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Abstract ─ A general formula for numerical dispersion 

of the two-dimensional time-domain radial point 

interpolation meshless (2-D RPIM) method is analytically 

derived. Numerical loss and dispersion characteristics of 

the RPIM method with both Gaussian and multiquadric 

basis functions are investigated. It is found that numerical 

loss and dispersion errors of the RPIM vary with types 

of basis functions used and associated parameters, 

number of the nodes, and medium conductivities. In 

addition, condition numbers of the moment matrix of  

the meshless methods can also increase numerical 

dispersion errors. With a reasonable condition number of 

the moment matrix, the radial point interpolation 

meshless methods perform generally better than the 

FDTD method in terms of numerical dispersion errors. 

 

Index Terms ─ Gaussian basis function, multiquadric 

basis function, numerical dispersion, radial point 

interpolation method (RPIM). 
 

I. INTRODUCTION 
Meshless or mesh-free methods present alternative 

methods to replace the mesh/grid based methods for 

electromagnetic field modeling. Time-domain radial 

point interpolation meshless (RPIM) method is one of 

the typical meshless methods. References [1, 2] show 

that it may be equivalent to the finite-difference time-

domain (FDTD) method under certain conditions. But  

in a general case, it promises better accuracy and 

computational efficiency in solving the problems of 

irregular or multiscale structures [3, 4]. The numerical 

results show that the RPIM approach can reduce about 

80% of the number of unknowns and about 70% of  

the computational time in comparison with the FDTD 

method. The RPIM can not only save more than 60% of 

the memory required by the FDTD method, but also run 

100% faster. 

Recently, the RPIM method was successfully applied 

to solve various electromagnetic problems. Rodrigo et 

al. proposed an improved Lennard-Jones discretization 

method for the RPIM and validated it with a scattering 

problem [5]. Tanaka et al. investigated a unique meshless 

method using the RPIM and applied it to an eddy current 

problem [6]. Khalef combined a Crank–Nicolson scheme 

with the RPIM and utilized it to model waveguide 

problems [7]. However, when radial basis functions 

(RBFs) and interpolating points are not properly chosen 

for solving Maxwell’s equations, the meshless methods 

can become erroneous and even divergent, which limits 

further engineering applications of the RPIM [8, 9]. 

Therefore, it is important to investigate errors of the 

meshless methods. One of the errors of main concerns is 

numerical dispersion of a meshless method.  

In 2008, Lai et al. derived a numerical dispersion 

relationship for the RPIM method in lossless media [10], 

but it is only for one-dimensional structure and the 

dispersion characteristics of the RPIM method have not 

been well studied. In 2013, Ansarizadeh and Movahhedi 

investigated dispersion error of the RPIM method by 

tracing the propagation of the electromagnetic wave  

[11]. Their work also focused on the lossless media and 

they did not derive a general formula for the numerical 

dispersion of the RPIM method. In 2014, we studied  

the numerical dispersion of the RPIM method and its 

relationship to the finite-difference time-domain (FDTD) 

approach [1], but it is only for the Gaussian basis 

function with two adjacent points in lossless media. In 

2017, we derived a general formula for numerical 

dispersion of the RPIM method in lossless media [12]. 

Since then, no more numerical dispersion analysis of the 

RPIM method has been reported. Important issues such 

as node density, other non-Gaussian basis functions [6, 
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13] and their impacts on numerical dispersions in lossy 

media have not been studied. 

In this paper, we address the above issues: we first 

develop the general numerical dispersion relation of the 

RPIM method for both lossless and lossy medium, verify 

it with the FDTD method when its node distributions  

are made to be the same as that of the FDTD, and then 

investigate numerical dispersion properties of the RPIM 

method with different basis functions, number of nodes 

and conductivities. To our best knowledge, these issues 

have not been reported in the past.  

It is worth to mention here that the meshless method 

is expected to have smaller numerical dispersion errors 

than the conventional FDTD method; this is because  

the meshless methods use high-order basis functions to 

expand the fields than the roof-top basis functions used 

in the FDTD method [14]. Our investigations presented 

here show that it is true in general but not so under 

certain conditions because of the meshless methods 

involve more complex matrix operations. 

