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Abstract – This paper proposes a field-circuit combined
decoupling method for co-polarized in-band full-duplex
multiple-input multiple-output (MIMO) antenna arrays.
The proposed field-circuit combined method is com-
posed of decoupling network and neutralization-based
decoupling. An in-band full-duplex antenna with high
isolation and low cross-polarization level is designed and
extended to a 1 × 4 linear array. The decoupling net-
work and ADS are applied for the array to alleviate the
mutual coupling by rebuilding the neutralization wave
paths in the circuit and field domains. Thus, low coupling
(< −25 dB) among the transmitting/receiving antennas
and high isolation (> 47 dB) between the transmitting
and receiving antennas are achieved at 2.6 GHz, exhibit-
ing a superior decoupling performance.

Index Terms – antenna array, decoupling, field-circuit
combined, in-band full-duplex.

I. INTRODUCTION
With the increasing demand for wireless communi-

cation systems, full-duplex communication was devel-
oped for higher spectrum efficiency [1, 2]. In-band full-
duplex antennas have been studied for base station ap-
plications [3, 4], which can transmit and receive signals
simultaneously in the same frequency band. When full-
duplex antennas are used in MIMO antenna arrays, the
antenna elements are closely arranged due to the limited
space. Signal interference is generated between the re-
ceiving and transmitting antennas, and mutual coupling
is generated between the receiving/transmitting anten-
nas, which significantly deteriorate the performances of
the wireless communication systems (including receiver
performance, error rate, dynamic range, and channel ca-
pacity) [5–7]. Notably, 100 dB isolation between the
transmitter and receiver is generally required for full-
duplex systems, which is usually achieved by combining
the antenna, analog and digital domains [8, 9]. There-
fore, the isolation at antenna level should be improved as
much as possible to reduce the order of the analog radio

frequency filters, thus facilitating the subsequent design
of the communication system. Furthermore, mutual cou-
pling (among the transmitting/receiving antennas) below
−25 dB is sufficient for MIMO arrays.

Various methods have been studied for suppressing
the mutual couplings. The first type is the field domain
decoupling method, which is classified into two cate-
gories of partition and neutralization. Decoupling res-
onator [10, 11], defected ground [12], and meta-material
structures [13, 14] are based on the partition principle.
Neutralization approaches cancel the original coupling
waves between antennas by rebuilding the additional
wave paths with equal amplitude and opposite phase,
such as decoupling grounds [15, 16], array antenna de-
coupling surface (ADS) [17], dielectric superstrate [18]
and planar path [19]. The second type is the circuit do-
main decoupling method. Decoupling networks [20–22]
construct the coupling signals through the feeding net-
work in the circuit domain, which cancel out with the
original coupling signals between the antennas. These
methods can effectively improve the isolation; however,
they are usually used for conventional antenna arrays
rather than full-duplex antenna arrays. When considering
full-duplex operation, the isolation between the trans-
mitting and receiving antennas is important. In the full-
duplex antenna array proposed in [23], only 30 dB isola-
tion can be obtained. After increasing the antenna spac-
ing, higher isolation (> 42 dB) is obtained in [24]. In
[25, 26], the interference between the transmitter and re-
ceiver is suppressed by integrating with the feeding net-
work based on antiphase feeding technique. However,
the transmitting and receiving antennas have orthogonal
polarizations in above arrays [23–26], which is not ap-
plicable for some scenarios.

In this paper, a field-circuit combined decoupling
method is proposed for co-polarized in-band full-duplex
MIMO arrays. The proposed decoupling method con-
sisting of the decoupling network and the ADS could
construct the neutralization wave paths from circuit and
field perspectives, respectively. An in-band full-duplex
antenna with high isolation and low cross-polarization
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Table 1: Performance comparison of full-duplex antenna
arrays

Ref. Pol. Ant.
Dis. (λ )

Isolation
(TX/RX-
RX/TX)

Coupling
(TX/RX-
TX/RX)

[23] cross-pol. 0.57 > 30 dB < −20 dB
[24] cross- pol. 0.67 > 42 dB < −25 dB
[25] cross-pol. 0.50 > 50 dB -
This
work

co-pol. 0.56 > 47 dB < −25 dB

level is designed and formed into a 1 × 4 linear array
with the spacing of 0.56λ (where λ is the free-space
wavelength at the working frequency). The decoupling
network could alleviate the couplings between different
antennas and the ADS could enhance the isolation in
a single antenna. The 1 × 4 full-duplex antenna array
with the field-circuit combined decoupling method is
fabricated and measured. At the working frequency of
2.6 GHz, both low coupling (< −25 dB) among the
transmitting/receiving antennas and high isolation (>
47 dB) between the transmitting and receiving antennas
are achieved. The performances of in-band full-duplex
antenna arrays are compared in Table 1.

