the true value of the transmission effi-
ciency, maximize the accuracy of the surrogate model,
and reduce the required number of training samples. The
pseudo-code of aGPR is:

IE(x) = σ∗, (9)

xk+1 = argmax
x∈XCand

[IE(x)], (10)

max[IE(x)]≤ δ . (11)
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In the UQ, most of the initial samples are in the
region with a high probability of input parameter distri-
bution, and the entropy of this part of the region is small.
In the region with a low probability of input parameter
distribution, owing to the lack of sample points, the pre-
diction accuracy is low. Thus, aGPR places most of the
adaptive points in the area with a low input parameter
probability and continuously reduces the adaptive maxi-
mum entropy.

B. UQ framework based on aGPR
Based on the above theory, this study performs

EVWPT system transmission efficiency UQ based on the
aGPR surrogate model, which is divided into three main
stages.

Stage 1: Preparation of training data
Latin hypercube sampling is used to prepare the

training data
(
xxxn×α0ηηηn×1

)
. In combination with the

actual situation, it is assumed that the spatial misalign-
ment uncertainty input parameters obey a uniform distri-
bution, and the coil structure and component uncertainty
input parameters obey a normal distribution, given the
mean, variance, and fluctuation range of each parameter.

Stage 2: Construction of aGPR surrogate model
A covariance function is selected for aGPR training,

and RSA is used to search for the optimal set of hyper-
parameters. Let the negative log-likelihood function be
the unconstrained minimization objective function and
the hyperparameters be the optimization variables to pre-
vent the local optimum. The maximum entropy of the
transmission efficiency prediction model is continuously
updated, and input parameters from the candidate pool
are added to the training pool, iterating until a satisfac-
tory maximum entropy is reached. Model evaluation is
performed in comparison with the MC method.

Stage 3: WPT transmission efficiency UQ
Two characteristic statistics of the transmission effi-

ciency model, that is, the mean and variance, and the
transmission efficiency are calculated. Based on the
results, the impact of the input uncertainty on the output
can be understood, and the EV-WPT transmission effi-
ciency uncertainty can be quantified.

IV. OPTIMIZATION OF EV-WPT
TRANSMISSION EFFICIENCY BASED ON

RSA
The RSA is a new intelligent optimization algorithm

proposed by Laith Abualigah in 2021. The algorithm
mainly simulates the hunting behavior of crocodiles to
achieve an optimal solution, which has the characteristics
of fast convergence and strong search capability [25].

In this study, the RSA is employed to solve two
key problems: first, the optimization problem of the
GPR machine learning hyperparameters, and second,
the EVWPT system structure optimization problem, in

Fig. 4. The overall optimization process for transmission
efficiency.

which the WPT system transmission efficiency is taken
as the RSA optimization target, and the system structure-
related inputs are taken as the optimization parameters
to achieve the global optimization of the WPT system
transmission efficiency. The overall optimization process
is shown in Fig. 4. Firstly, adaptive sampling method is
used to extract samples of spatial offset variables and cir-
cuit parameters. The aGPR surrogates are then modeled
for UQ. The aGPR hyperparameters or model compen-
sation circuit parameters are optimized in the case of
unacceptable UQ accuracy and transmission efficiency
η . Re-perform the sampling and UQ until the results are
acceptable and then end the optimization.

The RSA search process consists mainly of three
phases, namely, the initialization phase, encircling phase
(exploration), and hunting phase (exploitation).

Initialization phase: The optimization process starts
with a set of randomly generated candidate solutions X,
as shown in (12):

X = rand× (UB−LB)+LB, (12)

where rand denotes to a random number between 0 and
1, and UB and LB denote the upper and lower bounds of
the given problem, respectively.