 

II. NUMERICAL DISPERSION 

FORMULATION 

For simplicity, a two-dimensional (2-D) TMz wave 

propagating in a lossy and isotropic source-free medium 

of permittivity 𝜀, conductivity 𝜎, and permeability 𝜇 is 

considered. Maxwell’s equations in time domain can be 

written in a matrix form as: 
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Take Ez for an inspection. As Fig. 1 shows, Ez at node k 

can be interpolated with field values at the neighboring 

nodes j that is within the support domain centered at node 

k. Its node-based expansion can be expressed as [3]: 

1

( ) ( ) ( ) ( ) ( )
N

z k j k z j k z j

j

E X X E X X


    E X ,    (2) 

where ( , )k k kX x y  represents spatial position of node k, 

1 2( , , , )j NX X X X  stores all the node locations, and 

N is the total number of nodes within the support domain. 

Then, vector 1 2( ) [ ( ), ( )k k kX X X   , ( )]N kX  is 

a shape function, which is determined by: 
1(X ) (X )T

k k

 r G .                       (3) 

Here 1 2(X ) [ (X ), (X ),k k kr rr (X )]N kr  is a basis 

function. For Gaussian function, (X )j kr  has the 

following form [3, 4]: 
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where 
c is the shape parameter, 

cd  is the minimum 

distance between two nodes. For a multi-quadric basis 

function with shape parameters of C and q, (X )j kr  has 

the following form [6]: 
2

2

2

| |
( )

q

j k

j k

c

X X
r X C

d

 
  
 
 

.                (5) 

Then, the moment matrix G in (3) is: 
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Let 
EX  and 

HX  denote the spatial positions of the 

nodes at which electric field and magnetic field are 

located, respectively. By substituting these formulas into 

(1), we can get: 
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Here        ( , ,x y z  ).  

By following the Fourier analysis approach [15], the 

numerical dispersion relation can be obtained. That is, 

first, the field components in (7) are assumed to have the 

following form:  

0( , ) exp( )exp( )f t f j j t  r k r ,               (8) 

where   is angular frequency, 0f is the amplitude. 

( )( cos sin )a a a ax x y y x yk k j       k , with   

being the phase shift constant,   being the attenuation 

constant and  being the propagation angle with respect 

the x-axis. r  is the displacement vector.  

We then apply the time-average (TA) scheme [16] 

to the lossy term of (7a) and use the central finite-

difference to approximate the time derivatives. Then, 

substitution of (8) into (7) reads: 

0
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Here t  is the time step and is set as 
0/ 2cd v  to be 

consistent with FDTD method. v0 is the speed of light. 

1 , 
2 , 

t , and ( )EX  are defined as: 
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After some manipulations, the following equations 

are obtained: 
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with 

1 2, , ,
EE E
N

T
jj j

E e e e
      

 
k rk r k r

Q ,           (13a) 

1 2, , ,
HH H
N

T
jj j

H e e e
      

 
k rk r k r

Q .          (13b) 

Here, E H E

j j r = r r , H E H

j j r = r r , H
r  and E

r  are  

the displacement vectors of magnetic field and electric 

field respectively. 0 2 sin /tc j t  , 1i    and 

/ 2t t   . / 2 tanTA

tj t      .  

By setting the determinant of the coefficient matrix 

of (12) to zero, and with some manipulations, numerical 

dispersion relation can be obtained as: 
2
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y E y H H E
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This equation is solved with Newton iteration method. 
 

 
   (a)  (b) 
 

Fig. 1. The support domain centered at node k and used 

in formulas (7a) (a) and of (7b) and (7c) (b). 
 

III. DISPERSION ANALYSIS OF THE 

MESHLESS METHODS 
In the following paragraphs, we conduct numerical 

dispersion analysis of the meshless methods. To do so, 

we define numerical loss error (NLE), numerical phase  

error (NPE) as follows [17]: 

0

0

100%numNLE
 




  ,              (15a) 

0

0

100%numNPE
 




  .              (15b) 

βnum and αnum are the phase shift and attenuation constants 

of the meshless methods computed with (14), respectively. 

