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Abstract ─ We propose an efficient full-wave simulation 

method for microstrip circuits with reciprocal multilevel 

matrix compression method (rMLMCM). The mixed 

potential integral equation (MPIE) with the layered 

media Green’s function is applied to the exterior layers 

of the packed interconnects. With quadtree structure, the 

dense impedance matrix is split up into the “near”  

and “far” terms according to the admission condition. 

The “near” term block matrices are full-rank, they are 

evaluated by the method of moments (MoM) directly. 

While the “far” term block matrices are low-rank, they 

are sparse filled and compressed by the rMLMCM.  

The rMLMCM low-rank approximation precisions of 

the block impedance matrices with respect to the 

decomposition thresholds are tested in detail. The current 

densities on the large-scale interconnects at high 

frequency are extracted much more effectively with the 

rMLMCM over the standard rank based methods. 

Numerical results demonstrate the validity of the 

proposed method. 
 

Index Terms ─ Integral equation, matrix compression, 

microstrip circuits. 
 

I. INTRODUCTION 
The full wave electromagnetic (EM) simulations of 

microstrip interconnects are becoming more and more 

important in electronic packing with the continuing 
increase of the operating frequency and decrease of the 

sizes of modern high-speed integrated circuits. The full 

wave simulations of the high high-density interconnects 

on printed circuit boards (PCBs) attracted many 

researches [1]-[3]. 

The method of moments (MoM) [4] with the layered 

media Green’s functions [5] has been a preferred method 

for the problem of interconnects in the exterior layers of 

PCBs. However, the MoM solver leads to the generation 

of a linear matrix equation Zx V , where Z  is a dense 

matrix. The solution of which requires O(N3) operations 

and O(N2) memory storage when to solve it directly, 

where N refers to the number of unknowns. The size of 

the MoM matrix increases so rapidly with the increase of 

the number of unknowns that the computation will be 

intractable for the computational capacity. 

Therefore a suitable fast method is required to 

overcome the difficulties. Recently, the kernel independent 

methods such as IES3 [6], adaptive cross approximation 

(ACA) [7], [8], multilevel matrix decomposition algorithm 

(MLMDA) [9], [10], H-matrix [11], and UV method 

[12]-[14], are widely researched because they are purely 

algebraic, kernel function independent and easy to be 

applied to accelerate the existing MoM codes. The rank-

based methods take advantage of the rank-deficient 

nature of the coupling matrix blocks representing well-

separated interactions. The interaction matrix m nZ  

between two well separated groups can be approximated 

by the multiplication of matrices m rU  and r nV . r is  

the truncation rank of the interaction matrix, which is 

evaluated by means of predetermined threshold. 

For the standard rank based methods [6]-[14], the 

low rank decomposition will be repeatedly implemented 

on each pair of far coupling groups, which leads to  

time and memory consuming process. In [15], a new 

multilevel matrix compression method (MLMCM) is 

proposed, where only one receiving matrix U and 

radiation matrix V are defined respectively, and the 

relative smaller dimension translators are defined 

between two coupling groups, when coupling with a 

cluster of its far interaction groups. As a result, the 

memory requirements and solution time can be saved 

significantly over the standard methods [6]-[14]. In [16], 

the radiation matrix is defined as the transpose of the 

receiving matrix, denoted as reciprocal MLMCM 

(rMLMCM), to further reduce the low rank approximation 

time and memory. Then it is employed to compress the 

near region of the standard multilevel fast multipole 

algorithm (MLFMA) [18], [19] for the electric field 
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integral equation (EFIE) when simulating the high-

fidelity multiscale problems. 

The contributions of the proposed work are: first, 

with the rMLMCM, we need to compute the low rank 

decomposition only once for each groups over the 

standard low rank method [6]-[14]; second, the 

rMLMCM proposed for the modeling of perfect electric 

conductor previously [16], is explored to accelerate the 

mixed potential integral equation (MPIE) with layered 

media Green’s function. The rMLMCM low rank 

approximation precisions of the impedance matrices 

produced by two far coupling groups at different 

frequencies are first tested and validated in detail. Then 

the current densities on the large-scale interconnects are 

extracted with the standard rank based method (e.g., 

ACA) and the proposed rMLMCM, respectively, to 

show its advantages. 

The remainder of the paper is organized as follows. 

The proposed algorithm for the simulation of the densely 

packed interconnects is described in Section II; 

numerical results in Section III demonstrate the validity 

of the proposed method. Finally, a brief conclusion is 

given in Section IV. 
 