Encircling phase (global search): The RSA explo-
ration mechanism is based on two main search strategies,
that is, the high walking movement strategy and belly
walking movement strategy. The high walking strategy
depends on t ≤ T/4, the belly walking strategy depends
on t ⩽ T/2, and t > T/4. The position update equation
for the encircling phase is shown in (13):
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x(i, j)(t +1)

=

{
Best j(t)− γ(i, j)(t)×β −R(i, j)(t)× rand, t ≤ T/4
Best j(t)× x(i, j)×ES(t)× rand, t ≤ T/2 and t > T/4

,

(13)

where Besti j(t) is the ith position in the best obtained
solution, t is the number of the current iteration, and T
is the maximum number of iterations. In addition, γ(i, j)
denotes the hunting operator for the ith position in the
ith solution, which is calculated using (14); β is fixed to
equal 0.1 ; the reduce function R(i j) is the value used to
reduce the search area, which is calculated using (15);
r1 is a random number between [1 N];x(r1, j) denotes a
random position of the ith solution; N is the number of
candidate solutions; and ES(t) is the evolutionary sense,
which is calculated using (16):

γ(i, j) = Best j(t)×P(i, j), (14)

R(i, j) =
Best j(t)− x(r, j)

Best j(t)+ ε
, (15)

ES(t) = 2× r3 ×
(

1− 1
T

)
, (16)

where ε is a small value, r2 is a random number between
[1 N],r3 denotes a random integer between [−1 1], and
P(i, j) is the percentage difference between the jth posi-
tion of the best obtained solution and ith position of the
current solution.

Hunting phase (local search): The RSA exploitation
mechanism makes use of the search space and is based
on two main search strategies (hunting coordination and
cooperation) to avoid getting trapped in the local optima,
as shown in (17). The hunting coordination operation
depends on t ≤ 3T/4 and t > T/2, and the hunting coop-
eration operation depends on t ⩽ T and t > 3T/4 :
x(i, j)(t +1)

=


Best j(t)×P(i, j)(t)× rand, t ≤ 3T

4 and t > T
2 ,

Best j(t)− γ(i, j)(t)× ε −R(i, j)(t)× rand,
t ≤ T and t > 3T

4 .

.

(17)
The algorithm produces a random value in each

iteration, and this part of searching is beneficial in the
case of local optimum stagnation, especially in the final
iteration.

V. EXPERIMENTAL SIMULATION
ANALYSIS

A. UQ of transmission efficiency
Based on the transmission efficiency model in

Section II, it was determined that the EV-WPT trans-
mission efficiency was highly uncertain owing to the
influence of the coupling mechanism misalignment,
uncertainty of the coil structure, and circuit component
parameters. Based on the actual situation, it was assumed
that the spatial location parameters obeyed a uniform

Table 1: Parameter distribution of random variables
Variables Random

Distribution
Unit

l N(1,0.05) /
IS N(50,2.5) A
∆x U(-0.1,0.1) m
∆y U(-0.1,0.1) m
d U(0.1,0.15) m
r0 N(8e-4,4e-5) m
RT N(0.1,0.005) Ω

RZ N(5,0.25) Ω

CT N(120,6) nF
CR N(130,7.5) nF

distribution, and the component parameters obeyed a
normal distribution. After determining reasonable com-
ponent parameters, the intervals of the most probable dis-
tribution of parameters and possible boundaries of the
optimized parameters are determined in conjunction with
the real situation. The normal distribution sets the vari-
ance to 0.05 × mean. The distribution intervals of 10
variables with an impact on transmission efficiency were
shown in Table 1.

According to the random distribution parameters in
Table 1, 200 training samples were collected with the
Latin hypercube sampling method as the initial train-
ing pool to establish the aGPR model, and 300 adap-
tive iterations were performed until the adaptive maxi-
mum entropy has leveled off. Another 800 training sam-
ples were collected to establish the GPR surrogate model
according to the prediction accuracy. At the same time,
based on experience and the UQ stability, 10,000MC
simulation experiments were performed to verify the
accuracy of the aGPR method. The simulation model
took about 1 minute to sample each sample, and the cal-
culation time was given for computers with 6core/12-
thread processors (Intel Core i5-10400, 2.90 GHz ) and
16 GB of RAM, running Windows.