β0 and α0 are the theoretical phase shift and attenuation 

constants, respectively. With the above definitions, the 

dispersion errors of the meshless methods are studied as 

follows. 
 

A. Effects of basis functions and their parameters 

First, N is set to 4 and the distance between adjacent 

nodes is ∆s=λ/20. Such a setting is comparable to  

the conventional finite-difference time-domain (FDTD) 

method where a field component at a grid point is related 

to the field components at the surrounding four grid 

points. The dielectric constant of the medium under 

consideration is 𝜀𝑟 =1 and the conductivity is 𝜎 =
0.001 S/m.  

Figure 2 shows the NLEs and NPEs of the RPIM and 

the FDTD methods. The RPIM method uses Gaussian 

basis function with different 
c  values. It can be seen 

that when 
410c

 , the dispersion errors of the RPIM 

method are almost the same as those of the FDTD 

method, which is consistent with the phenomenon 

described in [1]; when 
310c

 , the NLEs and NPEs of 

the RPIM method are both less than the errors of the 

FDTD method; however, when 
210c

 , their NLEs 

and NPEs are sharply increased. This means that using a 

large c  will result in a large error or even solution 

divergence. 

Figure 3 shows the condition number of the moment 

matrix G in (6) versus different c . As c  decreases, 

the condition number of G increases rapidly. It implies 

that G can become an ill-conditioned matrix and unstable 

solutions are more likely to occur with a small c . In 

other words, choosing a smaller c  does not necessarily 

lead to smaller errors because of potential large condition 

numbers of the moment matrix. To ensure both the 

stability and accuracy of the RPIM method, we select 𝛼𝑐 

at the range of 10−3 in the following studies. 

We now turn to the RPIM method with the 

multiquadric basis function of (5). First, we set the 

parameter q=0.01 and let C change from 0.3 to 10. Figure 

4 shows the numerical dispersion errors with changing  

C. Then, we let the value of q change with a fixed C=1. 

Figure 5 shows the numerical dispersion errors with 

changing q. 

From Fig. 4 (a), we can see that the NLEs of the  
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RPIM method with the multiquadric basis function are 

approximately equal to or less than those of FDTD 

method in most of the propagation angles. With small C, 

however, the NPEs can be larger than those of FDTD 

approach at some propagation angles (see Fig. 4 (b)). 

 

 
   (a)  

 
   (b) 

 

Fig. 2. Numerical dispersion of the RPIM method: (a) 

NLE and (b) NPE versus the angle of propagation in a 

medium of 𝜀𝑟=1 and 𝜎=0.001S/m.  

 

 
 

Fig. 3. Condition number of the moment matrix G versus 

different 𝛼𝑐 of Gaussian basis function. 

 
 (a) 

 
 (b) 
 

Fig. 4. Numerical dispersion of the RPIM method using 

the multiquadric basis function: (a) NLE and (b) NPE of 

the RPIM method versus the angle of propagation. 

q=0.01. C is changed from 0.3 to 10. N=4 and 𝜎=0.001 

S/m.  
 

From Fig. 5, we can see that q has little effect on the 

NLEs and NPEs of the algorithm. Therefore, numerical 

dispersion errors of the RPIM method with the 

multiquadric basis function are mainly determined by C. 
 

 
 

Fig. 5. Numerical dispersion of the RPIM method using 

the multiquadric basis function of the RPIM method versus 

the angle of propagation with q=0.01, 0.01 and 0.001, 

respectively. In all cases, C=1, N=4, and 𝜎=0.001 S/m. 
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Figure 6 gives the condition numbers of the moment 

matrix G versus different C. Comparing Fig. 6 with Fig. 

3, we can clearly see that the condition numbers of G 

based on multiquadric function are far greater than that 

of G with Gaussian function; in other words, when the 

RPIM uses the multiquadric function as basis function, 

its coefficient matrix is more prone to be system 

singularity or numerical instability than that with 

Gaussian basis function.  
 

 
 

Fig. 6. Condition number of the moment matrix G versus 

different C of multiquadric basis function. 
 

