
Modeling Resonant Frequency of Rectangular Microstrip Antenna
Using CUDA-Based Artificial Neural Network Trained by Particle

Swarm Optimization Algorithm

Feng Chen and Yu-bo Tian

School of Electronics and Information
Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China

cfcfchenfeng@163.com, tianyubo@just.edu.cn

Abstract ─ Resonant frequency is a vital
parameter in designing Microstrip Antenna
(MSA). Artificial Neural Network (ANN) based
on Particle Swarm Optimization (PSO) algorithm
(PSO-ANN) has been used to model the resonant
frequency of rectangular MSA. To deal with the
problem of the long execution time when training
PSO-ANN, its parallel implementation in the
Graphic Processing Unit (GPU) environment is
proposed in this paper. The presented approach
uses the particle behavior parallelization of PSO to
accelerate ANN training, and is applied to
modeling the resonant frequency of rectangular
MSA under Compute Unified Device Architecture
(CUDA). Experimental results indicate that
compared with CPU-based sequential PSO-ANN,
more than 300 times of speedup ratio has achieved
in GPU-based parallel PSO-ANN with the same
optimization stability. Furthermore, the network
error can be significantly reduced with the very
limited runtime increment when substantially
enlarging the number of particles on GPU side.

Index Terms ─ Artificial Neural Network (ANN),
Compute Unified Device Architecture (CUDA),
Microstrip Antenna (MSA), Particle Swarm
Optimization (PSO), resonant frequency.

I. INTRODUCTION
Microstrip Antenna (MSA) is used in a broad

range of applications in communication systems,
and this is primarily due to its thin profile, small
size, light weight, and low manufacturing cost
[1,2]. As is known to all, MSA has narrow
frequency band and works effectively only in the

vicinity of its corresponding resonant frequency,
which is a vital parameter in designing MSA. So a
model to determine the resonant frequency is
helpful in antenna design. Many scholars have
proposed some traditional methods with different
accuracy and computing power to calculate the
resonant frequency of the most commonly used
rectangular MSA [3-13].

In the past several years, Artificial Neural
Network (ANN) model has been used in antenna
design, including modeling the resonant frequency
of rectangular MSA [14,15] due to its excellent
abilities of learning and generalization, little
memory requirement and fast real-time operation.
The related data of the antenna can be got by
measurement or simulation. After training these
data, the ANN related to the antenna design
problem can be achieved, and this quickly
provides solutions to the problem. Particle Swarm
Optimization (PSO) algorithm [16,17] has been
gradually applied to ANN training (PSO-ANN)
due to its simple concept, easy implementation,
and strong abilities of convergence and global
search. PSO-ANN has been used to model the
resonant frequency of rectangular MSA and
proved with better convergence precision and
stronger predictive ability than common BP-based
ANN (BP-ANN) [18-20]. However, PSO-ANN
needs long computing time, especially for large
scale problems, such as the problem of modeling
the resonant frequency of rectangular MSA.
Parallel optimization is an effective way to solve
this problem.

Besides ANN’s data parallelization and node
parallelization [21], PSO’s natural particle

1054-4887 © 2014 ACES

Submitted On: February 27, 2014
Accepted On: September 24, 2014

1025 ACES JOURNAL, Vol. 29, No. 12, DECEMBER 2014

behavior parallelization is in PSO-ANN. There are
many parallel ways to accelerate PSO algorithm.
Compared with computer cluster [22,23], multi-
core CPU [24] or other professional parallel
devices like FPGA [25,26], graphic processing
unit (GPU) [27,28] has the most significant
advantages in hardware cost. Since the NVIDIA
company introduced the Compute Unified Device
Architecture (CUDA) in 2007, CUDA has become
the most popular GPU programming architecture
due to its excellent programmability.

Ground on the existing research of GPU-based
PSO algorithm, we design the CUDA-based
parallel PSO-ANN scheme to fast model the
resonant frequency of rectangular MSA in this
paper. Experimental results show that when using
the same number of particles on GPU side, the
modeling runtime can be greatly reduced and more
than 300 times of speedup ratio has obtained,
while the modeling error is similar or same to the
CPU-based program. When using substantially
more number of particles on GPU side, the
modeling error can be significantly reduced and
better than the corresponding results in literatures.

