
Modeling of Anisotropic Magnetic Objects by Volume Integral Equation 

Methods 
 

 

Lin E. Sun 1 and Weng C. Chew 2 
 

1 Department of Electrical and Computer Engineering 
Youngstown State University, Youngstown, OH 44512, USA 

lsun@ysu.edu 
 

2 Department of Electrical and Computer Engineering 
University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA 

w-chew@uiuc.edu 
 
 

Abstract ─ This paper presents the modeling of 
electromagnetic scattering from objects with magnetic 
anisotropy. We study the solutions of both the volume 
integral equation (VIE) method and augmented volume 
integral equation (A-VIE) method. For the VIE method, 
it is built from the 3D vector wave equation for electric 
field only. For the A-VIE method, it is built from 3D 
vector wave equation for both electric and magnetic 
fields. Numerical results show that the A-VIE method 
has better accuracy and convergence for magnetic 
objects compared to the VIE method. 
 
Index Terms ─ Anisotropic magnetics, augmented volume 
integral equation (A-VIE), method of moments, volume 
integral equation (VIE). 
 

I. INTRODUCTION 
The solution of electromagnetic wave scattering and 

propagation problems from penetrable objects has always 
been an active research area. In early years, approximate 
methods such as the geometrical theory of diffraction 
were used [1]. The extended boundary condition method 
was also investigated as a possible approach to solve 
such problems [2]. More recently, numerical methods 
have been adopted to tackle it such as finite difference 
method [3], finite element method [4], generalized 
multipole method [5] and method of moments [6-7]. 
Among them, method of moments equipped with modern 
computing power and fast algorithms provides an 
accurate and efficient numerical method for solving the 
scattering problems. There are two main categories of 
moment methods for penetrable objects. One is the 
surface integral equation based method, in which the 
unknown parameters are defined on the surfaces of the 
objects [8-9] and it is efficient in solving problems with 
piecewise homogenous properties. The other is the volume 
integral equation based method [10-12], which can solve 

the scattering problems from highly inhomogeneous 
scatterers. 

Early research in analyzing wave scattering and 
propagation from penetrable objects mainly focuses on 
objects with isotropic material properties. With the 
revolution and development of new materials and 
technologies, modeling of 3D objects with generalized 
anisotropy has become of great interest in research. The 
applications of anisotropic materials cover a wide range 
from electromagnetic and optical design to geophysical 
exploration. In oil and gas exploration, with the 
development of highly deviated and horizontal drilling 
technology, formation anisotropy has become an important 
concern. Without consideration of the anisotropy effect 
in the modeling and inverse algorithms, it is difficult to 
interpret the measurements from modern logging tools. 
On the other hand, the incorporation of metamaterials 
and artificial materials in the electromagnetic and optical 
device design, induces a great need for the accurate and 
efficient electromagnetic solvers to model generalized 
anisotropic materials. In recent years, various volume 
integral equation methods have been proposed to solve 
scattering problems for anisotropic materials [13-18]. 
Analytical solutions for simple structures such as 
anisotropic spheres or spherical shells have been investigated 
in [20-21]. Most of these methods mainly focus on 
modeling of uniaxially anisotropic objects and the 
investigations mainly focus on dielectrics. Investigations 
for generalized anisotropic materials, especially anisotropic 
magnetics are still limited. 

In this paper, the VIE method and A-VIE method 
with curl-conforming bases are applied to model the 
scattered fields of magnetic objects. The contributions of 
this work are twofold: i) convergence studies of the VIE 
method and A-VIE method for magnetic objects are 
presented; ii) it is demonstrated that the A-VIE method 
has better convergence and accuracy for magnetic objects. 
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II. VIE AND A-VIE METHODS 
Consider a 3D inhomogeneous and anisotropic object 

in free space with relative permittivity and permeability 
𝜖𝑟̅(r) and 𝜇̅𝑟(r). The volume of the anisotropic object is 
denoted as V and it is enclosed by the surface S. We 
assume that the object is excited by an incident plane 
wave characterized by (Einc(r), Hinc(r)). 

To solve the scattered field of the anisotropic object, 
a VIE method built from the 3D vector wave equation 
has been introduced in [16]. It is derived from the 3D 
vector wave equation for the electric field given by: 
 1 2
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Here, J(r) is the current that produces the incident field, 
E(r) is the total electric field, 𝜖𝑟̅(r) and 𝜇̅𝑟(r) are the 
relative permittivity and permeability tensors, 𝜖0 and 𝜇0 
are the permittivity and permeability of free space. 