Hence, based on the above analyses, in balancing 

between the modeling accuracy and the matrix condition 

number, it can be concluded that Gaussian basis function 

is a better choice for the RPIM approach for 

electromagnetic modeling. Therefore, in the following 

investigation, we use Gaussian basis function. 
 

B. Effects of numbers of the nodes within a support 

domain 

In this subsection, we investigate the effect of the 

number N of the nodes within a support domain. This is 

an important study as the results may provide a practical 

guideline on how to choose the number of nodes that  

can provide the best accuracy with least possible 

computational expenditure. The numbers of the node 

points are N=4, 12( c =0.001) and 16( c =0.003, for 

solution stability), respectively, with the change of the 

size of the support domain. The conductivity of the 

medium is 𝜎=0.1 S/m. 

Figure 7 shows the numerical dispersions. As seen, 

when N=4, the numerical dispersion errors approximately 

equal to those of the FDTD method; when N=12, the 

NLEs and the NPEs of the algorithm are also less than 

the errors of the FDTD approach; however, when N=16, 

although the NPEs of the meshless method are smaller 

than those of the FDTD method, almost all of the NLEs 

are far greater than them. The reason is that the condition 

number of G is significantly increased when N=16 (see 

Fig. 8). Although we can increase the value of c  to 

reduce the condition number of the moment matrix, only 

the NPEs of the algorithm will decrease but not 

necessarily NLE. Clearly, the NLE is more sensitive  

than the NPE to the singularity of the moment matrix.  

In weighting all the above factors, we conclude that  

only when the moment matrix becomes nonsingular, 

numerical dispersion errors of the RPIM method can be 

reduced by increasing the number of the nodes.  
 

 
 (a) 

 
 (b) 

 

Fig. 7. Numerical dispersion of the RPIM method with 

Gaussian basis function: (a) NLE and (b) NPE versus N. 

∆s=λ/20 and 𝜎=0.1 S/m. 
 

 

 

Fig. 8. Condition number of the moment matrix G versus 

different N. 
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C. Effects of media’s conductivity 

In this subsection, we investigate the effect of 

conductivity of the medium. 𝜎 =0.001 S/m, 0.1 S/m,  

and 1 S/m are used as the conductivity of the medium 

under consideration, respectively. For obtaining a stable 

solution, N is set to 4 with 
c =0.001.  

Figure 9 shows the NLEs and NPEs of the RPIM 

method. The NLEs and the NPEs of the method increase 

with the increase of 𝜎 . And the increase of the NPEs  

is much larger than that of the NLEs. Therefore, the 

electromagnetic wave propagation in lossy dielectric 

may lead to greater numerical dispersion error than in 

free space. 
 

 
 (a)  

 
 (b) 
 

Fig. 9. Numerical dispersion of the RPIM method with 

Gaussian basis function: (a) NLE and (b) NPE versus 

conductivity. N=4, ∆s=λ/20, and 𝛼𝑐 = 0.001. 
 

IV. CONCLUSION 
The general relation for numerical dispersion of the 

RPIM method is derived and analyzed for both lossless 

and lossy media in this paper. It was shown that only 

when the moment matrix is nonsingular, the numerical 

dispersion error of the RPIM can be less than that of the 

FDTD method. Solution stability and accuracy of the 

RPIM method are also influenced by the types of the 

basis functions and the number of nodes. The moment 

matrix of the RPIM with multiquadric basis function is 

more prone to be ill-conditioned than Gaussian function. 

Moreover, the NLE of the meshless method is more 

sensitive than the NPE to the singularity of the moment 

matrix; therefore, the balances between the solution 

stability (as a result of the ill-condition) and solution 

accuracy should be considered when choosing the 

modeling parameters. Another finding is that increase of 

medium conductivity leads to increase of numerical 

dispersion error. 

Finally, it is noted that the FDTD method can be 

considered as a special case of the meshless methods 

with low-order roof-top functions as the basis functions 

[14], [18], [19], [20]. As a result, the meshless methods 

are expected to have smaller numerical errors in general 

but not always due to the conditions and complexity of 

the moment matrix. This is shown in this paper.  
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