II. FULL-DUPLEX ANTENNA ELEMENT
The configuration of the in-band full-duplex antenna

is shown in Fig. 1, which is composed of a rectangu-
lar patch, four open-ended stubs, a fence-strip resonator
(FSR), a metallic ground, and two dielectric layers. The
dielectric substrates are made of F4B with a dielectric
constant of 2.2 and a loss tangent of 0.001. The metal-
lic strip is printed on the bottom side of the dielectric 1,
and the patch and open-ended stubs are printed on the
top side. The patch and strip are connected by series of
metallic vias. The FSR structure consisting of metallic
vias and strip is utilized to enhance the isolation between
the TX and RX ports [4]. Two pairs of open-ended stubs
are loaded to reduce the H-plane cross-polarizations of
the shorted patch antennas [27]. Besides, the dimension
of the antenna is reduced by using the rectangular slots
on the patch. The TX and RX ports are excited by the
symmetrical metallic probes, exhibiting the same lin-
early polarizations. The parameters of the antenna are
listed in the caption of Fig. 1.

Figure 2 shows the simulated S-parameters of the
full-duplex antenna. The reflection coefficients (S11 and
S22) are lower than −10 dB, and the port isolation is
above 30 dB at around 2.6 GHz. The simulated E-plane
and H- plane radiation patterns for the TX and RX ports
of the full-duplex antenna are shown in Fig. 3. As ob-
served, the H-plane cross-polarization levels for both

ports maintain below −19.8 dB, and the satisfactory
broadside radiated patterns are achieved.
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Fig. 1. Configuration of the full-duplex antenna. (a) 

Perspective view. (b) Side view. (c) Top view. The 

optimized parameters are: h1 = 3, h2 = 0.165, l1 = 50, l2 = 

40, w1 = 39, w2 = 10.4, ls1 = 12.6, ls2 = 19.2, ws1 = 0.5, 

ws2 = 0.3, ds1 = 11.25, ds2 = 4, d1 = 0.6, d2 = 1, s = 6, p 

= 2.6 (all dimensions in mm). 
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Fig. 3. Simulated radiation patterns of the full-duplex 

antenna at 2.58 GHz. (a) TX port. (b) RX port. 

Fig. 1. Configuration of the full-duplex antenna. (a) Per-
spective view. (b) Side view. (c) Top view. The optimized
parameters are: h1 = 3, h2 = 0.165, l1 = 50, l2 = 40, w1
= 39, w2 = 10.4, ls1 = 12.6, ls2 = 19.2, ws1 = 0.5, ws2 =
0.3, ds1 = 11.25, ds2 = 4, d1 = 0.6, d2 = 1, s = 6, p = 2.6
(all dimensions in mm).
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III. FULL-DUPLEX ANTENNA ARRAY
WITH FIELD-CIRCUIT COMBINED

METHOD
A. Field-circuit combined method

The co-polarized in-band full-duplex antenna is ex-
panded to a 1 × 4 linear array with the element sep-
aration of 65 mm (0.56λ ), as shown in Fig. 4 (a). In
such an array, both the coupling among transmitting /re-
ceiving antennas (e.g., S13, S53, and S73) and the isola-
tion between transmitting and receiving antennas (e.g.,
1/S23, 1/S43, 1/S63, and 1/S83) need to be considered.
Figure 4 (b) shows the perspective view of the 1 × 4 full-
duplex antenna array with decoupling network, and the
bottom view is shown in Fig. 4 (c). The microstrip trans-
mission lines are printed on the bottom side of the dielec-
tric substrate (made of 0.508 mm-thick Rogers RO4350B
substrate with εr = 3.66 and tanδ = 0.0037) below the
ground layer. The apertures are etched on the metallic
ground and placed below the patches’ edges. Figure 4 (d)
presents the array with decoupling network and ADS.
The ADS is composed of a 1 mm-thick FR4 dielectric
substrate (with εr = 4.4 and tanδ = 0.02) and four rect-
angular metal radiator patches, which is arranged above
the antenna array with a height of 3 mm. The final di-
mensions of the array and the decoupling structures are
listed in the caption of Fig. 4.

