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Abstract – This paper proposes a polarized reconfig-
urable antenna for unmanned aerial vehicles (UAVs)
with flexible UAV-to-Everything (U2X) communications
through a reduction of polarization loss. It operates at
2.45 GHz and consists of a square patch antenna, a
capacitance feed, a ground surface slot, and a recon-
figurable feeding network. The reconfigurable feeding
network has dual polarization (linear, circular) depend-
ing on the configuration of the feeding network. The
dual linear polarization reconfigurable feeding network
configuration consists of a single-pole double-throw
(SPDT) switch, a 50-ohm microstrip line, and a low-
temperature co-fired ceramic (LTCC) 90-degree hybrid
coupler. This was added to the circuit to form a dou-
ble circular polarization reconfigurable feeding net-
work. The proposed antenna has a miniaturized size
(0.389λo×0.389λo×0.005λo), and is lightweight (12.2
g), making it suitable for low-height flight. Furthermore,
it has maximum gains of 6.6 dBi and 7.2 dBi, in addi-
tion to an efficiency of 82%, and a 10 dB bandwidth of
4.5% (2.38-2.49 GHz). Therefore, the proposed antenna
covers all UAV control links, video, and telemetry fre-
quency bands (2.38-2.485 GHz).

Index Terms – Capacitance feed, ground surface slot,
polarization-reconfigurable antenna, UAV-to-Everything
communications.

I. INTRODUCTION
The unmanned aerial vehicles (UAVs) industry, one

of the core challenges of the Fourth Industrial Revolu-
tion, has high marketability and economic value. It is
expected to grow by $21.8 billion by 2027, based on

the benefits of its applications in various fields such as
surveillance/research, hobby/leisure, imaging, and life-
saving [1]. Based on these values, research and devel-
opment of communication platforms for UAVs are also
rapidly growing and changing in line with this. Unlike
conventional terrestrial wireless communication envi-
ronments, the UAV communication environment has
specific requirements for operation at a certain alti-
tude, so it must be accompanied by flexible UAV-to-
Everything (U2X) communication technology that can
perform various tasks in different ways. Therefore, the
implementation of an antenna with multiple polariza-
tions is essential to reduce polarization loss. The anten-
nas for U2X communications should have many charac-
teristics, including compact size, low profile, and light
weight. Additionally, they should cover the frequency
band for UAV communication. There have been many
research papers focused on the design of antennas for
unmanned aerial vehicles. For example, single-polarized
antennas without reconfigurability have been studied
in [2–4]. The use of single-polarized antennas with
U2X communication systems could degrade their per-
formance due to cross-polarization loss. Accordingly,
research on polarization-reconfigurable antennas is con-
tinuing to reduce polarization losses in wireless commu-
nication systems [5–6]. The polarization-reconfigurable
antenna has a good gain and impedance bandwidth per-
formance, despite being relatively large in size [7–11].
For the miniaturization of the antenna, a patch antenna
with a slot was used in [12–13]. But [12] and [13] have
a narrow bandwidth of approximately 7%. In [14–15],
researchers have studied a meta-surface antenna that can
rotate mechanically and a ring slot antenna that offers
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both linear and circular polarization. The meta-surface
antenna in [14] has a large size but provides wide band-
width and high gain. On the other hand, the ring slot
antenna in [15] has a small size and wide bandwidth, but
it has low gain. In [16], the reconfigurable patch antenna
with PIN diodes has both linear and circular polarization
but the antenna has narrow impedance and axial ratio
bandwidths. [17] investigated the design of an antenna
that includes four parasitic patches and two varactor
diodes on each patch. By reconfiguring this antenna, it is
possible to achieve dual polarization with two beams for
each polarization. However, manufacturing this antenna
is challenging due to its complex structure, and integrat-
ing it as an aerodynamic component to be attached to
UAVs is difficult.

In this paper, we propose a compact, multi-
polarized, reconfigurable patch antenna that covers the
frequency band for unmanned aerial vehicle communi-
cation.

