
Finite-Element Domain Decomposition Methods for Analysis of 
Large-Scale Electromagnetic Problems 

Ming-Feng Xue and Jian-Ming Jin 

Department of Electrical and Computer Engineering 
University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA 

xue6@illinois.edu, j-jin1@illinois.edu 

Abstract ─ This paper presents an overview of our 
recent development of domain decomposition 
methods for finite element analysis of large-scale 
electromagnetic problems. More specifically, it 
presents several domain decomposition algorithms 
based on the Dual-Primal Finite Element Tearing 
Interconnecting (FETI-DP) method for solving 
vector wave equations. These algorithms expand 
the capability and improve the performance of the 
FETI-DP method by: (1) lifting the requirement of 
conformal meshes on subdomain interfaces, (2) 
speeding up the convergence of the iterative 
solution of the global interface problem, and (3) 
incorporating appropriate truncation boundaries 
for more accurate simulation. Numerical results 
are presented to demonstrate the application, 
accuracy, efficiency, and capability of these 
algorithms. 

Index Terms ─ Domain Decomposition Method 
(DDM), Dual-Primal Finite Element Tearing and 
Interconnecting (FETI-DP), Finite Element 
Method (FEM), higher-order transmission 
condition. 

I. INTRODUCTION 
Full-wave electromagnetic simulation has 

been widely used for analysis, design, and 
optimization in modern electrical and electronic 
engineering. Several Computational 
Electromagnetics (CEM) techniques, such as the 
Finite Element Method (FEM), the Method of 
Moments (MoM), and the Finite-Difference Time-
Domain (FDTD) method, have made great 
progress during the past few decades [1].
Nevertheless, the scope and application of these 
rigorous numerical tools are still limited by the 

problem size and complexity, for which 
computation time and computer memory 
requirements become excessive. A popular 
solution is to develop a Domain Decomposition 
Method (DDM), which is a numerical approach 
that decomposes a large-scale simulation problem 
into many small subdomain problems that can be 
computed simultaneously with parallel processors 
[2-4]. The combination of the DDM and the FEM 
is much more efficient than that of the DDM and 
the MoM because the FEM involves only local 
interaction. With the use of unstructured meshes 
and curvilinear elements, the FEM is much better 
at modeling curved surfaces, fine structures, and 
composite materials than does the FDTD. As a 
result, the FEM-based DDMs have attracted the 
most attention among all the DDMs. 

The FEM-based DDMs can be categorized 
into two groups: one based on the Schwarz method 
and the other based on the Schur complement 
method. Among a variety of Schur complement 
DDMs [2], the Dual-Primal Finite Element 
Tearing and Interconnecting (FETI-DP) method, 
developed by Farhat, et al. [5-9], shows excellent 
numerical scalability and parallel efficiency. When 
first introduced to CEM, the FETI-DP method 
assumed an unknown Neumann boundary 
condition on a subdomain interface with the aid of 
one Lagrange multiplier [10]. It was a typical 
nonoverlapping iterative substructuring DDM.
Later, an unknown Robin boundary condition was 
introduced on the subdomain interface with the aid 
of two Lagrange multipliers to improve the 
convergence of the global interface iterative 
solution for high-frequency applications [11,12].
Both FETI-DP versions construct a global corner 
system that relates the fields at the crosspoints 
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between the subdomains through a Dirichlet 
continuity condition. This corner system provides 
a coarse grid correction to speed up the 
convergence of the global interface iterative 
solution by propagating residual errors over the 
entire computational domain in each iteration. 

The FETI-DP algorithms developed in [10,11]
require a conformal interface mesh, which means 
that two neighboring subdomains must have the 
same surface mesh at their interface. Although this 
requirement is naturally satisfied in applications 
where a global mesh is generated first for the 
entire domain and then decomposed into many 
subdomain meshes, it is hard to achieve when the 
entire domain is very large so that one has to first 
break it into small subdomains and then mesh each 
subdomain individually. In such a case, two 
neighboring subdomains usually have different 
surface meshes at their interface. To handle such 
nonconformal interface meshes, one has to 
introduce two sets of unknown variables and 
develop special DDMs to couple the solution in 
the adjacent subdomains [13-18]. 

As another important DDM, the Optimized 
Schwarz Method (OSM) optimizes transmission 
conditions on subdomain interfaces to speed up 
the iterative convergence for solving the global 
interface problem [19-21]. To derive optimized 
higher-order transmission conditions for vector 
electromagnetic fields, one surface curl-curl term 
related to the interface electric field and another 
gradient that corresponds to the interface surface 
charge density were proposed to ensure the 
convergence of both Transverse-Electric (TE) and 
Transverse-Magnetic (TM) evanescent modes,
respectively [22-28]. Similar ideas can be found in 
the development of higher-order Absorbing 
Boundary Conditions (ABCs) in early publications 
[29-31]. As can be expected, this idea of using a 
higher-order transmission condition can also 
benefit the FETI-DP method formulated with two 
Lagrange multipliers. 