The microstrip decoupling network at the feed-
ing layer is provided for the linear array, as shown in
Figs. 4 (b) and (c). The additional coupling wave from
the feeding line of antenna element to adjacent antenna
is generated by loading the apertures on the feeding
lines [22]. The aperture coupling between the transmit-
ting/receiving port and the adjacent transmitting or re-
ceiving port in different antenna is introduced from the
circuit perspective, which is controlled by the size of
the aperture. Since the apertures and feeding points of
the radiating patches are connected by the feeding lines,
the length and width of the microstrip transmission lines
also need to be considered when decoupling. Therefore,

maintain below -19.8 dB, and the satisfactory broadside 
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Fig. 4. Configuration of the 1 × 4 full-duplex antenna 

array with/without the decoupling structures (decoupling 

network and ADS). (a) Perspective view of the array 

without decoupling structures (Array 1). (b) Perspective 

view of the array with decoupling network (Array 2). (c) 

Perspective view of the array with decoupling network 

and ADS (Array 3). (d) Bottom view of Array 3. The 

optimized dimensions are: dy = 65, l_sub = 260, w_sub 

= 65, l_ads = 12, w_ads = 12, la = 14, wa = 1, lc1 = 27.1, 

lc2 = 12.8, lc3 = 7.7, lc4 = 7.8, lc5 = 2.7, lc6 = 28.9, wc = 

1.2 (all dimensions in mm). 

 

coefficient of the antenna (S33) maintains below -10 dB, 

and the isolation between the transmitting and receiving 

ports in a single antenna (1/S43) maintains above 30 dB. 
Thus, the decoupling networks can significantly 

suppress the couplings among different antennas, but 

have little effect on the port isolation in a single antenna. 

To improve the isolation between the transmitting and 

receiving ports in a single antenna, the ADS structure is 

employed for the array with the decoupling network, as 

electromagnetic waves radiated by the transmitting 

antenna are reflected by the metal reflector and received 

by the receiving antenna in the same element, forming 

an additional coupling wave path from the field 

perspective [17]. The amplitude and phase of the 

additional wave path are determined by the height and 

the size of the metal reflectors. Thus, the original 

coupling between transmitting and receiving ports in a 

single antenna can be counteracted by employing the 

ADS. 

Figure 6 shows the simulated S-parameters of the 1 × 

Fig. 4. Configuration of the 1 × 4 full-duplex antenna ar-
ray with/without the decoupling structures (decoupling
network and ADS). (a) Perspective view of the array
without decoupling structures (Array 1). (b) Perspective
view of the array with decoupling network (Array 2). (c)
Perspective view of the array with decoupling network
and ADS (Array 3). (d) Bottom view of Array 3. The op-
timized dimensions are: dy = 65, l sub = 260, w sub =
65, l ads = 12, w ads = 12, la = 14, wa = 1, lc1 = 27.1,
lc2 = 12.8, lc3 = 7.7, lc4 = 7.8, lc5 = 2.7, lc6 = 28.9, wc =
1.2 (all dimensions in mm).

the original couplings among different antenna elements
can be neutralized by utilizing the aperture-loaded de-
coupling network.

Figure 5 shows the simulated S-parameters of the 1
× 4 full-duplex antenna array with and without the de-
coupling network. Due to the page limit, only the S- pa-
rameters of the middle element of the array are shown
here. As observed, after applying the decoupling net-
work, the mutual couplings among neighboring trans-
mitting /receiving antennas are effectively reduced from
−19 to −25 dB or lower (see S13, S53, and S73 in
Fig. 5 (a)), while the isolations of the transmitting and
receiving ports in different antennas (1/S23, 1/S63, and
1/S83) are improved by around 12 dB (from 35 to 47 dB)
at the working frequency of 2.6 GHz. The reflection co-
efficient of the antenna (S33) maintains below −10 dB,
and the isolation between the transmitting and receiving
ports in a single antenna (1/S43) maintains above 30 dB.
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Fig. 5. Simulated S-parameters of the 1 × 4 full-duplex 

antenna array with/without the decoupling network. (a) 

S13, S33, S53, and S73. (b) S23, S43, S63, and S83. 
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It is concluded that all the isolations of the co-
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network and ADS. The proposed field-circuit combined 

decoupling method combines the circuit domain 

decoupling network and the field domain ADS structure 

to simultaneously obtain lower coupling between the 

transmitting/receiving antennas and higher isolation 

between transmitting and receiving antennas. 
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Fig. 6. Simulated S-parameters of the 1 × 4 full-duplex 

antenna array with/without the decoupling network and 

ADS. (a) S13, S33, S53, and S73. (b) S23, S43, S63, and S83. 

