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Abstract ─ Far field reconstruction in a large-scale space 

is time consuming and imprecise. However, if these data 

are sampled randomly and can be sparse on a specific 

transform domain, it will become quick and accurate  

to complete the field reconstruction by using the 

compressive sensing (CS). By taking the feature of the 

far field distribution for the half-wave dipole antenna in 

half space as an important prior knowledge, the sparse 

transform can be chosen appropriately. Moreover, a piece-

wise approximation method is presented to reconstruct 

the far field. The simulated results show that this 

proposed method has better performance for far field 

reconstruction than the traditional method. 

 

Index Terms ─ Field reconstruction, prior knowledge, 

sparse, compressive sensing. 
 

I. INTRODUCTION 
The spatial distribution of electromagnetic (EM) 

field [1] can provide an intuitive demonstration of radio 

wave propagation. Accordingly, estimating the totality 

of electromagnetic field existing at a given location 

precisely and rapidly offers guidance for wireless 

network optimization. Simulation softwares such as 

Wireless Insite [2] and Winprop [3] have been developed 

for the electromagnetic simulation. In fact, the results  

of these softwares are not accurate enough due to the 

complexity of the environment [4]. Therefore, field 

reconstruction based on measurement by monitoring a 

station or using a personal dosimeter is still needed.  

To describe the spatial distribution pattern of the 

electromagnetic radiation field in the entire region, an 

efficient method for field reconstruction is necessary [5]. 

Several interpolation methods can be used to perform 

EM field reconstruction. The model based parameter 

estimation (MBPE) [6-8] is used in computational 

electromagnetics based on polynomial fitting. In [9], a 

method of weighted minimization of two norms is 

proposed to interpolate the EM near field when no 

information on the radiating source is available. In [10], 

five spatial interpolation methods for electric field in 

urban environments are used and compared. However, 

these methods mentioned above do not perform very 

well in the large-scale geographic space due to the 

reflection, transmission and diffraction of EM waves. 

And in field reconstruction, no prior knowledge about 

EM field is used. Hence, it is necessary to develop new 

solutions to reconstruct the EM field. 

In [11] the Bayesian compressive sensing algorithm 

is utilized to fast analyze the EM scattering problem.  

It is similar to the field reconstruction problem. 

Compressive sensing enables a signal to be reconstructed 

completely from a small set of nonadaptive, linear 

measurements by obtaining a sparse representation in 

some basis [12-14]. It has been applied to many EM 

problems [15-18]. Recently, it is used to reconstruct  

the complex time-harmonic electric field in [19]. The 

electric field is modeled as a summation of 20 incident 

homogeneous plane waves with random phase, 

magnitude, and angle-of-arrival. Actually, incidence, 

reflection, transmission, and diffraction are not 

independent of each other. The electric field in a real 

environment does not have such a sparse representation 

in the spatial-frequency domain. As an important prior 

knowledge, feature of EM wave propagation in real 

environment should be also considered for the field 

reconstruction. 

Therefore, taking the electric field distribution 

created by a half-wavelength dipole antenna above the 

ground as an example, far field reconstruction in a large-

scale space using compressive sensing is researched. 

Firstly, the prior knowledge about the electric field 

distribution feature is introduced. According to the  

prior knowledge, the selection of transforms for field 

reconstruction is discussed. Specifically, the method of 

piece-wise approximation reconstruction according to 

the prior knowledge is proposed. In the end, the electric 

field in a real environment is reconstructed by the  
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proposed method.  

 

II. PRIOR KNOWLEDGE FOR FAR FIELD 

RECONSTRUCION 
Various antennas exist in our lives. One of the most 

commonly used antenna is the half-wavelength dipole 

antenna. In this section, the feature of the electric field 

distribution for the half-wavelength dipole antenna in 

half space is analyzed. The feature will provide an 

important prior knowledge for the following field 

reconstruction.  

 

A. Half-wavelength dipole antenna above the ground 

Suppose the geographical space is divided into two 

half parts, the interface is a smooth plane. The upper half 

space is air and the lower half is ground. As a result, the 

total electric and magnetic field in the upper space with 

a certain height above the ground are the superposition 

of the incident and reflected components, as shown in 

Fig. 1.  

 

 
 

Fig. 1. A half-wavelength dipole antenna above the 

ground with the observation plane at height of ho. 