The rest of this paper is organized as follows.
Section II briefly discusses the calculation formula
of the resonant frequency of rectangular MSA.
Section III slightly introduces the implementation
of PSO-ANN algorithm on CPU side. The CUDA-
based parallel implementation of PSO-ANN is
presented in Section IV. We use the GPU-based
parallel PSO-ANN to rapidly model the resonant
frequency of rectangular MSA, give the
performance results, and provide some
employment suggestions in Section V. Some
concluding remarks of this work are finally
reported in Section VI.

II. RESONANT FREQUENCY OF
RECTANGULAR MSA

The model of rectangular MSA is shown in
Fig. 1. Its length, width, dielectric substrate’s
thickness, and relative dielectric constant are W, L,
h and r� , respectively. The resonant frequency of
rectangular MSA can be calculated as formulas
(1)~(3) [1,2]:

1/22 2

2mn
e ee

c m nf
L W�

()� � � �
* +� �� � � �
* +� � � �, -

, (1)

where e� is the effective relative permittivity. c is
electromagnetic wave propagation velocity in
vacuum. m and n are integers. Le and We are
effective length and width. When calculating the
resonant frequency of rectangular MSA in main
mode TM10, formula (1) can be written as:

10 2 e e

cf
L �

� . (2)

The effective length can be defined as follows:
2eL L L� � ! , (3)

where L! is the boundary extension length, which
is connected with dielectric substrate’s thickness
h.

Obviously, the resonant frequency of
rectangular MSA depends on h, r� , m, n, W and L.

Fig. 1. Model of rectangular MSA.

III. PSO-BASED ANN
A. Standard PSO algorithm

There have been many versions of PSO
algorithm. The version introducing inertia weight
[16] is used and called “Standard PSO” in this
paper. The optimization problem dimension is D
and the number of particles is N. The positions of
each particle represent a potential solution to the
problem in the D-dimensional search space, and
the velocities of each particle represent its
movement. All particles have fitness values that
are evaluated by the fitness function to be
optimized. During each of the iteration, the
positions and velocities of every particle are
updated according to its Personal best positions
(Pbest) and the Global best positions (Gbest). The
velocities and positions updating in PSO can be
formulated as follows:
 Vid(t+1)=wVid(t)+c1r1(Pbestid(t)-Xid(t))

+c2r2(Gbestd(t)–Xid(t)), (4)
 Xid(t+1)=Xid(t)+Vid(t+1). (5)

L

W

Patch

Ground plane

Dielectric substrate h

Coaxial
feed

Feed
point

CHEN, TIAN: MODELING RESONANT FREQUENCY OF RECTANGULAR MICROSTRIP ANTENNA 1026

In equation (4) and equation (5), i=1,2,...,N and
d=1,2,...,D. The learning factors c1 and c2 are
nonnegative constants. r1 and r2 are random
numbers uniformly distributed in [0,1]. Vid(t) [-
Vmax,Vmax], where Vmax limits the maximum
velocity of each dimension of the particle.
Xid(t) [-Xmax,Xmax], where Xmax limits the
maximum position of each dimension of the
particle. Usually Vmax=kXmax, where 0 k 1. The
inertia weight w is used to balance the ability
between global exploration and local exploitation,
and can be either a constant or a variable in [0,1].

B. ANN trained by PSO algorithm
PSO algorithm can be used to train ANN.

ANN training includes optimization of ANN’s
structure and optimization of ANN’s weights and
thresholds (hereinafter referred to as weights).
This article only concerns the optimization of
ANN’s weights under the condition of the given
ANN’s structure. ANN’s weights must be encoded
before training. There are two encoding strategies,
namely vector encoding and matrix encoding.
Vector encoding is chosen in this paper. For
convenience, a feedforward ANN with 2 nodes in
the input layer, 3 nodes in the hidden layer, and 1
nodes in the output layer (13-dimensional), is
shown in Fig. 2.