II. THEORY 
Since the layered media Green’s function is used, 

only the metallic surface of the microstrip circuits has to 

be meshed as the number of unknowns [5]. The surface 

of the interconnects are firstly discretized into triangular 

elements. The induced current on the metallic interconnects 

can be solved by the MPIE: 

 0 2

0

1
ˆ ˆ[ ( ) ( )] ( )incj u z z

k
     A r Φ r E r , (1) 

where 0u  is the magnetic permeability,   is the 

angular frequency. The vector and scalar potentials can 

be expressed as: 

 ( ) ( , ) ( )A

S
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 ( ) ( , ) ( )q

S
G ds     Φ r r r J r , (3) 

A
G is the magnetic vector potential dyadic Green’s 

function due to an electric current source and qG  is the 

Green’s function of the scalar electric potential due to an 

electric charge. Then the current is expanded with Rao-

Wilton-Glisson (RWG) basis functions [17]. The final 

linear matrix equation can be written as: 

 =Zx V , (4) 

where the elements of the impedance matrix Z and 

vector V are given by: 
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It is known that the MoM matrix contains many  

low-rank sub-blocks which represent the interactions 

between two well-separated groups [6]-[16]. With this in 

mind, the rMLMCM starts by grouping the basis 

functions by the quadtree structure [13], [18], [19]. The 

grouping of basis functions splits the impedance matrix 

into a collection of submatrix blocks. In general, the 

submatrix is full-rank when the observation groups are 

in the near field of the source group, while the submatrix 

between them is low-rank when the observation groups 

are in the far field, the near and far region are defined 

according to the admission condition following. The 

rMLMCM is implemented in the case of low-rank 

submatrix. When accelerating the far part evaluation by 

the rMLMCM, the matrix-vector product ZI  can be 

written as: 

    N F ZI Z I Z I , (7) 

where ZN is the near interaction part and ZF is the far 

interaction part of Z, respectively. 

The quadtree structure of a densely packed 

interconnect with 31% interconnect fractional area is 

shown in Fig. 1. The admissibility condition is a criterion 

for judging whether a submatrix allows for a low rank 

approximation. A standard admissibility condition [7] is 

given as: 

 Min{ ( ), ( )} ( , )diam i diam j dist i j , (8) 

where diam and dist denote the group size and distance 

of the center of the two interaction groups respectively, 

and   is a parameter to control the region of the far 

coupling groups. In this paper,   is set to be 1. If groups 

i and j satisfy the admissibility condition, with the 

proposed MLMCM, the interaction matrix m nZ  can be 

expressed as: 

 , ,[ ] [ ] [ ] [ ]i j m n i m r i j r r j r n   Z U D V , (9) 

where m, n is the number of source and testing basis 

functions in groups i and j respectively; r is the number 

of ε-rank with MGS and min( , )r m n . 

 

 

 

Fig. 1. The quadtree structure of a densely packed 

interconnect with 31% interconnect fractional area. 
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j 
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To construct the receiving matrix [ ]iU  for group i, 

as shown in Fig. 1, sampling fill the collection of columns 

of ,1 ,2 ,3[ , , ]i i iZ Z Z  produced by group i against its far 

region groups with ACA, then a modified Gram-Schmidt 

(MGS) algorithm is used to the columns to get the 

orthogonal vectors, as the receiving matrix: 

 ,1 ,2 ,3[ ] MGS[ , , ]i i i iU Z Z Z . (10) 

For the radiation matrix [ ]jV , it can be constructed 

repeatedly as in [15] from the collection of the columns
T

1, 2, 3,[ , , ]i i iZ Z Z . While in this work, we obtained from 

a more elegant way, it is defined as the transpose of the 

receiving matrix [16], [20], [21]: 

 T[ ] [ ]j jV U . (11) 

Unlike (9), the receiving matrix now is now defined as: 

 
T T T

,1 ,2 ,3 1, 2, 3,[ ] MGS[ , , , , ]i i i i i i iU Z Z Z Z Z Z . (12) 

For the the planar microstrip packaged interconnects in 

this work T

, ,i j j iZ Z . As a result, (12) can be rewritten as: 

 T

,1 ,2 ,3[ ] [ ] MGS[ , , ]j j i i i V U Z Z Z . (13) 

Finally, the translator ,[ ]i jD  can be defined as: 

† † † †

, , ,[ ] [ ] [ ][ ][ ][ ] [ ] [ ][ ]i j i i i j j j i i j j D U U D V V U Z V , (14) 

where 
†[ ] denotes the conjugate transpose; the ACA [7], 

[8] is used to compress ,[ ]i jZ  this work. 