 

In Fig. 1, the observation plane is at a height of ho 

above the ground and is divided into uniform grids with 

grid width of s. Due to the symmetry of the electric and 

magnetic field distribution on the observation plane, 

only the field distribution along the path d is studied. 

Other symbols in Fig. 1 are not described here for 

briefness.  

Significantly, at the Brewster angle [20] of incidence, 

no TM wave is reflected for this vertical dipole antenna 

of Fig. 1. The Brewster angle can be calculated by: 
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where εc is the complex effective permittivity of ground. 

Thus, we have: 
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That means, there is no reflection at d=dr0, an important 

parameter for studying the feature of the electric field  

distribution. 

 

B. The feature of the far field distribution as 

prior knowledge 
In order to describe the feature of the far field 

distribution of the dipole antenna intuitively, one 

illustrative example of the calculation parameters shown 

in the Table 1 is given.  

 

Table 1: Calculation parameters 

Parameter Value 

s 1m 

ha 20m 

ho 2m 

f 3GHz 

IM 1A 

εr 25 

 2×10-2S/m 

 

From Eqs. (1) and (2), one can obtain that dr0= 110m. 

And the electric field distribution along the path d of  

Fig. 1 can be calculated and is shown in Fig. 2. All the 

measured points along this path d is in the far field region. 

The results show that the magnitude of the electric field 

increases with intense oscillation firstly and then 

decreases with slow oscillation when the observation 

point P moves away from the antenna. 

 

 

 

Fig. 2. Electric field distribution of the half-wavelength 

dipole antenna along the path d. 

 

The feature of the electric field distribution is mainly 

caused by the phase differences of the incident and 

reflected waves. This can be explained as follows. When 

the measured point P is above the ground, there is a 

propagation path difference (r1<r2) between the incident 

wave and the reflected wave, as shown in Fig. 1. It leads 

to that the phase changes of the incident wave and the 

reflected wave are not synchronizable when P moves 
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away from the antenna. And if d is larger than dr0 and 

continues to increase, the propagation path difference 

between the incident and reflected waves becomes 

smaller and smaller, resulting that the phase difference 

between them oscillates more and more slowly.  

Although only the electric field of the vertical dipole 

antenna above the ground is calculated, other types of 

antennas also have the above features. That is, when the 

observation plane is above the ground, the closer the 

measured point is to the antenna, the more intensely the 

electric field oscillates, and on the other hand the farther 

from the antenna, the more slowly the electric field 

oscillates. Therefore, the distance dr0 of Eq. (2) can be 

taken as an important prior knowledge for the field 

reconstruction. 
 

III. ELECTRIC FIELD RECONSTRUCTION 

USING COMPRESSIVE SENSING 
Electric field distribution of the antenna in space is 

not sparse in the measured domain. However it can be 

sparse on a specific transform domain. In this section the 

theory of field reconstruction based on compressive 

sensing with prior knowledge is studied. 
 

A. Compressive sensing 

Suppose that x is the original electric field to be 

reconstructed, it can be considered as a discrete signal 

with length of N. The signal x is compressible if there 

exists a basis matrix Ψ in that x becomes nearly sparse: 
-1= x Ψθ θ Ψ x ,                          (3) 

where vector θ is the representation of x in the domain 

of Ψ-1. If the number of non-zero coefficients in θ is K 

(K<< N), it is called K-sparse signal. 

The basis matrix Ψ is the inverse transform matrix, 

where the transform may be taken as one of the most 

popular orthogonal transforms: discrete Fourier transform 

(DFT), discrete cosine transform (DCT) and discrete 

wavelet transform (DWT). That is, Ψ transforms the 

sparse vector θ into the original electric field x of 

interest. 

On the other hand, the sampled vector y with M×1 

can be expressed as: 
CS  y Φx ΦΨθ A θ ,                      (4) 

where Φ is the measurement matrix with M×N (M<N) 

that is incoherent with Ψ and ACS is the observation 

matrix. M is the number of measurements.  

Here, one should note that the sampled vector y is 

actually sampled from the original electric field x. Then 

ACS can be converted to a partial random matrix by 

randomly selecting the rows of the matrix Ψ. 

x can be exactly reconstructed with overwhelming 

probability by (3). Under the conditions of 2K<M<N the 

reconstruction is equal to solve the l0-norm optimization 

problem of Eq. (4), namely: 
CS

0
min s.t. =θ A θ y .                        (5) 

However, solving Eq. (5) is an non-deterministic 

polynomial-time hard problem. In order to reduce 

complexity, l1-norm optimization problem is used as 

alternative, i.e.,  
CS

1
min s.t. =θ A θ y .                        (6) 

The reconstruction algorithm used in this paper is 

orthogonal matching pursuit (OMP) [21], which solves 

(6) by greedy iteration to approach the sampled vector y. 