 
(a)                                        (b) 

 
Fig. 7. Simulated normalized radiation patterns of TX 

port (P3) with/without the decoupling network and ADS. 

(a) E-plane. (b) H-plane. 

B. Measurement results 

Figure 8 shows the prototype photos of the 1 × 4 

full-duplex antenna array with the field-circuit combined 

method. The decoupling network and the ADS structure 

are employed in the array. The ADS and the substrate 

layers are fixed together using Nylon screws.  

The simulated and measured S-parameters of the 1 

× 4 full-duplex antenna array using the field-circuit 

combined method are presented in Fig. 9. It is clear that, 

at the working frequency of 2.6 GHz, the coupling 

between the transmitting/receiving antennas is about -25 

dB or lower, while the coupling between the transmitting 

and receiving antennas is lower than -47 dB. The 

measurement results are comparable to the simulation 

results. The small discrepancies are caused by imperfect 

soldering, manufacturing tolerance, and measurement 

errors. Figure 10 shows the simulated and measured E- 

plane and H-plane radiation patterns of TX port (P3) 

using the field-circuit combined method. Low cross- 

Fig. 5. Simulated S-parameters of the 1 × 4 full-duplex
antenna array with/without the decoupling network. (a)
S13, S33, S53, and S73. (b) S23, S43, S63, and S83.

Thus, the decoupling networks can significantly suppress
the couplings among different antennas, but have little
effect on the port isolation in a single antenna. To im-
prove the isolation between the transmitting and receiv-
ing ports in a single antenna, the ADS structure is em-
ployed for the array with the decoupling network, as
electromagnetic waves radiated by the transmitting an-
tenna are reflected by the metal reflector and received
by the receiving antenna in the same element, forming
an additional coupling wave path from the field per-
spective [17]. The amplitude and phase of the additional
wave path are determined by the height and the size of
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Figure 6 shows the simulated S-parameters of the 1
× 4 full-duplex antenna array with and without the de-
coupling network and ADS. It is obvious that, with the
decoupling network and ADS, the isolation between the
transmitting and receiving ports in a single antenna is
significantly improved from 30 to 50 dB at the work-
ing frequency of 2.6 GHz (see 1/S43 in Fig. 6 (a)). The
couplings among neighboring transmitting/receiving an-
tennas (S13, S53, and S73) remain below −25 dB, while
the isolations of the transmitting and receiving ports in
different antennas (1/S23, 1/S63, and 1/S83) remain larger

than 47 dB. Meanwhile, the reflection coefficient of the
antenna (S33) continues below −10 dB. Therefore, af-
ter loading the ADS structure, the isolation between the
transmitting and receiving ports in a single antenna is ef-
fectively enhanced while maintaining the other high iso-
lations between different antennas. Figure 7 presents the
simulated normalized E-plane and H-plane radiation pat-
terns of TX port (P3) with and without the decoupling
network and ADS. As can be seen, the radiation patterns

 
(a) 

 
(b) 

Fig. 5. Simulated S-parameters of the 1 × 4 full-duplex 

antenna array with/without the decoupling network. (a) 

S13, S33, S53, and S73. (b) S23, S43, S63, and S83. 

 

4 full-duplex antenna array with and without the 

decoupling network and ADS. It is obvious that, with the 

decoupling network and ADS, the isolation between the 

transmitting and receiving ports in a single antenna is 

significantly improved from 30 to 50 dB at the working 

frequency of 2.6 GHz (see 1/S43 in Fig. 6 (a)). The 

couplings among neighboring transmitting/receiving 

antennas (S13, S53, and S73) remain below -25 dB, while 

the isolations of the transmitting and receiving ports in 

different antennas (1/S23, 1/S63, and 1/S83) remain larger 

than 47 dB. Meanwhile, the reflection coefficient of the 

antenna (S33) continues below -10 dB. Therefore, after 

loading the ADS structure, the isolation between the 

transmitting and receiving ports in a single antenna is 

effectively enhanced while maintaining the other high 

isolations between different antennas. Figure 7 presents 

the simulated normalized E-plane and H-plane radiation 

patterns of TX port (P3) with and without the decoupling 

network and ADS. As can be seen, the radiation patterns 

with the decoupling network and ADS are comparable to 

the original patterns, exhibiting low cross-polarization 

level (< -14.5 dB) and satisfactory radiation 

performances. 