II. PROPOSED MULTI-POLARIZED PATCH
ANTENNA

Figure 1 (a) shows a schematic diagram of the over-
all structure and feeding of the proposed antenna. A
patch antenna is placed on the top surface of the upper
substrate, and a capacitance power supply unit for power
supply and impedance matching is located below it. By
changing the length and width of the capacitance feeding
part, the series capacitance can be adjusted to achieve
impedance matching. The antenna is designed to oper-
ate at 2.45 GHz for WLAN applications. The proposed
antenna was fabricated using an RF-60TC substrate from
Taconic, which has a thickness of 0.64 mm. The dielec-
tric constant (εr) is 6.15 and the loss tangent (tanδ ) is
0.002. On the top surface of the lower substrate, slots are
arranged at four corners for impedance matching, front-
to-back ratio improvement, and wide electrical length,
even in small ground surface sizes. The air gap between
the upper and lower substrates is connected through the
fixed pins and the feeding pins. It is designed to connect
the signal from the power supply circuit to the capac-
itance power supply. As shown in Figs. 1 (b)-(c), the
antenna structure has the following layout parameters:
the width of the substrate (W s) is 49 mm, the width of
the square patch (W p) is 37.5 mm, the width (W pin) and
height (H pin) of the feeding and fixed pins are 10 mm
and 5 mm, respectively, the distance (W g) between the
patch and feed pin is 2.25 mm, slot width (Sw) is 2 mm,
slot length (Sl) is 20 mm, length from corner to the slot
(Sm) is 3 mm, linear polarization (LP) feed line length
(L f 1) and circular polarization (CP) feed line length (L f 2)
are x mm and y mm, capacitance feed line width (W c)
and length (Lc) are 1 mm and 2.75 mm, respectively.
The overall size of the proposed multi-polarized antenna
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Fig. 1. Proposed antenna configuration: (a) Overall con-
figurations of the proposed patch antenna, (b) front views
of fixed and feeding pins, (c)-(d) top and bottom views of
the upper substrates, and (e)-(f) top views of the feeding
network that forms linear polarization and circular polar-
ization.

is (0.389λ o×0.389λ o×0.005λ o), where λ o is the wave-
length in free space at the lowest frequency of opera-
tion (2.38 GHz). For the miniaturization of the proposed
multi-polarized antenna, the patch antenna was designed
to be miniaturized using the slot on the ground plane, as
shown in Fig. 1 (d).

The electrical length was increased through the
effect of the meander line, as the current flow was
changed by the arrangement of slots at each corner
of the ground plane. To obtain the optimum structure
for the proposed antenna, the parameter sweep and
optimization tools of the CST Microwave Studio 2022
have been used to determine the optimized dimensions
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Fig. 2. Simulated reflection coefficients and impedance
variations on the smith chart of the proposed antenna
according to the (a)-(b) slot length (Sl), (c)-(d) width
(Wc) of the capacitance feed line resonator, and (e)-(f)
length (Lc) of the capacitance feed line resonator. The
resonance frequency fc = 2.45 GHz).

of the proposed antenna and the length of the slot.
Figures 2 (a)-(b) show the change in resonance fre-
quency according to the change in the length of the slot
(Sl) placed on the proposed antenna ground plane. It is
possible to adjust the resonance frequency up to 400
MHz by changing the length of the slot on the ground
surface.

Figures 2 (c)-(f) show the simulated reflection
coefficients and impedance variations of the proposed
antenna according to the feed line width (W c) and length
(Lc). Figure 3 shows the current distribution of the con-
ventional and proposed patch antennas.

For the proposed patch antenna, the slot placed at
each corner will result in a longer current path than the
conventional patch antenna, resulting in a longer electri-
cal length of the patch antenna. Therefore, the ground
surface slot structure reduced in size by approximately
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Fig. 3. Current distribution of the conventional and pro-
posed antennas: (a) Conventional patch antenna without
slots and (b) proposed patch antenna with slots.
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Fig. 4. Configurations and block diagram of the proposed
feeding network: (a)-(b) Linear polarization modes and
(c)-(d) circular polarization modes.