For some real-life engineering problems, it is 
neither necessary nor desirable to mesh a
computational domain together. For example, in 
the Computer Aided Design (CAD) of electronic 
devices, it is often the case that only a portion of 
the entire device has to be redesigned repeatedly to 
achieve an optimal performance [32]. Therefore, 
this portion has to be re-meshed multiple times, 
whereas the mesh for the remaining portion can be 

kept the same. Therefore, there is an engineering 
need for a DDM that can allow the user to 
generate meshes for different regions separately 
based on geometrical features and then decompose 
each mesh independently using an automatic mesh 
decomposer. With such a process, the entire 
computational domain may contain conformal 
interfaces (generated by a mesh decomposer) and 
nonconformal interfaces between different regions 
partitioned before mesh generation. For such an 
application, it is necessary to develop an effective 
DDM to deal with mixed conformal/nonconformal 
multi-region meshes [33,34]. 

This paper presents a brief overview of our 
recent development of FETI-DP methods for FEM 
analysis of large-scale electromagnetic problems. 
The rest of this paper is organized as follows. In 
Sections II.A and II.B, we first extend the 
conformal Lagrange Multiplier (LM)-based FETI-
DP method to the case with nonconformal 
interface and corner meshes. Then, we consider
the TE Second-Order Transmission Condition 
(SOTC-TE) to significantly improve the iterative 
convergence of the interface solution in Section 
II.C. Afterwards, we discuss a hybrid method and 
a general crosspoint correction technique in 
Section II.D for an efficient modeling of multi-
region problems. Finally, we present several 
antenna radiation and wave propagation examples
to demonstrate the accuracy and efficiency of the 
proposed solvers in Section III.

II. FORMULATION 
In this section, we first review the formulation 

of the nonconformal LM-based FETI-DP method, 
then incorporate the SOTC-TE into the dual-
primal framework, and finally discuss the hybrid 
FETI/FETI-DP scheme. 

A. FETI-DP for nonconformal interface and 
conformal corner meshes 

Assume that the entire computational domain V
is first divided into Ns nonoverlapping subdomains. 
The problem for the sth subdomain is defined by 
the second-order curl-curl equation:

1 2
0 0 0 imp( )s s s

r rk jk Z� ��56 56 � � �E E J  in ,sV  (1) 
and the Robin boundary condition: 

1ˆ ˆ ˆ( ) ( )s s s s s s s
rn n n� ��6 56 � 6 6 �E E Λ  on ,sS  (2) 

where 0k  and 0Z  are the free-space wavenumber 
and intrinsic impedance, respectively, imp

sJ  is an 
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impressed current, ˆ sn  is the outward normal unit 
vector of the sth subdomain, s�  is a complex 
parameter chosen to make the subdomain problem 
well posed, and sΛ  is an unknown variable 
defined on the subdomain interface. For the 
portion of the subdomain boundary sS  coinciding 
with the exterior surface of the computational 
domain 0 ,S  we can either apply an ABC, a
Perfectly Matched Layer (PML), or a Boundary 
Integral (BI) equation to the field. 

To formulate the boundary-value problem 
defined in (1) and (2) using the FEM, the 
subdomain is discretized into finite elements such 
as tetrahedra. The vector electric field within each 
subdomain can then be expanded with hierarchical 
vector basis functions such that T{ } { }s s sE�E N
[35]. By applying Galerkin’s method, the FEM 

equation for the sth subdomain can be derived as: 
0

,
s s s s s
ii ib ic i i
s s s s s s s ss s
bi bb bb bc bb b bc cb bs s s ss s
ci cb cc cc c

K K K E f
K K M K B L EE f
K K K E f

%
%

( ) � 7 � 7 � 78 8 8 8 8 8* +� � � �� 9 � 9 � 9* + 8 8 8 8 8 8� :� : � :, -

(3) 

where 
1[ ] [ ( )( )

s

s s s
uv r u vV

K ��� 56 56��� N N
2
0 ]s s

r u vk dV�� N N ( , , , ),u v i b c�

0 0 imp{ }
s

s s s
u uV

f jk Z dV� � ��� N J ( , , ),u i b c�

ˆ ˆ[ ] ( )( ) ,
s

s s s s s s
bb b bS

M n n dS�� 6 6�� N N

[ ] ,
s

s s s
bb b bS

B dS� �� N N

ˆ ˆ[ ] ( )( ) ,
s

s s s s s s
bc b cS

L n n dS�� 6 6�� N N

0 0 ˆ{ } ( )
s

s s s
c cS

jk Z n dS% � � 6�� N H .