It is concluded that all the isolations of the co-

polarized in-band full-duplex antenna array can be 

significantly enhanced by employing the decoupling 

network and ADS. The proposed field-circuit combined 

decoupling method combines the circuit domain 

decoupling network and the field domain ADS structure 

to simultaneously obtain lower coupling between the 

transmitting/receiving antennas and higher isolation 

between transmitting and receiving antennas. 

 
(a) 

 
(b) 

Fig. 6. Simulated S-parameters of the 1 × 4 full-duplex 

antenna array with/without the decoupling network and 

ADS. (a) S13, S33, S53, and S73. (b) S23, S43, S63, and S83. 

 
(a)                                        (b) 

 
Fig. 7. Simulated normalized radiation patterns of TX 

port (P3) with/without the decoupling network and ADS. 

(a) E-plane. (b) H-plane. 

B. Measurement results 

Figure 8 shows the prototype photos of the 1 × 4 

full-duplex antenna array with the field-circuit combined 

method. The decoupling network and the ADS structure 

are employed in the array. The ADS and the substrate 

layers are fixed together using Nylon screws.  

The simulated and measured S-parameters of the 1 

× 4 full-duplex antenna array using the field-circuit 

combined method are presented in Fig. 9. It is clear that, 

at the working frequency of 2.6 GHz, the coupling 

between the transmitting/receiving antennas is about -25 

dB or lower, while the coupling between the transmitting 

and receiving antennas is lower than -47 dB. The 

measurement results are comparable to the simulation 

results. The small discrepancies are caused by imperfect 

soldering, manufacturing tolerance, and measurement 

errors. Figure 10 shows the simulated and measured E- 

plane and H-plane radiation patterns of TX port (P3) 

using the field-circuit combined method. Low cross- 

Fig. 6. Simulated S-parameters of the 1 × 4 full-duplex
antenna array with/without the decoupling network and
ADS. (a) S13, S33, S53, and S73. (b) S23, S43, S63, and
S83.

 
(a) 

 
(b) 

Fig. 5. Simulated S-parameters of the 1 × 4 full-duplex 

antenna array with/without the decoupling network. (a) 

S13, S33, S53, and S73. (b) S23, S43, S63, and S83. 

 

4 full-duplex antenna array with and without the 

decoupling network and ADS. It is obvious that, with the 

decoupling network and ADS, the isolation between the 

transmitting and receiving ports in a single antenna is 

significantly improved from 30 to 50 dB at the working 

frequency of 2.6 GHz (see 1/S43 in Fig. 6 (a)). The 

couplings among neighboring transmitting/receiving 

antennas (S13, S53, and S73) remain below -25 dB, while 

the isolations of the transmitting and receiving ports in 

different antennas (1/S23, 1/S63, and 1/S83) remain larger 

than 47 dB. Meanwhile, the reflection coefficient of the 

antenna (S33) continues below -10 dB. Therefore, after 

loading the ADS structure, the isolation between the 

transmitting and receiving ports in a single antenna is 

effectively enhanced while maintaining the other high 

isolations between different antennas. Figure 7 presents 

the simulated normalized E-plane and H-plane radiation 

patterns of TX port (P3) with and without the decoupling 

network and ADS. As can be seen, the radiation patterns 

with the decoupling network and ADS are comparable to 

the original patterns, exhibiting low cross-polarization 

level (< -14.5 dB) and satisfactory radiation 

performances. 

It is concluded that all the isolations of the co-

polarized in-band full-duplex antenna array can be 

significantly enhanced by employing the decoupling 

network and ADS. The proposed field-circuit combined 

decoupling method combines the circuit domain 

decoupling network and the field domain ADS structure 

to simultaneously obtain lower coupling between the 

transmitting/receiving antennas and higher isolation 

between transmitting and receiving antennas. 

 
(a) 

 
(b) 

Fig. 6. Simulated S-parameters of the 1 × 4 full-duplex 

antenna array with/without the decoupling network and 

ADS. (a) S13, S33, S53, and S73. (b) S23, S43, S63, and S83. 

 
(a)                                        (b) 

 
Fig. 7. Simulated normalized radiation patterns of TX 

port (P3) with/without the decoupling network and ADS. 

(a) E-plane. (b) H-plane. 

B. Measurement results 

Figure 8 shows the prototype photos of the 1 × 4 

full-duplex antenna array with the field-circuit combined 

method. The decoupling network and the ADS structure 

are employed in the array. The ADS and the substrate 

layers are fixed together using Nylon screws.  