25%. For wide bandwidth, capacitance feed lines are
printed on one side of the crossed rectangular support
using two RF-60 substrates, as shown in Fig. 1 (b). To
match impedance while enhancing bandwidth, the length
and width of the capacitance feed line are adjusted to
resonate at 2.45 GHz. Figure 4 shows the four modes of
polarization achieved from two cases of reconfigurable
feeding networks. The linear polarization feeding net-
work in Figs. 4 (a)-(b) comprises one input port, two
output ports, and one single-pole double-throw (SPDT)
switch. The SPDT switch is the CG2176X3-C2 AS179-
92LF model manufactured by Skyworks. In addition, a
100 pF capacitor is connected for DC blocking, and a
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1000 pF capacitor is connected for bypass. All of these
capacitors are manufactured by Murata in the 01005-
inch size. Figures 4 (c)-(d) show the circular polariza-
tion feeding network. The circular polarization feeding
network has a configuration in which a hybrid coupler
is added to the front of the output ports of the linear
polarization feeding network. The polarization mode is
selected by using the SPDT switch when the RF input
signal is applied. The RF signal input in Figs. 4 (a)-(b) is
transmitted to P1 or P2 through the SPDT switch, and
the RF signal is fed to the patch through the capaci-
tance feeding line under the patch. The patch antenna
has a horizontal LP (H-LP) when the signal is applied
to P1, and has the characteristics of vertical LP (V-
LP) when the signal is applied to P2. On the other
hand, the RF signal input in Figs. 4 (c)-(d) is transmit-
ted to P3 or P4 through the SPDT switch, which trans-
mits a phase difference signal to P5 and P6 through
a 90◦ hybrid coupler so that the RF signal is fed to
the patch through the capacitance feed line under the
patch. The 90◦ hybrid coupler used in this circuit is the
RCP2650Q03 from RN2 Technologies. When a signal
is applied to P3 through the SPDT switch, the patch
antenna is applied with a signal of 0◦ to P5 and a sig-
nal of 90◦ to P6, and the patch antenna has the left-
hand CP (LHCP) mode characteristic. In this way, when
a P4 signal is applied through the SPDT switch, a 90◦

signal is applied to the P5 and a 0◦ signal is applied
to the P6 so that the patch antenna has the right-hand
CP (RHCP) mode characteristics. Figure 5 shows the
implemented and mounted proposed antenna on a UAV.
Figures 5 (a)-(c) show the top and bottom views of
the proposed patch antenna. Figures 5 (d)-(e) show the
overall configuration and mounted proposed antenna on
the UAV.

III. RESULT AND DISCUSSION
The proposed UAV antenna, along with the feed-

ing network operating in the 2.45 GHz ISM band has
been optimized using a commercial full-wave electro-
magnetic tool (CST Microwave Studio 2022). To minia-
turize the antenna design, the proposed antenna was fab-
ricated on an RF-60 substrate of 0.64 mm thickness and
a copper thickness of 18 µm. The reflection coefficient
and isolation were measured using a vector network from
Rohde & Schwarz, and the radiation patterns, axial ratio,
and gains for each polarization were measured by the
Korea Radio Promotion Association’s EM Technology
Institute. The measured results of the dual LP antenna are
presented in Figs. 6 (a)-(b). In the case of dual orthogonal
LP in Fig. 6 (a), the reflection coefficients of H-LP and V-
LP modes are less than -10 dB, and the 10-dB bandwidth
of LP modes is approximately 4.9% from 2.39 GHz to
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Fig. 5. Implemented and mounted proposed antenna on
the UAV: (a) Top views of the patch antenna, (b)-(c) bot-
tom views of the feeding networks, (d) overall configu-
rations of the proposed patch antenna, and (e) mounted
proposed patch antenna.

2.51 GHz. The switch’s insertion loss is approximately -
0.75 dB, and the isolation between two capacitance feed-
ers is -23 dB at 2.45 GHz.

Figure 6 (b) shows the elevation radiation patterns
(xz plane) for each polarization mode. They are almost
the same for horizontal and vertical LP. The peak gain
and front-to-back ratio are more than 6.6 dBi and 12.3 dB
to 13.5 dB in each polarization mode, and the efficiencies
of LP modes are approximately 82%. Figures 6 (c)-(f)
show the characteristics of the dual circularly polarized
antenna.

In Fig. 6 (c), the reflection coefficients of RHCP
and LHCP modes are less than -10 dB, which include
the insertion losses of the SPDT switch and hybrid cou-
plers. The phase variation is approximately 90◦, and the
transmission coefficient, including a 3 dB divided power
loss is approximately −3.5 dB. The 10 dB bandwidth
of CP modes is approximately 4.5% from 2.38 GHz
to 2.49 GHz. Figure 6 (d) shows the axial ratio and
phase variation of the dual circularly polarized antenna.
The 3-dB axial ratio bandwidths of CP modes cover
approximately 12% from 2.3 GHz to 2.6 GHz. The
phase variations are ±90◦ in each RHCP and LHCP
mode.