Compared with the standard rank-based methods 

[6]-[14], for each group, we only construct one radiation 

matrix, and the truncated rank for the row and column 

spaces. The translator ,[ ]i jD  with reduced dimension 

spans, up to a prescribed accuracy, both the row and 

column spaces of the original interaction matrix ,[ ]i jZ . 

Compared with the MLMCM employed to simulate the 

scattering problems in free space [15], only one of the 

receiving and radiation matrices are stored, lead to about 

1/3 time and memory consumption saving for the low 

rank decomposition. Furthermore, the rMLMCM is error 

controllable with the ε-rank  and the threshold in ACA 

for multiscale problems [16], which guarantee the accuracy 

for the densely packed interconnects simulations. 
 

III. NUMERICAL RESULTS 
In this section, we show the results of the rMLMCM 

for the simulation of the densely packed interconnects. 

The truncation thresholds for the MGS and ACA 

decomposition are 10-4 if not specified, and the double 

floating point precision is used in the codes to guarantee 

the accuracy of the simulated results. All the simulations 

are performed on a personal computer with 2.8 GHz 

CPU and 8.0 GB RAM.  

First, we test the rMLMCM low rank approximation 

error with respect to the threshold of the MGS and ACA. 

Without loss of generality, a square 20 mm  20 mm  

microstrip patch, with thickness and dielectric constant 

of the substrates 1mm and 4, respectively, is tested. The 

simulated frequencies are 30, 15, 7.5, and 3.75 GHz, 

respectively, and the corresponding selected source/ 

testing group sizes are 0.5, 0.25, 0.125, and 0.0625  . 

There are 343 and 451 RWG basis functions in the 

selected source/testing groups. As shown in Fig. 2, we 

decrease the thresholds in the rMLMCM from 1e-3  

to 1e-6, the low rank approximation error (defined as

MoM MoM2 2
Z UDV Z , where   denotes the 2-norm) 

is decreasing with from 1e-2 to 1e-5, the order of  

the errors are decreasing in the same speed. This 

demonstrates the proposed rMLMCM is error 

controllable for the MPIE equation with layered media 

Green’s function. It should be noted here, we use the 

predetermined threshold to compute U, D, and V, as a 

result, the error of the final low rank approximation will 

be enlarged compared with the predetermined threshold. 
 

 
 

Fig. 2. Validation: the rMLMCM low rank approximation 

precision for the impedance matrix produced by two 

selected groups from a square miscrostrip patch with 

respect to the decomposition thresholds. 

 

Next, a series of 4, 8, 16 and 32 meander lines traces 

with 31% interconnect fractional area as shown in Fig. 1 

are simulated. The traces have a width of 1 mm, the 

thickness of the substrate is 0.25 mm, dielectric constant 

is 4 and the simulation frequency is 20 GHz. The numbers 

of unknowns are 1 628, 6 328, 24 943, and 99 040 

respectively. The dimension of the simulated interconnects 

are 3.1  3.3, 6.3  6.5, 12.7  12.9 and 25.5  25.7 

wavelengths. The minimum group size of the quadtree 

structure is 0.4 wavelengths, and the corresponding 

levels of the MLMCM chosen for the different electrical 

sizes are 2, 3, 4 and 5 respectively. The interconnects are 

excited by a delta gap voltage source on the lower end of 

the third trace. The amplitude and phase of the current 

densities along the excited trace of the 8 meander lines 

traces simulated by the MoM, three-level ACA and 

rMLMCM are plotted in Figs. 3 (a) and (b) respectively. 

Excellent agreements can be found. The relative error of  
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the ACA and the rMLMCM in the current densities 

versus the MoM is defined as Fast method MoM MoM2 2
J J J . 

The norm errors are 1.1% and 1.0%, respectively. The 

amplitude and phase of the current densities along the 

excited trace of the large scale interconnects with 32 

meander lines traces simulated by the five-level ACA 

and rMLMCM are plotted in Figs. 4 (a) and (b) respectively. 

Perfect agreements can also be found too. The relative 

error of the rMLMCM versus the ACA is 1.6%. 
 

 
 (a) 

 
 (b) 
 

Fig. 3. The current densities along the excited trace at 20 

GHz of the 8 meander lines traces simulated by the  

MoM, three-level ACA and rMLMCM respectively: (a) 

amplitude and (b) phase. 
 