Xi1

Xi2

Xi3

Xi4

Xi5
Xi6

Xi7 Xi8

Xi9

Xi10

Xi11

Xi12

Xi13-1

-1

Fig. 2. Feedforward ANN model with 2-3-1
structure.

In PSO-ANN, each particle is encoded to a
vector, representing a solution of ANN’s weights
[18]:

Pi =[Xi1 Xi2 Xi3 Xi11 Xi12 Xi13]. (6)

Each particle’s fitness value is set as its
corresponding Mean Squared Error (MSE) of
ANN’s output of training samples. All the
particles revise their values by PSO algorithm. The
final best solution Gbest is namely the well-trained
ANN’s weights. It is easy to see that PSO-ANN is
essentially the special PSO algorithm whose
fitness value is ANN’s output error.

The steps of PSO-ANN algorithm used in this
paper are as follows:
(a) Load training samples and testing samples.

Data preprocesses. Set the maximum iteration
number Tmax.

(b) Initialize all particles’ positions Xid(t) and
velocities Vid(t) at random.

(c) Initialize all personal best positions Pbestid(t)
and the global best positions Gbestd(t).

(d) Update all particles’ velocities Vid(t) and
positions Xid(t) according to equation (4) and
equation (5).

(e) Evaluate all particles’ fitness values F(Xi).
(f) Update all personal best positions Pbestid(t)

and their corresponding fitness values
F(Pbesti). Update the global best positions
Gbestd(t) and their corresponding fitness value
F(Gbest).

(g) If the iteration number reaches Tmax, go to step
(h), else go to step (d).

(h) Evaluate total output error of training samples
and testing samples.

IV. CUDA IMPLEMENTATION OF
PARALLEL PSO-ANN

A. CUDA programming model
CUDA adopts the CPU+GPU heterogeneous

cooperative computing platform. As the host, CPU
takes responsibility for logic processing and serial
computing. As the device or coprocessor, GPU
takes responsibility for compute-intensive, highly
parallel computing. CUDA uses similar C
language as its basic programming language to
achieve good programmability and portability. A
CUDA kernel is a parallel function, which follows
the SIMT (Single Instruction, Multiple Threads)
execution model on GPU. CUDA program process
typically includes the following 6 steps:
(1) Allocate and initialize CPU memory.
(2) Allocate GPU memory.
(3) Transfer data from CPU side to GPU side.
(4) Perform parallel computing on GPU side.

1027 ACES JOURNAL, Vol. 29, No. 12, DECEMBER 2014

(5) Transfer results from GPU side back to CPU
side.

(6) Process data obtained in step (5) on CPU side.

B. Design scheme and specific realization
Currently, the parallel implementation of

ANN training mainly uses two parallelization
strategies, namely data parallelization and node
parallelization. However, for a common ANN, the
number of neuron nodes or training samples is
often only from ten to several ten. Therefore, these
two strategies are suitable for parallel ways like
computer cluster [21,29], but somewhat unsuitable
for GPU because they have not enough parallel
degree. Besides ANN’s data parallelization and
node parallelization, PSO’s natural particle
behavior parallelization is in PSO-ANN. For some
complex problems, the number of particles can be
from hundred to several hundred or more.
Therefore, particle behavior parallelization is quite
suitable for GPU architecture, which needs as
many threads as possible to make full use of its
powerful parallel computing ability.

In 2009, Veronese and Krohling firstly used
CUDA to accelerate the PSO algorithm [27],

which raised the research upsurge in GPU-based
parallel PSO algorithm [28]. Particle behavior
parallelization in PSO-ANN can be reflected in
three aspects: (a), (b), and (c), as follows. In
addition, CUDA-based PSO-ANN can use
CUDA’s unique parallelism, which can be

reflected in aspect (d).
(a) The process of updating particles’ velocities

and positions is parallel.
(b) The process of evaluating particles’ fitness

values is parallel.
(c) The process of updating personal best

positions and their corresponding fitness
values is parallel.