Figures 6 (e)-(f) show the realized gain and radia-
tion pattern. The peak gain and front-to-back ratio are
7.2 dBi and 15.7 dB to 27 dB, respectively. The per-
formance of the proposed antenna is compared to other
multi-polarized reconfigurable antennas, as indicated in
Table 1. Compared to the previously reported antennas,
the proposed antenna has a smaller size, wider band-
width, and higher gain.
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Table 1: Performance comparisons of multiple-polarized antennas
Ref. f c

(GHz)
BW
(%)

Gain
(dBi)

Polarization AR BW
(%)

Elect. Size
(λ 3

o)
[7] 2.46 52.03 9 1 LP & 2 CP 63.1- 0.65×0.65×0.19
[8] 2.65 34 3.7 4 LP - 0.7×0.7×0.23
[9] 2.7 37 8.9 3 LP & 2 CP 50.6 0.68×0.68×0.24

[10] 2.45 11.4 7.3 CLP & 2 CP 14 0.64×0.64×0.05
[12] 4.805 7.28 6.63 1 LP & 2 CP 7 0.56×0.56×0.037
[14] 3.5 11.4 7.5, 5 1 LP & 2 CP 11.4 0.9×0.9×0.036
[16] 2.4 0.8 5.83, 6.4 1 LP & 2 CP 0.5 0.65×0.65×0.01
[17] 3.4 5.9 5.89, 5.81 2 LP - 0.85×0.85×0.26
Prop. 2.45 4.5 6.6, 7.2 2 LP or 2 CP 12 0.389×0.389×0.05

180

-30
-25
-20
-15
-10
-5
0
5

10

-30
-25
-20
-15
-10
-5
0
5

10

-35

-30

-25

-20

-15

-10

-5

0

Frequency (GHz)

S (H-LP)11

S (V-LP)22

S (Isolation)21

S (12 Isolation)

Switch loss(P1)

Switch loss(P2)

1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0
0

3

6

9

12

15

18

21

24

27

30

33

36

39

RHCP AR

LHCP AR

RHCP PV

LHCP PV

-180

-150

-120

-90

-60

-30

0

30

60

90

120

150

180

1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0
-40

-35

-30

-25

-20

-15

-10

-5

0

Frequency (GHz)

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180
-30

-25

-20

-15

-10

-5

0

5

10

F
a

r
fi

e
ld

R
e
a

li
z
e
d

G
a

in
(d

B
)

Degree

RHCP(Sim.)

RHCP(Mea.)

LHCP(Sim.)

LHCP(Mea.)

Non Slot(Sim.)

-30
-25
-20
-15
-10
-5
0
5

10

150

120

90

60

30

0

30

60

90

120

150

180

-30
-25
-20
-15
-10
-5
0
5

10

RHCP(Co-pol)

LHCP(Co-pol)

RHCP(X-pol)

LHCP(X-pol)

( )a ( )b

( )d( )c

S ( )33 RHCP

S (LHCP)44

S (Isolation)43

S (34 Isolation)

Input loss(P3)

Input loss(P4)

( )e ( )f

1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0

S
-p

a
r
a

m
e
te

r
(d

B
)

S
-p

a
r
a

m
e
te

r
(d

B
)

R
a

d
ia

ti
o

n
 P

a
tt

e
r
n

 (
d

B
i)

R
a

d
ia

ti
o

n
 P

a
tt

e
r
n

 (
d

B
)

A
x

ia
l 

R
a

ti
o
 (

d
B

)

P
h

a
se

V
a

r
ia

ti
o

n
 (

d
e
g

r
e
e
)

Frequency (GHz)

150

120

90

60

30

0

30

60

90

120

150

180

H-LP(Co-pol)

V-LP(Co-pol)

H-LP(X-pol)

V-LP(X-pol)

( )-x ( )+x

( )-x ( )+x

(a) (b)
180

-30
-25
-20
-15
-10
-5
0
5

10

-30
-25
-20
-15
-10
-5
0
5

10

-35

-30

-25

-20

-15

-10

-5

0

Frequency (GHz)

S (H-LP)11

S (V-LP)22

S (Isolation)21

S (12 Isolation)

Switch loss(P1)

Switch loss(P2)

1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0
0

3

6

9

12

15

18

21

24

27

30

33

36

39

RHCP AR

LHCP AR

RHCP PV

LHCP PV

-180

-150

-120

-90

-60

-30

0

30

60

90

120

150

180

1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0
-40

-35

-30

-25

-20

-15

-10

-5

0

Frequency (GHz)

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180
-30

-25

-20

-15

-10

-5

0

5

10

F
a

r
fi

e
ld

R
e
a

li
z
e
d

G
a

in
(d

B
)

Degree

RHCP(Sim.)

RHCP(Mea.)

LHCP(Sim.)

LHCP(Mea.)

Non Slot(Sim.)