From the equation above and the definition for 
dyadic Green’s function, we can get the volume integral 
equation: 
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Here, V+ represents the volume that is slightly larger than 
the volume of the object V, G( , )r r  is the dyadic Green’s 
function for the unbounded and homogeneous media. It 
is a 3 by 3 matrix given by: 
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where ( , )r rg  is the scalar Green’s function, k0 is the 
wave number in free space. 

By substituting the definitions of the dyadic Green’s 
function into (2), we can get two sets of volume integral 
equations [16]. Then by discretizing the volume object 
using a sum of tetrahedra and expanding the total electric 
field E(r) using the edge basis on each edge of the 
tetrahedron, the volume integral equation can be 
converted into the discrete form. Using the Galerkin’s 
method, we can convert the discretized volume integral 
equation to a linear matrix equation. By solving this 
equation using the iterative method, the total electric 
field in the whole solution domain can be obtained. 

The VIE method presented in [16] serves as an 
efficient method to model the scattering problem of 
generalized anisotropic materials. However, further study 
shows that due to the curl operator acting on the electric 
field in (2), the permeability term is not represented as  

well as the permittivity term. In order to overcome this, 
we use the similar idea for the augmented EFIE (A-EFIE) 
method [19] and apply it to the VIE method. In A-VIE, 
the magnetic field unknowns are added to the original 
VIE method that is based on the electric field. Hence, the 
permeability term are better represented compared to the 
original VIE method. Next, the A-VIE formulations are 
introduced [17]. First, by substituting Faraday’s law into 
(2), we get: 
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And using the duality principle, we get a dual equation 
for (5): 
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We see that in (5) and (6), the curl operator acting on the 
electric field is removed and replaced by the magnetic 
field in the solution domain. Here, 𝜂0 is used as a 
normalization factor for the magnetic field, it is the 
intrinsic impedance of free space. 

To solve the A-VIE in (5) and (6) by the moment 
method, we need to convert it into a set of linear algebraic 
equations. First we expand the electric field E(r) and 
magnetic field H(r) into discretized forms using the edge 
bases: 
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Here, ( )N r
i

 is the basis function on the i-th edge, I
i
 and 

J
i
 are the expansion coefficients for the electric and 

magnetic field respectively. N
e
 is the total number of the 

edge bases. V is the support of the object. The summation 
in the above includes an assembly process as in the FEM. 
That is using the fact that tangential E and H are continuous 
from element to element, I

i
and J

i
from contiguous elements 

are the same. 
Next by inserting (7) and (8) into (5) and (6), testing 

them with ( )N r
j and integrating over the tetrahedral element 

that N
j  is defined on, we can get the matrix representation 

of the augmented volume integral equation: 

 · ,
inc

EE EH

inc

HE HH

   
    
   

 
 
  

Z Z I

JZ Z

e

h
 (9) 

1257 ACES JOURNAL, Vol. 30, No. 12, December 2015



where the matrix element in each block is given by: 
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and the j-th elements of the incident vectors einc and hinc 
are written as: 
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III. NUMERICAL EXAMPLES 

The first example is used to show the convergence 
performance of the original VIE method for the 
permittivity term. We calculate the RCS of a sphere with 
radius of 0.2λ and material properties of 𝜖𝑟 = 2.2, 𝜇𝑟 = 1.0 
using different mesh densities. The sphere is placed in 
free space and illuminated by a θ-polarized plane wave. 
The observation points are at θ = [0,̊ 180]̊ and ϕ =0̊. The 
iterative method GMRES (generalized minimum residue 
method) is applied to solve the final matrix equation. 
Figure 1 (a) shows the RCS plots with different mesh 
densities compared to the Mie analytical result. It is seen 
that the RCS converges to the analytical result as the 
mesh density increases. Figure 1 (b) shows the 
convergence of the RCS error. As the mesh density 
increases, the error of RCS decreases fast. Hence, the 
original VIE method has good convergence performance 
for the 𝜖𝑟 term. 

The second example is to show the convergence 
performance of the original VIE method for the 
permeability term. We calculate the RCS for a sphere 
with material properties of 𝜇𝑟 = 2.2 and 𝜖𝑟 = 1.0. The 
radius of the sphere is 0.15λ. It is excited by a  
ϕ-polarized plane wave in free space. We calculate the 
RCS results using the same mesh densities as those in the 
first case. Figure 2 shows the RCS and convergence 
results. We can see that the RCS result converges to the 
analytical value slowly as the mesh density increases 

compared to the first example. Next, we show the 
convergence performance of the A-VIE method for the 
permeability term. We calculate the RCS results by the 
A-VIE method using different meshes for the same 
sphere as in the second example. It is shown in Fig. 3 that 
the RCS results by the A-VIE method have better accuracy 
and convergence performance than those by the VIE 
method. 
 

