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Abstract ─ Constant horizontal wavenumber 
approach is a simple method to model Periodic 
Boundary Conditions (PBC) in the Finite-
Difference Time-Domain (FDTD) method 
proposed for efficient analysis of periodic 
structures; however, it requires execution of the 
FDTD simulations many times, each time for a 
different value of horizontal wavenumber to 
achieve useful results. Therefore, although each 
simulation may take a short time to complete, a 
sweep of simulations still takes a long time and 
there is a need to employ methods to speed-up the 
simulations. In this contribution we present an 
implementation of the FDTD/PBC algorithm using 
the Compute Unified Device Architecture 
(CUDA) to run the simulations on Graphics 
Processor Unit (GPU) devices to speed-up the the 
FDTD/PBC simulations. We also present a 
method in which a problem space is extended by 
one padded cell on each of the four periodic sides.
As a consequence, programming is simplified, 
especially for the GPU code for the field update 
process at the boundaries, the problem space and 
efficiency of calculations as well is improved.

Index Terms ─ Finite-Difference Time-Domain 
(FDTD) method, Graphics Processor Unit (GPU),
Periodic Boundary Conditions (PBC).

I. INTRODUCTION 
Many electromagnetic applications require the

use of periodic structures such as Frequency 
Selective Surfaces (FSS), Electromagnetic Band 
Gap (EBG) structures, corrugated surfaces, phased 
antenna arrays, periodic absorbers or negative 
index materials. These structures extend to several 
wavelengths in size; therefore, their analyses are 

time-consuming and memory-extensive using the 
conventional Finite-Difference Time-Domain 
(FDTD) [1]-[2] method. To overcome the 
limitation of the conventional FDTD method, a
class of techniques, referred to as Periodic 
Boundary Conditions (PBC), have been 
developed. These techniques consider a periodic 
structure as infinitely periodic and then utilizes the 
infinite periodicity to analyze only one unit cell of 
the periodicity instead of the entire structure and 
obtains the results for the entire infinite size 
structure. 

The PBC algorithms are generally divided into 
two main categories: field transformation methods 
and direct field methods [3]. The field 
transformation methods introduce auxiliary fields 
to eliminate the need for time-advanced data. The 
transformed field equations are then discretized 
and solved using FDTD techniques. The split-field 
method [4] and multi-spatial grid method [5] are 
two approaches in this category. The direct field 
category methods work directly with Maxwell’s 

equations, and hence, there is no need for any field 
transformation. The sine-cosine method [6] is an 
example of this category. It should be noted that 
this method is a single frequency method and does 
not maintain the wide-band capability of FDTD. 

A direct field method, referred to as constant 
horizontal wavenumber approach, is introduced in 
[7]-[10]. In this approach, the FDTD simulation is 
performed by setting a Constant Horizontal 
Wavenumber (CHW) instead of a specific angle of 
incidence. With this approach, one can achieve 
wideband results; however, the results will be 
valid for a different angle for each frequency. 
Therefore, the results from a single simulation 
usually are not meaningful. In order to obtain 
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useful results, one can sweep the horizontal 
wavenumber; i.e., run the simulation for a number 
of different horizontal wavenumbers, and 
construct a two-dimensional image of reflection or 
transmission coefficient distribution on the 
horizontal wavenumber-frequency plane.
Although, running the simulation in a single unit 
cell makes the problem space much smaller than 
what it would be, a sweep of simulations takes a
long time to achieve useful results. Therefore, still 
there is a need to employ methods to speed up the 
simulations. In this context, we consider to speed 
up the simulations using Graphic Processor Units 
(GPUs). 

In this contribution, we present a GPU 
implementation of the CHW approach using 
Compute Unified Device Architecture (CUDA) to 
improve the computation speed. We also present a 
method in which a problem space is extended by 
one padded cell on each of the four periodic sides.
Though this treatment increases the size of a 
problem space, it allows a simpler field update 
process at the boundaries. As a consequence,
programming is simplified, especially for the GPU 
code, and efficiency of calculations as well is 
improved.

We present a summary of the CHW algorithm 
in Section II, and then we discuss the GPU 
implementation of the algorithm using CUDA in 
Section III. In Section IV, we illustrate speed up 
factors achieved using the presented 
implementation. 