The simulated and measured S-parameters of the 1 

× 4 full-duplex antenna array using the field-circuit 

combined method are presented in Fig. 9. It is clear that, 

at the working frequency of 2.6 GHz, the coupling 

between the transmitting/receiving antennas is about -25 

dB or lower, while the coupling between the transmitting 

and receiving antennas is lower than -47 dB. The 

measurement results are comparable to the simulation 

results. The small discrepancies are caused by imperfect 

soldering, manufacturing tolerance, and measurement 

errors. Figure 10 shows the simulated and measured E- 

plane and H-plane radiation patterns of TX port (P3) 

using the field-circuit combined method. Low cross- 

Fig. 7. Simulated normalized radiation patterns of TX
port (P3) with/without the decoupling network and ADS.
(a) E-plane. (b) H-plane.



DA, YI, LI, CHEN: ISOLATION IMPROVEMENT USING THE FIELD-CIRCUIT COMBINED METHOD 1204

with the decoupling network and ADS are comparable
to the original patterns, exhibiting low cross-polarization
level (< −14.5 dB) and satisfactory radiation perfor-
mances.

It is concluded that all the isolations of the co-
polarized in-band full-duplex antenna array can be sig-
nificantly enhanced by employing the decoupling net-
work and ADS. The proposed field-circuit combined de-
coupling method combines the circuit domain decou-
pling network and the field domain ADS structure to si-
multaneously obtain lower coupling between the trans-
mitting/receiving antennas and higher isolation between
transmitting and receiving antennas.

B. Measurement results
Figure 8 shows the prototype photos of the 1 × 4

full-duplex antenna array with the field-circuit combined
method. The decoupling network and the ADS structure
are employed in the array. The ADS and the substrate
layers are fixed together using Nylon screws.

The simulated and measured S-parameters of the 1
× 4 full-duplex antenna array using the field-circuit com-
bined method are presented in Fig. 9. It is clear that, at
the working frequency of 2.6 GHz, the coupling between
the transmitting/receiving antennas is about −25 dB or
lower, while the coupling between the transmitting and
receiving antennas is lower than −47 dB. The measure-
ment results are comparable to the simulation results.
The small discrepancies are caused by imperfect solder-
ing, manufacturing tolerance, and measurement errors.
Figure 10 shows the simulated and measured E- plane
and H-plane radiation patterns of TX port (P3) using the
field-circuit combined method. Low cross-polarization
level (< −14.5 dB) and satisfactory radiation perfor-
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polarization level (< -14.5 dB) and satisfactory radiation 

performances are obtained. Meanwhile, the simulated 

and measured radiation patterns are in good agreement. 

Ⅳ. CONCLUSION 
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consisting of the decoupling network and ADS was 

presented in this paper. The additional coupling waves in 

the circuit and field domains were generated to cancel 

the original couplings. An in-band full-duplex antenna 

with the same polarization was designed and formed into 

a 1 × 4 linear array. The coupling between different 

antennas could be suppressed by the decoupling network, 

and the isolation in a single antenna could be enhanced 

by the ADS. The 1 × 4 array, together with the 

decoupling network and the ADS, have been 

manufactured and experimented. The simulated and 

measured results were in reasonable consistent. Low 

coupling (< -25 dB) among the transmitting/receiving 

antennas and high isolation (> 47 dB) between the 

transmitting and receiving antennas were achieved at 2.6 

GHz. Therefore, the proposed field-circuit combined 

decoupling method could be used for enhancing the 

isolations of co-polarized in-band full-duplex MIMO 

arrays. 
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mances are obtained. Meanwhile, the simulated and mea-
sured radiation patterns are in good agreement.

IV. CONCLUSION
A field-circuit combined decoupling method con-

sisting of the decoupling network and ADS was pre-
sented in this paper. The additional coupling waves
in the circuit and field domains were generated to
cancel the original couplings. An in-band full-duplex
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antenna with the same polarization was designed and
formed into a 1 × 4 linear array. The coupling between
different antennas could be suppressed by the decoupling
network, and the isolation in a single antenna could be
enhanced by the ADS. The 1 × 4 array, together with
the decoupling network and the ADS, have been manu-
factured and experimented. The simulated and measured
results were in reasonable consistent. Low coupling
(< −25 dB) among the transmitting/receiving antennas
and high isolation (> 47 dB) between the transmit-
ting and receiving antennas were achieved at 2.6 GHz.
Therefore, the proposed field-circuit combined decou-
pling method could be used for enhancing the isolations
of co-polarized in-band full-duplex MIMO arrays.
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