Different from the conformal FETI-DP method 
[10,11], the dual unknown sΛ  here is explicitly 
expanded in terms of a set of curl-conforming 
vector basis functions defined on sS such that 

T{ } { }s s s
b %�Λ N . Therefore, [ ]s

bbB  is no longer a 
Boolean matrix. By using the subscripts i, b, and c, 
each vector is partitioned into three parts, which 
are associated with the interior, interface, and 
corners of the subdomain, respectively. The 
separation of the corner unknowns is one of the 
most important features of the dual-primal idea. 
Equation (3) can be written in a compact form as: 

; <T[ ] ( )
0

s s s s s s s s s
rr rc r r br bb b bc cs ss s

c ccr cc

K K E f R B L E
E fK K

%( ) � 7 � 7 �� �� 9 � 9* + � : � :, -
, (4) 

where 

[ ]
s s

s ii ib
s s srr
bi bb bb

K KK K K M
( )� * +�, -

, [ ] ,
s

s ic
src
bc

KK K
( )� * +, -

T[ ] [ ] [ ] ,s s s s
cr ci cb rcK K K K� �

{ }
s

s i
sr
b

EE E
� 7� � 9
� :

, and { } .
s

s i
sr

b

ff f
� 7� � 9
� :

With the aid of a Boolean matrix [ ]s
brR , which 

extracts the interface electric field { }s
bE  out of 

{ }s
rE , we obtain the system equation for the dual 

unknowns from the first equation of (4) as: 

#1{ } [ ]{ } [ ][ ] { }s s s s s s
b br r br rr rE R E R K f�� �

$T T[ ] [ ]{ } ([ ] [ ] [ ]){ }s s s s s s s
br bb b rc br bc cR B K R L E%� � � . (5) 

From the second equation of (4), another system 
equation can be derived for the primal unknowns, 
which is: 
# $1 T[ ] [ ][ ] ([ ] [ ] [ ]) [ ]{ }s s s s s s s

cc cr rr rc br bc c cK K K K R L B E�� �
1{ } { } [ ][ ] { }s s s s s

c c cr rr rf K K f% �� � �
1 T[ ][ ] [ ] [ ]{ },s s s s s

cr rr br bb bK K R B %��  (6) 
where the Boolean matrix [ ]s

cB  is introduced to 
extract the local corner unknowns from the global 
corner unknowns, which can be expressed 
mathematically as [ ]{ } { }s s

c c cB E E� . Assembling 
(6) through all subdomains yields a global corner-
related finite element system, which will be 
discussed later. It is important to note that { }s

c%  of 
all subdomains are cancelled out after the global 
assembly due to the Neumann continuity condition. 

Next, we introduce the global boundary 
unknown vector { }b%  and the Boolean projection 
matrix [ ]sQ to extract { }s

b%  from { }b%  such that 
{ } [ ]{ }s s

b bQ% %� , as defined in [11]. In order to 
obtain the global interface equation, we make use 
of the First-Order Transmission Condition (FOTC) 
on the subdomain interfaces: 

ˆ ˆ( ) ( )
ˆ ˆ( ) ( )

s q s q q q q
b b b
q s s q s s s
b b b

n n
n n

� �
� �

� � � � 6 6
� � � � 6 6�

Λ Λ E
Λ Λ E  on .sq'  (7) 

The choice of �  has to satisfy the condition that 
0s q� �� = . Note, that by enforcing (7), the 

tangential electric and magnetic fields are 
guaranteed to be continuous across the interface 

sq' . Taking the sth subdomain as reference, we 
can discretize the first equation of (7) to obtain: 
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[ ] { } [ ] { } [ ]{ }s s s s sq q
bb q b q bc q c q bb b sN L E N% %� � �

[ ]{ } [ ]{ }sq q sq q
bc c s bb b sL E M E� � , (8) 

where 
[ ] ,

sq

s s s
bb q b bN dS

'
� �� N N

ˆ ˆ[ ] ( )( ) ,
sq

s s s s s s
bc q b cL n n dS�

'
� 6 6�� N N

[ ] ,
sq

sq s q
bb b bN dS

'
� �� N N

ˆ ˆ[ ] ( )( ) ,
sq

sq q q s q q
bc b cL n n dS�

'
� 6 6�� N N

ˆ ˆ[ ] ( )( )( ) .
sq

sq s q q s q q
bb b bM n n dS� �

'
� � 6 6�� N N

Note, that [ ]s
bb qN  is always diagonally dominant as 

long as the same set of basis function is used to 
expand the auxiliary variable Λ  defined on both
sides of the shared interface. Therefore, we can 
take the inversion of [ ]s

bb qN  to write the 
transmission condition (8) as: 