II. HORIZONTAL WAVENUMBER 
METHOD 

Consider an infinitely periodic structure with 
periodicity in the xy plane. The periodic structure 
is illuminated by an obliquely incident plane wave.
Figure 1 shows the computational domain of a unit 
cell of a periodic structure. The unit cell is 
terminated by PBC boundaries on four sides and 
Convolutional Perfectly Matched Layer (CPML) 
[11] absorbing boundaries on top and bottom 
sides. The incident plane wave is injected into this 
domain on a source plane.

Figure 2 shows the field components on the xy
plane-cut of the grid of a unit cell problem space. 
The size of the problem space is x xP N x� ! in the 
x direction and y yP N y� ! in the y direction, where 

xN  and yN  are number of cells, and x! and y!

are the cell sizes in respective directions. At steady 
state, a field component on the right boundary of 
the grid is a time delayed equivalent of a field on 
the left boundary. For instance, one can write: 

( , , , ) ( 0, , , sin ),x
y x y inc

P
E x P y z t E x y z t

c
2� � � � (1)

where c  is the speed of the wave propagating in 
free space and inc2  is the incident angle. Similarly, 
a field component on the back boundary of the 
grid is a time delayed equivalent of a field on the 
front boundary. When transformed from time-
domain to frequency-domain, (1) can be written 
as:

( , , ) ( 0, , ) ,x xjk P
y x yE x P y z E x y z e�� � � (2)

which implies that the field component on the 
right boundary of the grid is a phase delayed 
equivalent of a field on the left boundary. Here, kx

is x component of the wavenumber. 
The phase relation between the fields that have 

a periodic distance of xP  or yP  is utilized to 
develop an FDTD algorithm that simulates the 
infinite periodic structure. For instance, in order to 
calculate an electric field component on the front 
boundary in Fig. 2, that is indexed as # $1 ,1,n

xE i k� ,
one needs the value of the magnetic field 
component below it that could be indexed as

# $0.5 ,0,n
zH i k� . While # $0.5 ,0,n

zH i k� is not in the 
computational space of the unit cell in 
consideration, thus, its value is not known; a phase 
shifted equivalent of it, # $0.5 , ,n

z yH i N k� , can be 
used instead following the Floquet theory as 

# $ # $0.5 0.5,0, , , y yjk Pn n
z z yH i k H i N k e� �� . Then, the 

electric field updating equation can be written for 
# $1 ,1,n

xE i k� as: 
1( ,1, ) ( ,1, ) ( ,1, )n n

x exe xE i k C i k E i k� � 6
0.5 0.5( ,1, ) [ ( ,1, ) ( , , ) ]y yjk Pn n

exhz z z yC i k H i k H i N k e� �� 6 �
0.5 0.5( ,1, ) [ ( ,1, ) ( ,1, 1)],n n

exhy y yC i k H i k H i k� �� 6 � �  (3) 

where exeC , exhzC , and exhyC  are the updating 
coefficients. All other fields on the four side 
boundaries are treated in the same manner and 
their updates are completed using the phase shifted 
equivalents of their periodic components.
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Fig. 1. Problem space of a unit cell of a periodic 
structure.

Fig. 2. Field components on the xy plane-cut of a 
unit cell in a three-dimensional domain. 

III. IMPLEMENTATION OF PBC 
A. General considerations 

An existing FDTD code can be modified to 
accommodate PBC calculations as well. Some 
PBC specific considerations are discussed in this 
section. 

One main consideration in PBC programming 
is that, as equation (3) includes the complex 
exponential phase term, the fields are evaluated in 
complex time domain rather than real time 
domain. Therefore, it should be noted that the time 
domain simulation results are not meaningful, 
while the frequency domain results such as 

reflection and transmission coefficients are still 
valid. Since all fields are complex valued, their 
respective three dimensional arrays need to be 
defined as complex data types instead of real data 
types in the code. To minimize the modification to 
an existing code, additional three dimensional 
field arrays with real data type can be used to store 
the imaginary parts of the complex field values 
instead of changing the data types of existing 
arrays. Then field updates can be performed first 
for the real parts and then for the imaginary parts 
of the fields in separate subroutines since the 
updating coefficients are the same as the regular 
FDTD coefficients. 

Other additional steps to the time-marching 
loop of an existing FDTD program are calculation 
and addition of incident fields to the fields on the 
source plane, and capturing the averaged fields 
after phase corrections. 