A square kernel was used as the kernel function
to optimize the hyperparameters θ =

[
v0σ f σk

]
for the

establishment of the aGPR model. To verify the tracking
performance of the RSA, it was compared with the simu-
lated annealing algorithm, arithmetic optimization algo-
rithm, and other common algorithms [25]. With (8) as the
tracking objective, the population size of each algorithm
was set to 20, and the maximum number of iterations
was set to 100. The convergence behavior and computa-
tion time of each algorithm are shown in Fig. 5. The same
global optimal solution was obtained for all the methods,
except for the GA, which was trapped in a local opti-
mum, and the RSA had a faster search speed than the
other methods, took less time to compute, and demon-
strated the strongest overall search capability.
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(a)

(b)

Fig. 5. (a) Convergence results of maximum likelihood
estimation and (b) computation time of each algorithm.

To verify whether the aGPR model can overcome
the “curse of dimensionality”, UQ was performed on the
transmission efficiency of the first five and all 10 dimen-
sions in Table 1, and the training process and predic-
tion results of the five-dimensional variables are shown
in Fig. 6. As shown in Fig. 6 (a), the adaptive maxi-
mum entropy value decreased continuously during the
aGPR training process, and a highly desirable maximum
entropy was observed after about 250 calculations. The
aGPR prediction results were compared with the true val-
ues, as shown in Fig. 6 (b).

The probability of the actual values falling within
the prediction interval was 98.75%. Similarly, the GPR
prediction results, compared with the true values, are
shown in Fig. 6 (c), with a probability of 96.78%,
demonstrating that the actual values fell within the pre-
diction interval. To examine the performance of the
obtained surrogate model, the aGPR and GPR predic-
tion results were compared, as shown in Fig. 6 (d) and
Table 2, demonstrating that the aGPR model had a higher
prediction accuracy in the areas with a low probability of
occurrence of the samples and stronger predictive capa-
bility than the GPR model.

According to the above experiments and EV-WPT
model proposed in Section II, this study quantified the
uncertainty of the EV-WPT system transmission effi-

(a)

(b)

(c)

(d)

Fig. 6. GPR and aGPR training process and results: (a)
Adaptive maximum entropy value iteration, (b) AGPR
training and prediction, (c) GPR training and rediction,
and (d) Comparison of predicted mean and true values.
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Table 2: Statistical parameters related to prediction
Probability
of Actual

Values
Within

the
Predicted
Intervals

MAPE RMSE
Coefficient

of
Determination

GPR 96.78% 0.27% 0.0030 0.97355
aGPR 98.75% 0.27% 0.0029 0.97406

ciency based on the aGPR, GPR, and MC models and
obtained the comparison results of the three methods
through simulation, as shown in Fig. 7 and Table 3.
Based on the above simulation results, it was determined
that the UQ accuracy of the proposed aGPR model was
basically the same as that of the MC method. Compared
with the GPR model, the overall speed of the aGPR
model increased by about 9.2% and 14.3%, which sub-
stantially reduced the computational cost. The compu-
tational cost remained the same when the dimensional-
ity of the input variables increased, indicating that the

(a) (b)

Fig. 7. Contrast of probability density function (PDF) (a) under the first five dimensions and (b) under the whole
dimensions of input variables in Table 1.

Table 3: Comparison of MC, GPR, and AGPR models with uncertainty inputs
Dimensions
of Variables Method Mean Variance Correlated Error Total Time

5

MC 0.9044 0.02712 Mean Variance 6 d22 h

0.0995%
0.011%

−1.844%
−1.254%

Sampling Calculation
GPR 0.9053 0.02662 13 h27 min 53 s
aGPR 0.9045 0.02678 12 h19 min 43 s

10

MC 0.8628 0.04578 Mean Variance 7 d8 h
Sampling Calculation

GPR 0.862 0.04822 −0.093% 5.33% 13 h49 min 57 s
aGPR 0.8629 0.04829 0.012% 5.46% 12 h05 min 50 s

aGPR model was not trapped in the “curse of dimension-
ality”, but the mean value of the transmission efficiency
decreased, and the variance increased, showing the exis-
tence of many uncertainties in the actual engineering,
which can reduce the transmission efficiency and robust-
ness of the WPT system. Therefore, there is an urgent
need to optimize EV-WPT systems.