1{ } [ ] [ ] [ ]{ }s s s s s
b q bb q bc q q cN L S E% ��

1 1[ ] [ ][ ]{ } [ ] [ ][ ]{ }s sq q q s sq q q
bb q bb s b bb q bc s cN N T N L S E%� �� � �

1[ ] [ ][ ]{ }s sq q q
bb q bb s bN M T E�� , (9) 

where we introduced another two Boolean 
matrices [ ]s

qT  and [ ]s
qS  to extract the unknowns

associated with interface sq'  from those on sS ,

such that { } [ ]{ }s s s
b q q bE T E� , { } [ ]{ }s s s

b q q bT% %� , and 

{ } [ ]{ }s s s
c q q cE S E� . Equation (9) can further be 

simplified by eliminating { }q
bE  and the result is: 

1{ } [ ] ([ ][ ] [ ][ ][ ]){ }s s sq q sq q q q
b q bb q bb s bb s bb bN N T M T F% %�� �

1[ ] [ ] [ ][ ]{ }s s s s
bb q bc q q c cN L S B E��

1[ ] ([ ][ ][ ] [ ][ ][ ]){ }s sq q q sq q q
bb q bc s c bb s bc cN L S B M T F E�� �

1[ ] [ ][ ]{ }s sq q q
bb q bb s rN M T d�� � , (10) 

where 
1 T[ ] [ ][ ] [ ] [ ],q q q q q

bb br rr br bbF R K R B��
1 T[ ] [ ][ ] ([ ] [ ] [ ])[ ],q q q q q q q

bc br rr rc br bc cF R K K R L B�� �
1{ } [ ][ ] { }.q q q q

r br rr rd R K f��
On one hand, we can assemble (10) over all s

and q to obtain an interface system for all 
subdomains as: 

({ },{ },{ }) 0c bF E f% � . (11) 
On the other hand, we can assemble the 
contribution from the primal unknowns (defined 

on corners) in (6) as: 
{ } ({ },{ })c bE G f%� . (12) 

By combining (11) and (12) and eliminating { }cE ,
we obtain the nonconformal FETI-DP interface 
equation for the dual unknowns { }b% , which can 
be solved using a Krylov subspace method. After 
{ }b%  is solved, { }cE  can be obtained from (12)
and the electric field inside each subdomain can be 
obtained by solving (5). 

B. Extension to nonconfomal interface and 
corner meshes 

To further enhance the capability of the LM-
based FETI-DP scheme to deal with arbitrary 
meshes, we now focus on the extension to 
nonconformal corner cases in this section. Assume 
that four subdomains share one global corner edge.
We denote the number of unknowns defined on 
each local corner edge as cN , then call the corner 
with most unknowns as “master” corner and the 
others as “slave” corners so that slave master

c cN N .
Note, that subdomains with more than one 
crosspoint could contain both master and slave 
corners. We impose the Dirichlet continuity 
condition at the corner as: 

master slave ,t tE = E (13) 
in a weak sense, where the subscript t specifies the 
tangential electric field along the corner edge. 

The tangential electric field for the master and 
slave subdomains (taking one slave subdomain for 
example) can be expanded by two independent 
sets of basis functions master{ }cN  and slave{ }cN as: 

slave

master

slave slave slave
, ,1

master master master
, ,1

.
c

c

N
t c n c nn

N
t c n c nn

E
E

�

�

� �8
�

�8�

/
/

E N
E N

 (14) 

By substituting (14) into (13) and testing both 
sides using slave{ }cN , we obtain: 

slv-slv slave slv-mst master[ ]{ } [ ]{ },cc c cc cG E H E�  (15) 
where 

slv-slv slave slave
, , , ,

c
cc mn c m c nG dl

'
� �� N N

slv-mst slave master
, , , .

c
cc mn c m c nH dl

'
� �� N N

Because slv-slv[ ]ccG  is always diagonal, we have: 
slave slv-slv 1 slv-mst master{ } [ ] [ ]{ },c cc cc cE G H E��  (16) 

which means that the corner unknowns defined on 
the slave corners can be represented by those on the 
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master corners. Therefore, one can construct a
global coarse problem by using only the corner 
unknowns on all the master corners.