(d) CUDA’s parallel reduction algorithm can
accelerate the process of finding the minimum
fitness value when updating the global best
positions.
According to the analyses above, the approach

of GPU-based parallel PSO-ANN algorithm is
designed in Fig. 3. The proposed approach
corresponds one particle to one thread, and deals
with a large number of GPU threads in parallel.
This greatly saves the computing time and
improves the computing accuracy.

Begin

Initialize all particles’ positions Xi and velocities Vi

Evaluate all personal best positions Pbesti and the global best positions Gbest

Update X1 and V1

Evaluate F(X1)

Update Pbest1

Update XN and VN

Evaluate F(XN)

Update PbestN

The best of all Pbest

Reach Tmax ?

(GPU thread-level parallelism)

Y

N

Update Gbest

Parallel reduction

Load training samples and testing samples. Set Tmax

Update ANN’s weights

Evaluate ANN’s output error

Put training samples and testing samples into the well-trained ANN

Output results

End

Fig. 3. CUDA-based parallel PSO-ANN algorithm flowchart.

CHEN, TIAN: MODELING RESONANT FREQUENCY OF RECTANGULAR MICROSTRIP ANTENNA 1028

The steps of GPU-based parallel PSO-ANN
algorithm are as follows:
(1) Load the training samples and testing samples

on CPU side. Data preprocesses.
(2) Call the malloc() function and cudaMalloc()

function on CPU side. Allocate variable space
on CPU side and GPU side.

(3) Initialize particles’ positions and velocities on
CPU side.

(4) Call the cudaMemcpy() function on CPU side,
and transfer the data of particles from CPU
side to GPU global memory. Call the
cudaMemcpyToSymbol() function on CPU
side, and transfer training samples from CPU
side to GPU constant memory.

(5) Call the kernel() function on CPU side.
Perform parallel computing tasks (ANN
training) on GPU side.

(6) Call the cudaMemcpy() function on CPU side,
and transfer the useful data (well-trained
ANN) from GPU side back to CPU side.

(7) Evaluate the output results on CPU side by
training samples, testing samples and well-
trained ANN.

(8) Call the free() function and cudaFree()
function on CPU side. Release variable space
on CPU side and GPU side.
The step (5) is used to accelerate ANN

training, and it is the core step of the whole
algorithm. The pseudo-code of step (5) is as
follows:
for (i=0; i<generationsNumber; i++)
{
<Update velocities and positions of each particle>
 // kernel 1
<Compute fitness of each particle> // kernel 2
<Update Pbest of each particle> // kernel 3
<Update Gbest of all particles> // kernel 4
}

V. MODELING RESONANT
FREQUENCY OF RECTANGULAR MSA

USING CUDA-BASED PARALLEL
ANN-PSO

In this section, we use CPU-based sequential
PSO-ANN and the designed GPU-based parallel
PSO-ANN, respectively, to model the resonant
frequency of rectangular MSA and test their
acceleration performance. The computing platform

used in our experiments is shown in Table 1. The
input sets of samples # $, , , rW L h � are the related
parameters of rectangular MSA. The output set of
samples (fME) is the corresponding measured
resonant frequency. The well-trained ANN can
establish the mapping between the related
parameters of the rectangular MSA and its
corresponding measured resonant frequency. The
training samples and testing samples used in this
paper are from previous works [12,30]. Column 1-
6 of Table 2 gives the total 33 sets of data, in
which 26 sets of data are used for ANN training
and the remaining 7 sets of data marked with
asterisks are used for ANN testing. Column 2-5 of
Table 2 shows the related parameters of
rectangular MSA. Column 6 (“Theoretical fME”) of

Table 2 shows the actual measured resonant
frequency of rectangular MSA in mode TM10
(“theoretical values”). Tables 3 and 4 give the sum
of the absolute error between experimental and
theoretical values of the resonant frequency from
traditional methods and CPU-based ANN models
in different literatures. The fEDBD, fDBD, fPTS, fPSO-BP

and fBiPSO in Table 4 represent, respectively, the
experimental resonant frequency calculated by
using the ANN model trained by EDBD (Extended
Delta-Bar-Delta), DBD (Delta-Bar-Delta), PTS
(Parallel Tabu Search), PSO-BP (PSO and BP
together), and BiPSO (Binary PSO). It’s worth
noting that the “theoretical values” mean the
actual measured resonant frequency (Column 6 of
Table 2), while the “experimental values” mean
the experimental resonant frequency from
traditional methods [3-13], CPU-based ANN
models [14-15,18-20], or our GPU-based parallel
PSO-ANN model.