 

B. Sparse representation 

As described above, three most popular orthogonal 

transforms can be used. In this subsection, we will study 

how to select the transform from DFT, DCT and DWT 

appropriately according to the prior knowledge.  

The reconstructed electric field in this paper is  

taken along the path d within the range of 1m≤d≤256m,  

with N=256 sampled points. According to the prior 
knowledge of last section, this range can be divided into 

two parts at d=128m, that is, the region of 1m≤d≤128m 

with intense oscillation and the region of 129m≤d≤256m 

with slow oscillation. 

In order to evaluate the sparsity of DFT, DCT, and 

DWT, we introduce another vector θ_normal as below:  

      

2

_ normal 
θ

θ
θ

.                          (7) 

By calculating the percentage of element in θ_normal 

less than a threshold (taken as 0.005 in this paper), the 

sparsity comparison for the three transforms are shown 

in Table 2. 

 

Table 2: The sparsity comparison of DFT, DCT, and 

DWT with =0.005 

Region DCT DWT DFT 

1m≤d≤256m 33.98% 71.48% 23.43% 

1m≤d≤128m 23.19% 50.00% 7.81% 

129m≤d≤256m 89.06% 82.81% 58.59% 

 
Form Table 2, one can see that the sparsity 

percentage in region of 129m≤d≤256m can be up to 

89.06% in DCT domain. In the region of 1m≤d≤128m 

and 1m≤d≤256m, the sparsity percentage in DWT domain 

is the largest. 

Furthermore, one can also find that DFT is not the 

optimal sparse basis transform in any region above. This 

is because the incident and reflected waves are not 

independent due to the ground reflection. Moreover, the 

plane wave angular spectrum varies with the change of 

propagation path. Therefore, the electric field is not very 

sparse in DFT domain. 

From point view of signal and system, most of the 

signal energy is concentrated at the lower frequency after 

DCT, while DWT has more excellent multi-resolution 

properties than DCT. That means, for the reconstruction 

of the electric field, DCT is suitable in the region of 
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electric field with slower oscillation (the region of 

129m≤d≤256m in Table 2), while DWT is suitable in the 

region of the electric field with intense oscillation (the 

region of 1m≤d≤128m in Table 2). 

 

IV. NUMBERICAL RESULTS 

If the electric field |E| is inherently 2-D, it can be 

expressed as the 1-D vector by stacking the matrix 

columns and is represented by x with a length of N. The 

sample y of the electric field x is performed by using a 

random measurement matrix Φ with dimension M×N. 

Finally, field can be reconstructed by OMP. For each 

choice of Φ, the quality of the reconstruction is evaluated 

by computing the relative error between the original and 

reconstructed field as follows: 

2

2

ˆ
e




x x

x
,                               (8) 

where x̂  is the reconstructed field. By choosing, for 

example 1000, different measurement matrices Φ, the 

reconstruction error can be obtained by taking the 

average of the relative errors of Eq. (8). 

 

A. Field reconstruction by traditional approach 

The traditional approach to reconstruct the electric 

field is to sample in the entire interested region and 

reconstruct it using only one transform matrix. This 

subsection investigates and compares the reconstruction 

error versus the number of measurements M for the three 

different transforms. The reconstructed electric field is 

in the region of 1m≤d≤256m of Fig. 2. 

Figure 3 illustrates the reconstruction error versus 

the number of measurements 10≤M≤250. It is observed 

that the quality of the reconstructed electric field is 

directly related to the sparsity of the three different 

transforms just as indicated in Table 2. When M >115, 

the quality of the reconstruction is the best by DWT.  
 

 
 

Fig. 3. Reconstruction error comparison in the region of 

1m≤d≤256m for the three different transforms. 

Next, we divide the region into two parts, including 

1m≤d≤128m and 129m≤d≤256m, and reconstruct the 

electric field respectively. The results are shown in  

Fig. 4 and Fig. 5. As can be seen, in the region of 

1m≤d≤128m, the reconstruction error by DWT is lower 

than DCT and DFT if M >55, while in the region of 

129m≤d≤256m, the performance of DCT far exceeds 

that of the other two transforms.  