B. Programming for GPU using CUDA
Recent developments in the design of graphics 

processing units, introduced a new generation of 
graphical computation cards which can be 
programmed to run scientific codes orders of 
magnitudes faster than Central Processor Units 
(CPUs). Especially, the introduction of the 
Compute Unified Device Architecture (CUDA) 
development environment from NVIDIA made 
GPU computing much easier and widespread.
CUDA has been reported as the programming 
environment for implementation of FDTD in 
several articles, which include [12]-[13] as some 
of the earlier implementations. We also have 
presented an implementation of an FDTD code in 
[14]. In this contribution, we discuss the 
implementation of PBC as an extension to that of 
[14], therefore we refer the reader to [14] for 
further details. 

As discussed in the previous subsection, one 
needs to use additional three dimensional arrays 
for the imaginary part of field values to have the 
existing code accommodate the PBC calculations. 
Hence, three dimensional arrays for the imaginary 
parts of the fields are defined. For a minimum 
modification to the existing code, the field update 
functions are executed for a second time, after 
they are executed to update the real parts of the 
fields to update the imaginary parts of the fields. 
For instance, the code section in Listing 3 of [14]
is called a second time as shown in Listing 1 
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below. 

update_magnetic_fields_on_kernel 
<<<grid, threads, shared_memory_size>>> 
(nxx, nyy, nx, ny, nz, 
Ex_im, Ey_im, Ez_im, Hx_im, Hy_im, Hz_im, 
Chxh,Chyh,Chzh,Chxey, 
Chxez,Chyez,Chyex,Chzex,Chzey); 

Listing 1. CUDA code to call kernel function for 
imaginary part of magnetic field updates.

In the CHW method, calculation of incident 
field on the source plane requires multiplication of 
each field at each field point with a phase shift 
term. Since the phase shift term is a constant value 
for each point on the source plane, a two 
dimensional array that carries the phase shift value 
for each respective field point is constructed 
before the time-marching loop starts. Then, these 
arrays are used to adjust the phases of the incident 
field components during each time step and these 
incident field components are added to the 
respective field components on the source plane to 
excite the problem space. Similar phase shift terms 
are needed while capturing the fields on reflection 
and transmission planes. These phase shift terms 
as well are stored in two dimensional arrays and 
they are used during the time marching loop to 
adjust the phases of the fields on the reflection and 
transmission planes before they are averaged to 
obtain a single value for reflection and 
transmission at each time step.  

PBC formulation requires the special update 
of electric field components on the side 
boundaries, such as shown in (3). For instance, as 
presented in [10], first, all electric fields in the 
problem space except for the ones on the side 
boundaries are updated following the usual 
updating equations. Then, the electric fields on the 
left, right, top, and bottom boundaries, except for 
the corner components, are updated using the 
phase shifted periodic magnetic field components. 
Then, as the last step, each of the four corner field 
components are updated, however, this time using 
two of the phase shifted periodic magnetic field 
components for each corner. The steps of this 
procedure are illustrated in Fig. 3. One can notice 
that there are many steps as well as exceptions in 
this flow chart. This kind of granular treatment of 
fields makes it difficult to write the code for both 
the CPU and GPU. It may also detriment the 

efficiency on a GPU since efficiency of 
computations on GPU mainly relies on the data 
parallelism of the algorithm. 

Fig. 3. Conventional field update process for 
treatment of periodic boundary conditions. 

We employed a different approach to avoid 
the granular treatment of electric field components 
on the boundaries; we extended the problem space 
by one padded cell on each of the four sides as 
illustrated in Fig. 4. Here, the shaded region is the 
original problem space which is the same as the 
one in Fig. 2. The extended problem space is 
terminated by PEC boundaries on four sides; thus, 
it does not require any special boundary treatment. 
In each time step, all of the magnetic field 
components in the extended problem space are 
updated as usual. Then, the magnetic field 
components in row 1 are multiplied by the phase 
shift term y yjk Pe� and copied to row 1yN � . The 
magnetic field components in row yN  are 

multiplied by the phase shift term y yjk Pe and copied 
to row 0. Similarly, the magnetic field components 
in column 1 are multiplied by the phase shift term 

x xjk Pe� and copied to column 1xN � . The magnetic 
field components in column xN  are multiplied by 
the phase shift term x xjk Pe and copied to column 0. 
This operation is a simple product and copy and it 
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is more efficient to perform on GPU compared 
with the procedure described in [10]. Then, there 
is no need for treatment of electric field 
components on the boundary; all electric field 
components are updated in the entire problem 
space using the usual updating equations, where 
the particular field components on the periodic 
boundary will find the required phase shifted 
magnetic fields available in the extended cells. 
The steps of this procedure are illustrated in Fig. 5. 
Comparing the flow charts in Figs. 3 and 5, 
reveals the simplicity of the presented approach. 