Table 1: Computing platform
Name Type
CPU Intel Core i3-2100, 3.1 GHz

GPU
NVIDIA Tesla K20c, 706 MHz,
2496 CUDA Cores, Compute
Capability 3.5

Operating
System

Windows 7 SP1 32 bit
Professional

Programming
Environment

Microsoft Visual C++ 2010,
CUDA 5.0

1029 ACES JOURNAL, Vol. 29, No. 12, DECEMBER 2014

CHEN, TIAN: MODELING RESONANT FREQUENCY OF RECTANGULAR MICROSTRIP ANTENNA 1030

Table 2: Experimental values of the resonant frequency of rectangular MSA in mode TM10 from the
GPU-based PSO-ANN model

Data with * are the sets of testing samples. The unit of frequency in this table is MHz.

Table 3: Sum of the absolute error between
experimental and theoretical values of the resonant
frequency of rectangular MSA in mode TM10
from traditional methods
Traditional
Method

Sum of the Absolute Error/MHz

[3] 13136
[4] 24097
[5] 11539
[6] 12322
[7] 30996
[8] 8468
[9] 22572
[10] 18148
[11] 30504
[12] 56698
[13] 1393

Table 4: Sum of the absolute error between
experimental and theoretical values of the resonant
frequency of rectangular MSA in mode TM10
from CPU-based ANN models
ANN Model Sum of the Absolute Error/MHz
fEDBD [14] 2392
fDBD [14] 2427
fBP [14] 2372
fPTS [15] 2239
fPSO [18] 1049
fPSO-BP [19] 1777
fBiPSO [20] 863

In our experiment, the structure of ANN is
designed as 4-10-1 and its corresponding particle
dimension is 61. The number of particles is equal
to the number of threads and is generally more
than particle dimension (61 in our experiment). A
warp is a group of 32 neighboring threads
executed physically in parallel on a Stream
Multiprocessor (SM) in CUDA. Therefore, the
number of particles is designed to the multiples of
32. The activation function in the hidden layer is
chosen as Bi-polar sigmoid function (formula (7)).
The activation function in the output layer is
chosen as Uni-polar sigmoid function (formula
(8)). The inertia weight w decreases linearly from
0.9 to 0.4 during the whole process. The learning
factors c1 and c2 are set to 2.8 and 1.3 respectively.
The maximum iteration number Tmax is set to 1000.

$ # $
2 1, ,

1 exp 2
f u u

u
� � �� ��

� � 6
 (7)

$ # $
1 , .

1 exp
f u u

u
� �� ��

� �
 (8)

Speedup ratio S is the most commonly-used
index to measure the acceleration performance. S
is defined as the ratio of TCPU (the running time of
the CPU-based program) and TGPU (the running
time of the GPU-based program) under the
condition of the same number of particles and the
same number of iterations in the PSO-ANN
algorithm:

CPU

GPU

= TS
T

. (9)

To get the running time, clock() function is
used on CPU side and cudaEventElapsedTime()
function based on “Events” is used on GPU side.

Considering the influence caused by randomness,
the program is run 20 times repeatedly under the
circumstance of the same number of particles
whenever on CPU or GPU side, and the result is
their average value. To ensure the computing
precision, all decimals use double precision on
both CPU side and GPU side.