 

It is also interesting to observe that the number of 

measurements M required for a good reconstruction 

depends on the complexity of the original electric field. 

As the distance from the source decreases, the oscillation 

of the field in the space becomes more and more intense, 

as a result, the more number of measurements are 

required to improve reconstruction. 

 

 
 

Fig. 4. Reconstruction error comparison in the region of 

1m≤d≤128m for the three different transforms. 

 

B. Field reconstruction by piece-wise approximation 

with prior knowledge 

By dividing the whole region of 1m≤d≤256m into 

two parts according to dr0 by Eq. (2), a piece-wise 

approximation with prior knowledge is proposed. That 

is, DWT is used as the sparse transform with larger M  

in the region of 1m≤d≤128m, and instead, smaller M  

is required and DCT is adopted in the region of 

129m≤d≤256m. 

Figure 6 and Fig. 7 demonstrate the reconstructed 

electric fields in the region of 1m≤d≤256m (N=256)  

by traditional approach and the proposed approach, 

respectively. For the traditional approach, the 

reconstruction error is 0.201 with M=100 and using 

DWT. For the proposed approach, M is taken as 70 and 

30 in the region of 1m≤d≤128m and 129m≤d≤256m, 

respectively. And the reconstruction error is 0.067.  

Compared with the traditional approach, one can 

conclude that the piece-wise approximation with prior 

knowledge proposed in this paper needs less number of  
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measurements and has smaller reconstruction error.  

 

 
 

Fig. 5. Reconstruction error comparison in the region of 

129m≤d≤256m for the three different transforms. 

 

 
 

Fig. 6. Reconstructed electric field by the traditional 

approach and the original electric field. 

 
C. Field reconstruction in real environment 

In this subsection, the electric field in a real 

environment is reconstructed by compressive sensing. 

The original electric field is simulated in Wireless Insite 

[2]. There are 168×168 receivers (isotropic antenna) 

with spacing of 5m in a region of 840m×840m in  

this environment, as shown in Fig. 8. The transmitter 

(vertical half-wave dipole antenna) is located at the 

center of this region and the simulation parameters are 

listed in the Table 3. 

Figure 9 shows the original electric field simulated 

by Wireless Insite. For field reconstruction, the total 

region is partitioned into 441 equal-sized cells with the 

area of 40m×40m. 

 

 
 

Fig. 7. Reconstructed electric field by the proposed 

approach and the original electric field. 

 

 
 

Fig. 8. A real environment modeled in Wireless Insite. 
 

Table 3: Simulation parameters 

Parameter Value 

s 5m 

ha 50m 

ho 2m 

f 3GHz 

IM 1A 

εr 25 

 2×10-2S/m 

 

For the traditional approach with DWT, 20% of the 

number of measurements in each cell are used. The 

reconstructed electric field is shown in Fig. 10, with the 

reconstruction error of 0.7308. 

For the proposed piece-wise approximation 

approach, dr0 is 260m by Eq. (2). Hence, a squire 

boundary with the side length of 520m divides the whole 

region of 840m×840m into two parts, as depicted in  

Fig. 9. Inside the boundary, DWT is used with 40% 

measurements, while outside the boundary, DCT is 

adopted with 20% measurements. The reconstructed  
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electric field is shown in Fig. 11 with the reconstruction 

error of 0.1972. Compared with the traditional approach, 

the proposed piece-wise approximation approach has 

better performance with not too more measurements 

increased. 
 

 
 

Fig. 9. Original electric field and the number of 

measurements. 
 

  
 

Fig. 10. Reconstructed electric field by the traditional 

approach. 
 

 
 

Fig. 11. Reconstructed electric field by the proposed 

approach. 

V. CONCLUSION 
The far field feature of half-wave dipole antenna in 

large-scale half-space is studied and taken as a prior 

knowledge for the electric field reconstruction by 

compressive sensing. With this prior knowledge, a  

new method based on the piece-wise approximation 

reconstruction is presented. Compared with the traditional 

approach, the proposed piece-wise approximation 

method can obtain a higher quality reconstruction field 

with an appropriate number of measurement points.  

In the end, the reconstruction in a real environment 

illustrates the validity and feasibility of the proposed 

method.  
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