Fig. 4. Field components on the xy plane-cut of an
extended unit cell. 

Fig. 5. Proposed field update process for treatment 
of periodic boundary conditions. 

IV. RESULTS 
The periodic structure in Fig. 1 is used as a 

test case to demonstrate the speed up obtained by 

the GPU implementation. This structure is referred 
to as a dipole Frequency Selective Surface (FSS) 
[15]. The metal patch of rectangular shape is 
placed on a dielectric substrate. The PEC patch 
has a length of 12 mm and a width of 3 mm. The 
substrate has a thickness of 6 mm and relative 
permittivity of 2.2. The periodicity is 15 mm in 
both x and y directions. The reflection plane is 
placed 16 mm above the substrate, while the 
transmission plane is at 3 mm below the substrate. 
The source plane is 18 mm above the substrate. 
The simulations are performed using cubic Yee 
cells of 0.5 mm on a side. The problem space is 
composed of 32 32 82 83,9686 6 � cells. The
structure is illuminated by incident plane wave of 
TE mode. Simulations are repeated for a sweep of 
horizontal wavenumber xk  by varying it from 21 
to 100 for 80 distinct values. In all these 
simulations the horizontal wavenumber yk is kept 
as a constant value of 7.8. 

The code that runs on CPU is developed using 
FORTRAN, while the code for GPU is developed 
using CUDA for C. Simulations are performed on 
a computer with a CPU of Intel® Core™2 Quad 

Processor Q9550 at 2.83 GHz, and an NVIDIA 
GTX480 graphics card. Results are obtained for 
reflection and transmission coefficients to 
construct distribution of these coefficients on the 
horizontal wavenumber-frequency plane. Figure 6
shows the result for magnitude of reflection 
coefficient; whereas, Fig. 7 shows the result for 
magnitude of transmission coefficient for a 
frequency range between 3 GHz to 13 GHz. It 
should be noted that the results are the same for 
both the GPU and CPU computations. Simulations 
are repeated 80 times, each time for a different xk
value. Each simulation is run for 10,000 time 
steps. Total simulation time is recorded as 59 
minutes using the CPU, while it is recorded as 7.8 
minutes using the GPU. The GPU/CPU speed-up 
factor is obtained as 7.5. It should be noted that 
problem size is rather small in terms of number of 
cells in this example. As discussed in [16], it is 
more efficient to solve larger FDTD domains than 
smaller domains on GPU. In order to demonstrate 
the performance improvement for a larger 
problem, the dipole FSS simulations are repeated 
using cubic Yee cell of 0.25 mm on a side. The 
problem space is composed of
62 62 144 553,5366 6 � cells. Total simulation 
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time is recorded as 490 minutes using the CPU, 
while it is recorded as 18 minutes using the GPU. 
The GPU/CPU speed-up factor is obtained as 27. 
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Fig. 6. Magnitude of reflection coefficient in the 
horizontal wavenumber-frequency plane.
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Fig. 7. Magnitude of transmission coefficient in 
the horizontal wavenumber-frequency plane.

V. CONCLUSION 
In this contribution we presented 

implementation of constant horizontal 
wavenumber periodic boundary condition as an 
extension to an existing FDTD implementation 
using CUDA to speed up the periodic boundary 
analyses utilizing the computational power of 
GPU devices. Presented implementation is 
programmed with the goal of minimum 
modification to the existing code. It has been 
shown that results can be achieved in a much 
shorter time using a GPU card for computations. It 

should be noted that efficiency can be further 
improved by an implementation which uses three 
dimensional arrays of complex data type to store 
the fields and optimize the kernel functions that 
run in GPU for these arrays. Moreover, as the 
simulations run more efficiently on GPU devices
when the problem spaces are larger, as illustrated 
in [16], an algorithm can be developed to stack 
multiple PBC problem spaces and run them in a 
single simulation to further speed up the PBC 
analyses. 
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