The experimental results are shown in Table 5
and Column 7-17 of Table 2. It’s worth noting that
the meanings of the “sum of the absolute error” (in
Table 3 and Table 4) and the “average sum of the
absolute error” (in Table 5) are different. The
“sum of the absolute error” means the sum of the
absolute error of the average of the experimental
values and the theoretical values. The “average
sum of the absolute error” means the average of
the sum of the absolute error of the experimental
values and the theoretical values. We believe that
compared to the “sum of the absolute error”, the

“average sum of the absolute error” can be easily
got by calculation, objectively reflects the results
in each experiment, and is greater than the “sum of

the absolute error” under the same conditions. In
other words, if the “average sum of the absolute
error” in Table 5 is superior to the “sum of the

absolute error” in Table 4, the “average sum of the
absolute error” in Table 5 is certainly superior to
the “average sum of the absolute error”

corresponding in Table 4. In Column 7-17 of
Table 2, each column gives particular
experimental values from GPU-based algorithm,
the “sum of the absolute error” of which is closest

to the “average sum of the absolute error” in Table
5.

1031 ACES JOURNAL, Vol. 29, No. 12, DECEMBER 2014

Table 5: Speedup ratio achieved by parallel PSO-ANN when modeling the resonant frequency of
rectangular MSA

Number of Particles Running Time/s Average Sum of the Absolute Error/MHz Speedup RatioCPU GPU CPU GPU
32 1.309 1.680 3171.6 3259.4 0.8
64 2.495 1.672 2559.1 2534.0 1.5
128 4.839 1.672 2189.3 2200.4 2.9
256 9.659 1.680 1694.5 1697.4 5.7
512 19.141 1.686 1331.9 1352.5 11.4
1024 38.267 1.717 1215.0 1267.6 22.3
2048 77.445 1.920 1098.7 1103.3 40.3
4096 155.406 2.186 974.2 997.5 71.1
8192 309.941 2.636 863.9 895.2 117.6
16384 620.352 2.824 795.1 885.7 219.7
32768 1241.120 5.647 722.8 840.1 219.8
65536 2481.003 8.768 689.4 792.9 283.0
131072 4958.867 15.160 674.7 765.0 327.1

We make some analysis on Table 3, Table 4
and Table 5:
(a) Generally, ANN models have obvious

advantages over traditional methods in
calculation precision. GPU-based parallel
PSO-ANN has obvious advantages over CPU-
based sequential PSO-ANN in running speed.

(b) The more number of particles, the higher
speedup ratio. Compared with CPU-based
sequential PSO-ANN, 327 times of maximum
speedup ratio has achieved in GPU-based
parallel PSO-ANN. When the number of
particles doubles, the speedup ratio roughly
doubles if the number of particles is less than
16384 (The maximum number of resident
threads on this GPU is 26624.), and increases
at a relatively slow rate if the number of
particles is more than 32768.

(c) Compared with CPU-based sequential PSO-
ANN, GPU-based parallel PSO-ANN has the
same optimization stability. When the number
of particles increases, the error of CPU-based
program and the error of GPU-based program
both decreases. The error of CPU-based
program and the error of GPU-based program
are similar or same under the condition of the
same number of particles.

(d) Substantially increasing the number of
particles on GPU side is a special method,
which adapts to the CUDA programming
model. The runtime increases very limitedly
when substantially increasing the number of

particles on GPU side. The error of GPU-side
parallel PSO-ANN is superior to the results of
[14,15] when the number of particles is greater
than or equal to 128, superior to the results of
[19] when the number of particles is greater
than or equal to 256, superior to the results of
all the traditional methods including [13]
when the number of particles is greater than or
equal to 512, superior to the results of [18]
when the number of particles is greater than or
equal to 4096, and superior to the results of all
the literatures including [20] when the number
of particles is greater than or equal to 32768.
We provide the following suggestions as

reference for GPU-based parallel PSO-ANN
algorithm:
(1) For the standard PSO-ANN algorithm in this

study, the network error can be significantly
reduced with the very limited runtime
increment when substantially increasing the
number of particles on GPU side.

(2) Other types of improved PSO-ANN algorithm
do not always adapt to the GPU parallel
architecture. The algorithm performance can
be further improved if the improved PSO-
ANN algorithm is suitable to parallelize on
GPU side.