C. Second-order transmission condition 
The FOTC employed in Section II.A can be 

replaced by a higher-order transmission condition 
to speed up the convergence of the iterative 
solution of the global interface problem [25-27]. 
Among them, the SOTC-TE is of particular 
interest because it can be implemented without 
introducing any extra auxiliary variables on 
subdomain interfaces. When incorporated into the 
dual-primal framework, it does not change the 
sparsity pattern of the subdomain matrices 
compared to that in the FOTC case. The 
subdomain matrix symmetry is also preserved, 
which is highly desirable for the storage and 
factorization by a direct sparse solver [34]. 

For the sth subdomain, the SOTC-TE can be 
written as: 

1ˆ ˆ ˆ( ) ( )s s s s s s
rn n n� ��6 56 � 6 6E E

ˆ[ ( ) ]s s s s
nn�� 56 56 �E Λ  on ,sS (17) 

where ˆ( ) ( )s s s
n n56 � 56E E and s� can be 

determined based on the smallest mesh size and the 
order of basis functions on the subdomain interface 
to account for all the evanescent modes supported 
by the interface mesh [25,26]. More specifically, 

0/ ( ),s j k k� � � � ), with 2 2 1/2
max 0( ) ,k j k k� � �max
2k j kmax( 2
maxj( and 

max min/ ,k h	� where minh denotes the smallest 
mesh size on the subdomain interface.

Adding the transmission conditions from two 
neighboring subdomains and eliminating the 
tangential magnetic field, we have: 

ˆ ˆ( ) ( )
ˆ         ( ) [ ( ) ],

ˆ ˆ( ) ( )
ˆ        ( ) [ ( ) ]

s q s q q q q
b b b

s q q q
b n

q s s q s s s
b b b

s q s s
b n

n n
n

n n
n

� �
� �

� �
� �

� � � � 6 6
8 � � 56 56
� � � � 6 68

� � 56 56�

Λ Λ E
E

Λ Λ E
E

 (18) 

on sq' . It can be seen that in addition to the 
Dirichlet and Neumann continuity conditions, the 
SOTC-TE also enforces the continuity of 

ˆ[ ( ) ]nn56 56E , which is related to the tangential 
variation of the normal magnetic flux density. Due 
to the use of the SOTC-TE, the computation of 
some matrices in Section II.A has to be modified as
follows:

ˆ ˆ[ ] [ ( )( )
s

s s s s s s
bb b bS

M n n�� 6 6�� N N

( ) ( ) ] ,s s s
b n b n dS�� 56 56N N

ˆ ˆ[ ] [ ( )( )
s

s s s s s s
bc b cS

L n n�� 6 6�� N N

( ) ( ) ] ,s s s
b n c n dS�� 56 56N N

ˆ ˆ[ ] [ ( )( )
sq

s s s s s s
bc q b cL n n�

'
� 6 6�� N N

( ) ( ) ] ,s s s
b n c n dS�� 56 56N N

ˆ ˆ[ ] [ ( )( )
sq

sq q q s q q
bc b cL n n�

'
� 6 6�� N N

( ) ( ) ] ,q s q
b n c n dS�� 56 56N N

ˆ ˆ[ ] ( )( )( )
sq

sq s q q s q q
bb b bM n n� �

'
� � 6 6�� N N

( )( ) ( ) ] .s q s q
b n b n dS� �� � 56 56N N

D. Hybrid nonconformal FETI/conformal 
FETI-DP

For the multi-region domain decomposition, 
when a subdomain interface resides within one 
region, it must be mesh-conformal and geometry-
conformal. In this case, [ ]s

bbB in Section II.A is 
reduced to a projection Boolean matrix, [ ]s

bb qN and 

[ ]sq
bbN become identity matrices, and one does not 

have to deal with projections on the geometrical 
crosspoints as described in Section II.B. Thus, it is 
necessary to design an efficient hybrid algorithm to 
take advantage of the partially conformal meshes.

For this, we propose a general crosspoint 
correction technique to ensure good accuracy, fast 
convergence, and a nonsingular global interface 
matrix [33,34]. The basic idea includes the 
following guidelines: (1) the Lagrange multipliers 
need to be split into two when they are defined on 
the edges connecting an inter-region interface and 
an interior interface within one region. (2) By
automatic domain decomposition, it is possible to 
have geometry crosspoints sitting on an inter-region 
interface. If this is the case, convert the original 
corner unknowns into non-corner interface
unknowns, define Lagrange multipliers on these 
crosspoints and split each Lagrange multiplier into 
two. (3) In geometry-nonconformal cases, one 
Lagrange multiplier may be shared by more than 
two neighboring subdomains. In this case, split such 
a Lagrange multiplier according to the number of 
overlapped neighboring subdomains and let each 
Lagrange multiplier after splitting take care of the 
communication from the reference subdomain to 
each neighboring subdomain.
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Actually, Guidelines 1 and 2 are two special 
cases described by Guideline 3. It should be noted 
that splitting Lagrange multiplier introduces extra 
boundary unknowns into the original global 
interface problem, which may lead to a singular 
global interface matrix equation. For this, a corner 
penalty term technique is employed to remove the 
singularity or near singularity due to the 
redundancy [27].