B. Optimization
In combination with the contents of Section IV,

component parameters RT ,RZ ,CT , and CR in the pri-
mary and secondary circuits were optimized, with WPT
system efficiency as the optimization objective. With
the mean values of the parameters in Table 1 as the
basis, optimization was performed within the range
of [RT/2 , 2×RT ] , [RZ/2,2×RZ ] , [CT/2,2×CT ], and
[CR/2,2×CR], considering the global search and calcu-
lation cost.

To verify the superiority of the RSA, it was
compared with the Sparrow Search Algorithm (SSA),
improved Grey Wolf Optimizer (IGWO), and Enhanced
Whale Optimization Algorithm (EWOA) at the same
time.

According to the experimental effect, the population
size of all four algorithms was 20, and the maximum
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number of iterations was 10. The efficiency optimiza-
tion iterative process and optimization results of each
method are shown in Table 4 and Fig. 8. The SSA and
EWOA easily fell into local optimization, resulting in
low search accuracy. Although the IGWO demonstrated
high search accuracy, its calculation speed was slow such
that the optimal transmission efficiency of 94.23% was
approached in the 8th iteration. Compared with the other
algorithms, the RSA had a faster calculation speed and
higher search accuracy, which quickly approached the
optimal transmission efficiency in the third iteration, and
effectively solved the problem of WPT efficiency opti-
mization.

Taking the optimal solution obtained by the RSA
as the mean of the input parameters, the probability
density function of the transmission efficiency, corre-
sponding to the 10-dimensional uncertainty inputs in
Table 1, was calculated by the aGPR model. The mean
value of the optimized aGPR prediction was 0.9343,
and the variance was 0.02218. The mean value of
the transmission efficiency improved by 8.27%, and
the variance decreased by 54.07%, which significantly
improved the transmission efficiency and robustness of
the EV-WPT system, thereby providing a theoretical
basis for the practical engineering design and optimiza-
tion of EVWPT systems. The probability density func-
tions of the efficiency, quantified by the aGPR and

Table 4: Parameter comparison before and after opti-
mization

RT (Ω) RZ(Ω) CT (nE) CR(nF)
η ×10

0
(%)

Original 0.1 5 120 130 90.52
RSA 0.1582 9.9962 224.4007 191.5533 94.23

IGWO 0.1525 9.9986 235.4230 194.9361 94.23
EWOA 0.1542 8.2954 119.1866 140.7130 93.15

SSA 0.2 10 240 65 84.50

Fig. 8. Comparison of different algorithms for efficiency
optimization results of WPT system.

Fig. 9. Comparison of PDFs for efficiency of WPT sys-
tem before and after optimization.

GPR models before and after optimization, are compared
in Fig. 9.

The above simulations and comparative experiments
showed that when uncertainties were present in the trans-
mission process, the optimized WPT system proposed in
this study demonstrated high transmission efficiency and
strong robustness, which can effectively meet practical
engineering needs.

VI. CONCLUSION
Based on the influence of transceiver coil mutual

inductance on the transmission efficiency, this study
focuses on the uncertainty effect of input variables on
the efficiency of an EV-WPT system under actual condi-
tions. In this study, aGPR is proposed as the UQ frame-
work for EV-WPT transmission efficiency. Through a
comparison of the quantitative results of the MC, GPR,
and aGPR models, it is determined that the aGPR model
has approximately the same solution accuracy as the
MC method, and its computational speed is about 9.2%
better than that of the GPR model, which can signif-
icantly reduce the computational cost and verify the
absence of the “curse of dimensionality”. The RSA is
used to optimize the transmission efficiency, and the
results show that the mean value of the optimized trans-
mission efficiency increases by 8.27%, whereas the vari-
ance decreases by 54.07%. In summary, the results reveal
that the scheme proposed in this study can provide a low-
cost and reliable solution for the transmission efficiency
UQ and optimization of EV-WPT systems.
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