VI. CONCLUSION
The CUDA-based parallel PSO-ANN scheme

is designed to rapidly model the resonant
frequency of rectangular MSA. The proposed

CHEN, TIAN: MODELING RESONANT FREQUENCY OF RECTANGULAR MICROSTRIP ANTENNA 1032

approach corresponds one particle to one thread,
and deals with a large number of GPU threads in
parallel to greatly save computing time and
improve computing accuracy. The experiments
show that the modeling runtime can be greatly
reduced when parallelizing the PSO-ANN
algorithm on GPU side. Furthermore, the network
error can be significantly reduced with the very
limited runtime increment when substantially
enlarging the number of particles on GPU side.
The proposed GPU-based parallel PSO-ANN in
this paper can be extended to other similar
microwave engineering designs easily.

ACKNOWLEDGMENT
This work is supported partly by Pre-research

foundation of the shipping industry of China under
grant No. 10J3.5.2 and Project funded by the
priority academic program development of Jiangsu
higher education institutions.

REFERENCES
[1] K. L. Wong, “Compact and broadband microstrip

antennas,” New York: John Wiley & Sons Inc.,
2002.

[2] D. G. Fang, “Antenna theory and microstrip

antennas,” Beijing: Science Press, 2007 (in
English).

[3] J. Q. Howell, “Microstrip antennas,” IEEE
Transactions on Antennas and Propagation, vol.
23, no. 1, pp. 90-93, 1975.

[4] E. O. Hammerstad, “Equations for microstrip

circuits design,” Proc. 5th Eur. Microw. Conf.,
Hamburg, Germany, pp. 268-272, September 1975.

[5] K. R. Carver, “Practical analytical techniques for

the microstrip antenna,” Proc. Workshop Printed
Circuit Antenna Tech., New Mexico State Univ.,
Las Cruces, NM, 7.1-7.20, October 1979.

[6] I. J. Bahl and P. Bhartia, “Microstrip antennas,”

MA: Artech House, 1980.
[7] J. R. James, P. S. Hall, and C. Wood, “Microstripa

antennas-theory and design,” London: Peregrinus,
1981.

[8] D. L. Sengupta, “Approximate expression for the

resonant frequency of a rectangular patch antenna,”

Electronics Letters, vol. 19, no. 20, pp. 834-835,
1983.

[9] R. Garg and S. A. Long, “Resonant frequency of

electrically thick rectangular microstrip antennas,”

Electronics Letters, vol. 23, no. 21, pp. 1149-1151,
1987.

[10] W. C. Chew and Q. Liu, “Resonance frequency of

a rectangular microstrip patch,” IEEE Transactions
on Antennas Propagation, vol. 36, no. 8, pp. 1045-

1056, 1988.
[11] K. Guney, “A new edge extension expression for

the resonant frequency of electrically thick
rectangular microstrip antennas,” Int. J. Electron.,
vol. 75, pp. 767-770, 1988.

[12] M. Kara, “Closed-form expressions for the
resonant frequency of rectangular microstrip
antenna elements with thick substrates,”

Microwave and Optical Technology Letters, vol.
12, no. 3, pp. 131-136, 1996.

[13] K. Guney, “A new edge extension expression for

the resonant frequency of rectangular microstrip
antennas with thin and thick substrates,” J.
Commun. Tech. Electron., vol. 49, no. 1, pp. 49-53,
2004.

[14] K. Guney, S. Sagiroglu, and M. Erler, “Generalized

neural method to determine resonant frequencies of
various microstrip antennas,” International Journal
of RF and Microwave Computer-Aided
Engineering, vol. 12, no. 1, pp. 131-139, 2002.

[15] S. Sagiroglu and A. Kalinli, “Determining resonant

frequencies of various microstrip antennas within a
single neural model trained using parallel tabu
search algorithm,” Electromagnetics, vol. 25, no. 6,
pp. 551-556, 2005.

[16] Y. Shi and R. Eberhart, “A modified particle
swarm optimizer,” Proceedings of the IEEE
International Conference on Evolutionary
Computation, pp. 69-73, 1998.