III. NUMERICAL EXAMPLES 
The algorithms described in Section II have

been implemented on different serial and parallel 
computing platforms. In this section, we present 
several numerical examples to demonstrate their
accuracy and convergence performance. For 
antenna array simulations, the repetition of the 
array structure is fully exploited in order to save 
time for generating the mesh and factorizing 
repeated subdomain matrices. 

A. Vivaldi antenna array 
The first example is designed to explore the 

capability of the LM-based FETI-DP method to
analyze large-scale antenna arrays, and compare 
its performance to that of the FETI-DPEM2 [11]
and the Cement-Element (CE)-based FETI-DP 
method [18]. The size of the simulated Vivaldi 
antenna array increases from 36 3 to 1006 100. To 
truncate the computational domain, the first-order 
ABC is placed at one extra unit cell surrounding 
the array in the xy-plane. The distance between 
two adjacent elements in both the x- and y-
directions is set to be 36 mm. Figure 1 (a) shows 
the Vivaldi antenna element, where the height, 
width, and thickness of the substrate are d=33.3
mm, w=34.0 mm, and h=1.27 mm, respectively. 
The lossless substrate has a relative permittivity of 
6.0. The radius of the hollow circle is chosen to be 
R=2.5 mm. The half-width of the slot line varies 
with z according to an exponential function given 
by w(z)=0.25exp(0.123z) mm. This function gives 
a half-width of 15 mm at the open mouth. The 
antenna is fed by a coaxial line with an inner 
radius rin=0.375 mm and an outer radius rout=0.875 
mm from under the ground. A 5-mm coaxial line 
is modeled and then terminated with a waveguide 
port boundary condition with only the TEM mode 
assumed at the end of the coax. 

The convergence history of the iterative 
solution of the global interface problem for the 

1006 100 array simulated by the conformal, LM-
based, and CE-based FETI-DP methods is plotted 
in Fig. 1 (a), and the computed radiation patterns 
are compared in Figs. 1 (b) and 1 (c). The 
BiCGStab iterative solver is employed with a 
stopping criterion of 310� . For this array, the LM- 
and CE-based FETI-DP methods have a similar 
convergence behavior and yield nearly identical 
results to that of the conformal FETI-DP method. 
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FETI-DPEM2 (w/ conformal mesh)

LM FETI-DP (w/ nonconformal mesh)

CE FETI-DP (w/ nonconformal mesh)

(a) 

(b) 

(c) 

Fig. 1. Simulation of the 100 6 100 Vivaldi 
antenna array at 3 GHz. (a) Convergence history, 
(b) broadside scan E-plane relative pattern, and (c) 
broadside scan H-plane relative pattern. 

995 ACES JOURNAL, Vol. 29, No. 12, DECEMBER 2014



In Table 1, we list the computation resources 
used to simulate Vivaldi antenna arrays of 
different sizes by the LM-based FETI-DP method. 
All examples are run on an HP workstation, 
equipped with a 2.66-GHz Intel Xeon processor 
and 12 GB memory. To plot the scalability curve 
as shown in Fig. 2, we record the computation 
time for solving the global interface dual 
unknowns as well as the total computation time. It 
is observed that the computation time increases 
linearly with the total number of unknowns in this 
case.

Table 1: Computational information of the 
nonconformal FETI-DP method for simulating 
various Vivaldi antenna arrays. The computation 
time is in the hour:minute:second format 

Array
Size

# of 
Unknowns

Interface 
Time (# of 
Iterations)

Total 
Time

3 36 3 209,7923 00:00:21 (28) 00:02:20
10 106 3 1,908,5523 00:04:54 (44) 00:13:43
31 316 3 17,410,0803 00:49:27 (51) 02:01:21
100 1006 3 178,235,8323 07:19:58 (40) 19:32:20
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Fig. 2. Computation time as a function of the total 
number of unknowns for various Vivaldi antenna 
arrays. 