 
 (a) 

 
 (b) 
 

Fig. 4. The current densities along the excited trace at 20 

GHz of the 32 meander lines traces simulated by five-

level ACA and rMLMCM respectively: (a) amplitude 

and (b) phase. 

Table 1 lists the memory requirements and CPU 

time when simulating the series of 4, 8, 16 and 32 

meander lines traces by the ACA and the rMLMCM. The 

memory requirements of the near and far part are 

presented in column 3, significant reduction can be 

found in the far part by using the rMLMCM compared 

with the ACA. Therefore, total memory requirements are 

decreased significantly of the proposed rMLMCM. The 

set-up time to construct the low rank approximation 

matrices U, D, and V in column 4 of the rMLMCM is 

longer than the ACA, because the constructions of the 

radiation and translator matrices are based on the ACA 

low-rank decomposition, which requires additional 

operations of the matrices. The process can easily be 

accelerated by parallelization (e.g., OMP [22] or MPI 

[23]), as the low-ranked decompositions are evaluated 

independently with respect to each level and each group. 

Furthermore, this can be compensated by the more 

efficient matrix-vector product operation. It can be seen 

the total simulation time from the start to the end of the 

simulation (containing the near field evaluation, far field 

low rank approximation, and iterative solution) in 

column 5 will be reduced significantly, especially for 

larger number of traces. 

Finally, we simulate the S parameters of the 

miniaturized band-pass microstrip filter, the dimension 

parameters can be found in Fig. 5, the permittivity and 

thickness of the substrate is 10.2 and 0.635 mm. The full 

MoM, two-level ACA, and two-level rMLMCM are 

employed to simulate the filter, respectively. The 

simulated frequency band is from 2 to 12 GHz, with 

discrete frequency points step of 0.25 GHz. Figure 6 

plots the simulated S parameters with the two-level 

ACA, two-level rMLMCM, and measured data in [24]. 

Good agreement can be found between them. Table 2 list 

the computation time and memory consumption of the 

MoM, ACA, and rMLMCM at 6.75 GHz, it can be found 

with the proposed rMLMCM, both time and memory 

reduction can be obtained. When for the total 41 

frequency points, significant total simulation time will 

be obtained. In this paper, we did not list the results of 

the MLFMA, because the MLFMA is Green’s function 

dependent, the approximation of the layered Green’s 

function will be more complex and less efficient when 

compared with the simulation of the problems in free 

space [25].  
 

 
4.826mm 

0.254mm 

1.016mm 
1.016mm 2.8956mm 

0.762mm 

0.8382mm 

0.5842mm 

Port1 

Port2 

 
 

Fig. 5. Parameters of the band-pass microstrip filter. 
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     (a) 

 
   (b) 

 

Fig. 6. Simulated results of the microstrip filter with two-level ACA and rMLMCM: (a) S11 and (b) S21. 

 

Table 1: The memory and CPU time for the simulation of a series of 4, 8, 16 and 32 meander lines traces with ACA 

and rMLMCM 

  
Memory (MB) 

Near/Far Part 

Set-up Time 

[mm:ss] 

Total Time 

[hh:mm:ss] 

4 traces 
ACA 4.9/17.7 00:04 00:00:44 

rMLMCM 4.9/4.5 00:04 00:00:27 

8 traces 
ACA 19.8/129.4 00:31 00:06:15 

rMLMCM 19.8/23.5 00:32 00:03:11 

16 traces 
ACA 80.1/783.3 03:02 00:26:24 

rMLMCM 80.1/129.5 04:19 00:16:58 

32 traces 
ACA 320.9/4816.2 18:37 02:19:49 

rMLMCM 320.9/694.8 36:13 01:18:36 

 

Table 2: The memory and CPU time for the simulation of the microstrip filter at 6.75 GHz with MoM, ACA, and 

rMLMCM 

Methods 
Frequency 

(GHz) 

Far Memory 

(MB) 

Solution Time 

[s] 

Total Time 

[s] 

MoM 6.75 53 199 347 

ACA 6.75 8.3 117 176 

rMLMCM 6.75 1.7 81 120 

IV. CONCLUSION 
In this paper, the rMLMCM is employed for the 

simulation of the large-scale microstrip circuits. The 

rMLMCM low-rank approximation precision is discussed 

in detail. When compared with the standard rank based 

method (e.g., ACA), the proposed rMLMCM is much 

more efficient for analyzing the large scale interconnects. 

Up to 32 meander lines traces with 31% interconnect 

fractional area are analyzed with moderate memory 

requirements and CPU time on a personal computer.  
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