[17] R. Poli, J. Kennedy, and T. Blackwell, “Particle

swarm optimization: an overview,” Swarm
Intelligence, vol. 1, no. 1, pp. 33-57, 2007.

[18] Y. B. Tian, Z. Q. Li, and J. H. Wang, “Model

resonant frequency of rectangular microstrip
antenna based on particle swarm neural network,”

Journal of Microwaves, vol. 25, no. 5, pp. 45-50,
2009 (in Chinese).

[19] Y. Dong and Y. B. Tian, “Modeling resonant
frequency of microstrip antenna based on neural
network trained by PSO-BP algorithm,” Journal of
Communication University of China (Science and
Technology), vol. 16, no. 2, pp. 58-63, 2009 (in
Chinese).

[20] Y. B. Tian and Y. Dong, “Modeling resonant

frequency of microstrip antenna based on neural
network ensemble,” Chinese Journal of Radio
Science, vol. 24, no. 4, pp. 610-616, 2009 (in
Chinese).

[21] M. Pethick, et al., “Parallelization of a

backpropagation neural network on a cluster
computer,” The Fifteenth IASTED International
Conference on Parallel and Distributed Computing
and Systems, pp. 574-582, 2003.

[22] G. Singhal, A. Jain, and A. Patnaik,
“Parallelization of particle swarm optimization
using message passing interfaces (MPIs),” IEEE

1033 ACES JOURNAL, Vol. 29, No. 12, DECEMBER 2014

World Congress on Nature & Biologically Inspired
Computing, pp. 67-71, 2009.

[23] K. Deep, S. Sharma, and M. Pant, “Modified

parallel particle swarm optimization for global
optimization using message passing interface,”

2010 IEEE Fifth International Conference on Bio-
Inspired Computing: Theories and Applications,
pp. 1451-1458, 2010.

[24] D. Z. Wang, et al., “Parallel multi-population
particle swarm optimization algorithm for the
uncapacitated facility location problem using
openMP,” IEEE Congress on Evolutionary
Computation, pp. 1214-1218, 2008.

[25] G. K. Venayagamoorthy and V. G. Gudise,
“Swarm intelligence for digital circuits

implementation on field programmable gate arrays
platforms,” IEEE Conference on Evolvable
Hardware, pp. 83-86, 2004.

[26] Y. Maeda and N. Matsushita, “Simultaneous

perturbation particle swarm optimization using
FPGA,” IEEE International Joint Conference on
Neural Networks, pp. 2695-2700, 2007.

[27] L. Veronese and R. Krohling, “Swarm’s flight:

accelerating the particles using C-CUDA,”

Proceedings of the IEEE Congress on Evolutionary
Computation, pp. 3264-3270, 2009.

[28] P. Kromer, J. Platos, and V. Snasel, “A brief

survey of advances in particle swarm optimization
on graphic processing units,” 2013 IEEE World
Congress on Nature and Biologically Inspired
Computing, pp. 182-188, 2013.

[29] K. Ganeshamoorthy and D. N. Ranasinghe, “On

the performance of parallel neural network

implementations on distributed memory
architectures,” 8th IEEE International Symposium
on Cluster Computing and the Grid, pp. 90-97,
2008.

[30] M. Kara, “The resonant frequency of rectangular

microstrip antenna elements with various substrate
thicknesses,” Microwave and Optical Technology
Letters, vol. 11, no. 2, pp. 55-59, 1996.

Feng Chen (1989-) graduate
student. His main research is high
performance computing and
computational intelligence
technologies and its applications in
electronics and electromagnetism.
Presently at the School of
Electronics and Information,

Jiangsu University of Science and Technology,
Zhenjiang 212003, P. R. China.

Yu-bo Tian (1971-), received his
Ph. D. in 2004 from Nanjing
University. Now, he is a Full
Professor at Jiangsu University of
Science and Technology. His main
research concerns computational
intelligence and swarm intelligence
technologies and applications in

electronics and electromagnetism.

CHEN, TIAN: MODELING RESONANT FREQUENCY OF RECTANGULAR MICROSTRIP ANTENNA 1034