Antenna array is a typical case where the 
outgoing wave may propagate towards the 
truncation boundary at an oblique direction. If this 
is the case, no matter how far away the ABC is 
placed, its absorption is limited and the artificial 
reflection may not be reduced to a desired level. 
To effectively reduce the artificial reflection, we 
can employ an oblique ABC as [36]: 

0ˆ ˆ ˆ( ) cos ( )sn jk n n26 56 � � 6 6E E

0
ˆ ˆ( / cos ) ( )sjk t t2� E , (19) 

where ˆ ˆˆ ˆ( )sin cos sin sins s s s s st n. 2 . . 2 .� 6 �  and 
n̂  denotes the outward unit normal vector of the 
planar truncation surface. The angle for perfect 
absorption of this ABC can be tuned by 
parameters s2  and s. . Obviously, (19) is reduced 
to the conventional ABC if o0s2 � . Therefore, we 
can always tune this ABC to minimize the 
reflection error for the analysis of large finite 
phased arrays as long as the direction of the main 
beam of the radiated wave is specified. 

To investigate the performance of the oblique 
ABC, a 20 206  Vivaldi antenna array is 
considered. For the mesh truncation of the upper 
half space, we have two setups. One is a 
hemispherical surface with a base radius of 7% ,
whereas the other is a rectangular surface placed 
1%  away from both the top and the side of the 
antenna array. The size of the rectangular box is 
8.8 9.2 1.33% % %6 6 . Apparently, the second setup 
is computationally more efficient than the first one 
because its computational domain is much smaller. 
However, in the second setup, the radiated field 
will be incident on the top truncation surface at a
much larger angle than in the first one if the 
antenna array is set to radiate away from 
broadside. In this case, the oblique ABC can
provide a good absorption performance while 
minimizing the size of the computational domain. 
The 20 206  Vivaldi antenna array is simulated at 
3.0 GHz using: (1) the conventional ABC with the 
hemispherical truncation surface, (2) the 
conventional ABC with the rectangular truncation 
surface, and (3) the oblique ABC with the 
rectangular truncation surface for the main beam 
( , )s s2 .  steered to o o(60 ,0 ) . The near-zone field 
distributions in the yz-plane are plotted in Fig. 3.
We take the result of Case 1 shown in Fig. 3 (a) as 
the reference solution and enlarge the portion 
close to the antenna array in Fig. 3 (b) for a better 
comparison between the results of Cases 2 and 3,
which are shown in Figs. 3 (c) and 3 (d). For the 
case of o o( , ) (60 ,0 )s s2 . � , Case 3 yields a visually 
much better result than does Case 2, as shown in 
Figs. 3 (c) and 3 (d). The far-field radiation 
patterns calculated in the three cases above are 
compared in Fig. 4, which shows that the result of 
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Case 2 deviates from the reference solution by 3 
dB, whereas the result of Case 3 has a much 
smaller derivation. For Cases 2 and 3, it takes 9.2 
minutes to finish the simulation of one frequency 
point on one computational node which contains 
16 Intel Xeon 2.70-GHz processors. The result of 
the reference case (Case 1) is obtained using the 
hybrid conformal/nonconformal domain 
decomposition solver described in Section II.D 
with 43.5 minutes for one frequency on the same 
node. 

(a)

(b)

(c)

(d)

Fig. 3. Re( )E  for the 20 206  Vivaldi antenna 
array in the xz-plane at 3.0 GHz with steering 
angle set at o o( , ) (60 ,0 ).s s2 . �  (a) Computed using 
the conventional ABC with a hemispherical 
truncation surface, (b) same as (a) but plotted in a 
limited region for the purpose of comparison, (c) 
computed using the conventional ABC with a 
rectangular truncation surface, and (d) computed 
using the oblique ABC with a rectangular 
truncation surface. 
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Fig. 4. Co-polarized radiation patterns for the 
20 206  Vivaldi antenna array in the xz-plane at 3.0 
GHz when the main beam is steered to 

o o( , ) (60 ,0 ).s s2 . �

B. NRL Vivaldi antenna array with a radome 
In this example, we consider the near-field 

interaction between a phased-array antenna and its 
surrounding environment. The antenna array 
adopted was designed by the Naval Research Lab 
(NRL) [37]. A radome is placed on the top of the 
array for mechanical protection. The hybrid 
nonconformal FETI/conformal FETI-DP method 
is employed to solve this multi-region problem. 

In the 11 6 11 dual-polarized array, each 
Vivaldi antenna element consists of three layers of 
metal printed on a dielectric substrate with a 
height of 246.253 mm, a width of 35.56 mm, and a 
thickness of 3.3274 mm. The relative permittivity 
of the dielectric slab is 2.2 0.0009r j� � � . The 
metallic layers are equally spaced and are 
connected by vias with a radius of 0.79 mm. All
antenna elements are connected to each other by 
solid metal posts and mounted vertically on a 
finite ground whose size is 528 mm 6  528 mm. 
For more geometrical details, the reader is referred 
to [37].