 
 (a) RCS 

 
 (b) Error of RCS 
 
Fig. 1. Convergence of RCS for different mesh densities 
for the sphere of 𝜖𝑟= 2.2, 𝜇𝑟= 1.0 and r = 0.2λ by original 
VIE method. 
 

 
 (a) RCS 
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 (b) Error of RCS 
 
Fig. 2. Convergence of RCS for different mesh densities 
for the sphere of  𝜇𝑟= 2.2, 𝜖𝑟= 1.0 and r = 0.15λ by 
original VIE method. 
 

 
 (a) RCS 

 
 (b) Error of RCS 
 
Fig. 3. Convergence of RCS for different mesh densities 
for the sphere of 𝜇𝑟= 2.2, 𝜖𝑟= 1.0 and r = 0.15λ by the  
A-VIE method. 
 

The third example is the scattered problem of an 
anisotropic spherical shell using the A-VIE method. The 
electric dimension of the inner and outer spherical 
surfaces are 𝑘0𝑎1 = 0.6π and 𝑘0𝑎2 = 1.2π, where 𝑘0 is 

the wave number in the free space, 𝑎1 is the inner radius 
of the spherical shell and 𝑎2 is the outer radius of the 
spherical shell. It is placed in the free space and the 
incident E-field is 𝑥̂ polarized propagating in +𝑧̂ 
direction. In order to test the accuracy of the 𝜇𝑟 term for 
the general anisotropic case, we consider the permeability 
of the sphere as a 3 by 3 matrix: 
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𝜖𝑟 is an identity. The mesh includes 3,354 tetrahedra and 
4,824 edge elements. Figure 4 shows the RCS result of 
the spherical shell in the H-plane. We can see that it 
agrees well with the result of the duality case shown in 
Ref. [21] by the analytical method. Figure 5 shows the 
error convergence of GMRES method. We see that the 
matrix solution takes 24 steps to converge to 10−3 by 
GMRES method. 
 

 
 
Fig. 4. RCS of the A-VIE method for the gyrotropic 
spherical shell with electrical radii of 1.2π and 0.6π 
𝜇𝑟,𝑥𝑥 = 𝜇𝑟,𝑦𝑦 = 2.5, 𝜇𝑟,𝑦𝑥 = −𝜇𝑟,𝑥𝑦 = i, 𝜇𝑟,𝑧𝑧 = 1.5,  𝜖𝑟 = I 
in H-plane and RCS of its duality case in E-plane in Ref. 
[21]. 
 

 
 
Fig. 5. Residual error converges to 10−3 in 24 iterative 
steps for GMRES method. 
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Finally, we show an example for a coated magnetic 
sphere using the A-VIE method. The dimensions of the 
inner and outer spheres are 0.9 m and 1 m as in Fig. 6. It 
is placed in the free space and the incident wave is  
ϕ-polarized. The frequency of incident plane wave is 
0.02 GHz. We consider the permeability of the inner and 
outer sphere are 3.0 and 10.0 respectively. The mesh 
includes 2,283 tetrahedrons and 3,798 edges. Figure 7 
shows the RCS result compared to Mie series result. It 
can be seen the result from the A-VIE method agrees 
well with that of Mie series. 
 

 
 
Fig. 6. Coated sphere. 
 

 
 
Fig. 7. RCS of the A-VIE method for the coated 
magnetic sphere with inner and outer radii of 𝑟1 = 0.9 m 
and 𝑟2 = 1.0 m, 𝜇𝑟1 = 3.0 and 𝜇𝑟2 = 10. 
 

IV. CONCLUSION 
A convergence study for magnetic objects by the 

VIE and A-VIE methods is discussed. The VIE method 
originally proposed in [16] is based on vector wave 
equation for electric field, and the A-VIE method is 
based on vector wave equations for both electric and 
magnetic fields. Compared to the VIE method, the A-
VIE method has improved accuracy and convergence for 
the permeability term by removing the differential 
operations of the electric field in the original formulation. 
Numerical results show the accuracy of the RCS results 
for anisotropic magnetics illuminated by the plane waves. 
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