-30
-25
-20
-15
-10
-5
0
5

10

150

120

90

60

30

0

30

60

90

120

150

180

-30
-25
-20
-15
-10
-5
0
5

10

RHCP(Co-pol)

LHCP(Co-pol)

RHCP(X-pol)

LHCP(X-pol)

( )a ( )b

( )d( )c

S ( )33 RHCP

S (LHCP)44

S (Isolation)43

S (34 Isolation)

Input loss(P3)

Input loss(P4)

( )e ( )f

1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0

S
-p

a
r
a

m
e
te

r
(d

B
)

S
-p

a
r
a

m
e
te

r
(d

B
)

R
a

d
ia

ti
o

n
 P

a
tt

e
r
n

 (
d

B
i)

R
a

d
ia

t i
o

n
 P

a
tt

e
r
n

 (
d

B
)

A
x

ia
l 

R
a

ti
o

 (
d

B
)

P
h

a
se

V
a

r
ia

ti
o

n
 (

d
e
g

r
e
e
)

Frequency (GHz)

150

120

90

60

30

0

30

60

90

120

150

180

H-LP(Co-pol)

V-LP(Co-pol)

H-LP(X-pol)

V-LP(X-pol)

( )-x ( )+x

( )-x ( )+x

(c) (d)

180

-30
-25
-20
-15
-10
-5
0
5

10

-30
-25
-20
-15
-10
-5
0
5

10

-35

-30

-25

-20

-15

-10

-5

0

Frequency (GHz)

S (H-LP)11

S (V-LP)22

S (Isolation)21

S (12 Isolation)

Switch loss(P1)

Switch loss(P2)

1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0
0

3

6

9

12

15

18

21

24

27

30

33

36

39

RHCP AR

LHCP AR

RHCP PV

LHCP PV

-180

-150

-120

-90

-60

-30

0

30

60

90

120

150

180

1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0
-40

-35

-30

-25

-20

-15

-10

-5

0

Frequency (GHz)

-180-150-120 -90 -60 -30 0 30 60 90 120 150 180
-30

-25

-20

-15

-10

-5

0

5

10

F
a

r
fi

e
ld

R
e
a

li
z
e
d

G
a

in
(d

B
)

Degree

RHCP(Sim.)

RHCP(Mea.)

LHCP(Sim.)

LHCP(Mea.)

Non Slot(Sim.)

-30
-25
-20
-15
-10
-5
0
5

10

150

120

90

60

30

0

30

60

90

120

150

180

-30
-25
-20
-15
-10
-5
0
5

10

RHCP(Co-pol)

LHCP(Co-pol)

RHCP(X-pol)

LHCP(X-pol)

( )a ( )b

( )d( )c

S ( )33 RHCP

S (LHCP)44

S (Isolation)43

S (34 Isolation)

Input loss(P3)

Input loss(P4)

1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0

S
-p

a
r
a

m
e
te

r
(d

B
)

S
-p

a
r
a

m
e
te

r
(d

B
)

R
a

d
ia

ti
o

n
 P

a
tt

e
r
n

 (
d

B
i)

R
a

d
ia

ti
o

n
 P

a
tt

e
r
n

 (
d

B
)

A
x

ia
l 

R
a

ti
o
 (

d
B

)

P
h

a
se

V
a

r
ia

ti
o

n
 (

d
e
g

r
e
e
)

Frequency (GHz)

150

120

90

60

30

0

30

60

90

120

150

180

H-LP(Co-pol)

V-LP(Co-pol)

H-LP(X-pol)

V-LP(X-pol)

( )-x ( )+x

( )-x ( )+x

(e) (f)

Fig. 6. Characteristics of the proposed antenna at each
polarization mode: (a) Measured S-parameters of a lin-
early polarized antenna, (b) measured radiation patterns
of two LP modes in the xz plane, (c) measured S-
parameters of the dual circularly polarized antenna, (d)
axial ratio and phase variation of the dual circularly
polarized antenna, (e) simulated and measured realized
gain of the dual CP modes, and (f) radiation patterns of
the dual CP modes in the xz plane.

IV. CONCLUSION
A 2.45 GHz multi-polarized reconfigurable patch

antenna for U2X communications is presented in this

paper. The proposed feeding network utilizes an SPDT
switch and hybrid coupler to achieve various polariza-
tion types, including V-LP or H-LP, as well as LHCP
or RHCP. The proposed multi-polarized reconfigurable
antenna can provide a compact size and high gain in the
2.45 GHz ISM band. This antenna can be easily mounted
on UAVs and has a low-profile, balanced structure. It
also offers ease of control for selecting different types
of polarization. Therefore, the proposed antenna can be
widely used for UAV applications, making it a promising
candidate for performing a diverse range of missions in
numerous fields.
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