At 3.02 GHz, the hemispherical radome has a 
base radius of 5.5% . The thickness and the relative 
permittivity of the radome are 0.1%  and 

2.0 1.0,r j� � �  respectively. The conventional 
first-order ABC is used on a hemispherical surface 
placed 1%  away from the exterior boundary of the 
hemispherical radome. In this case, the first-order 
ABC is a better choice because the truncation 
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surface can be made conformal to the radome to 
reduce the size of the computational domain. In 
addition, it provides good absorption for waves 
radiating along any direction. Figure 5 shows the 
radiation patterns of the array with and without the 
radome. All radiation patterns are normalized by 
the value in the maximum radiation direction of 
the array without the radome. It can be seen that 
due to the loss of the radome, the emitted power in 
the main beam direction is reduced by around 3 
dB. The result using conformal meshes on the 
inter-region interfaces is also plotted for 
comparison. Apparently, using nonconformal 
inter-region interface meshes does not sacrifice the 
accuracy of the solution since two sets of data are 
on the top of each other. The field distribution is 
also plotted in Fig. 6 for the cases with and 
without the radome. Finally, the convergence 
history the iterative solution of the global interface 
problem for the array with the radome is given in 
Fig. 7. It should be noted that for large-scale 
problems, the nonconformal meshes on the 
interfaces between different regions may introduce 
some numerical resonance and yield slower 
convergence than a conformal mesh does. 
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Fig. 5. Comparison between the radiation patterns 
for the array with and without the radome at 3.02 
GHz and steering angle o60s2 � �  and o0 .s. �

(a) 

(b) 

Fig. 6. | |E in the o0. �  plane for H-pol excitation 
at 3.02 GHz and steering angle o60s2 �  and 

o0s. � . (a) The NRL array itself, and (b) the NRL 
array with a radome. 
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Fig. 7. Convergence history of the iterative 
solution of the global interface problem for the 
NRL array with the radome. 

C. Subwavlength wave guiding and focusing 
As the last example, we simulate a taper 

transition device which can guide waves from a 
wavelength-scale transmission line to a 
subwavelength-scale one. The basic structure is a 
periodic arrangement of metallic bricks standing 
on a metallic surface, as shown in Fig. 8 (a). The 
period of each brick-groove pair is 

/ 8 0.2 mm,d %� �  the length and height of each 
metallic brick are 0.5l d�  and 1.5 ,h d�  and the 
width shrinks from in 16w d�  to out 0.5w d�
linearly through an 18-period transition. The input 
and output ports of the entire device are connected 
to the taper structure by 12- and 18-period uniform 
waveguides, respectively. The entire structure is 
made of aluminum, which has 

4 63.39 10 3.5 10r j� � � 6 � 6  at 1.6 mm% � . At 
this frequency, the aluminum can also be modeled 
as a Perfect Electric Conductor (PEC), because the 
modal effective index as a function of w for a PEC 
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is almost the same as that for the aluminum [38]. 
In the simulation, the grating lies on an infinitely 
large ground plane, which is also modeled as a 
PEC. To excite the fundamental TM-like mode 
whose magnetic field is parallel to the groove 
orientation, a current sheet is placed 
perpendicularly to the wave propagation direction 
at the input port. The ABC or PML truncation is 
placed one wavelength away from the top and four 
sides of the device. In this paper, we implement 
the PML as a diagonally anisotropic artificial 
medium, with [ ]r r D� �� [ ]� �  and [ ]r r D� �� [ ]� � , where: 

0 0
[ ] 0 0

0 0

a
D b

c

( )
* +� * +
* +, -

. (20) 

The diagonal entries of [ ]D  can be further written 
as / ,y z xa s s s� / ,z x yb s s s� and / ,x y zc s s s� where 

,xs ,ys  and zs  are functions of spatial variables x,
y, and z, respectively. In the PML region, ,xs ,ys

and zs  can be expressed as ,as s js
 

� �  where a
could be x, y, or z, and s
  and s

  are real numbers 
with 1s
 �  and 0,s

 �  which are used to control 
the attenuation of the evanescent and propagating 
waves in the PML [1]. 

To compare the convergence performance of 
the FETI-DP method with the SOTC-TE when the 
computational domain is truncated using either the 
ABC or the PEC-back PML, we discretize the 
entire computational domain with the same mesh, 
reset the material properties of the tetrahedral 
elements in the PML region, and change the 
boundary condition at the exterior boundary. With 
this, the number of unknowns using two different 
truncations remains roughly the same. When the 
entire computational domain is divided into 512 
subdomains, there are 3,342,990 primal 
unknowns, 724,544 dual unknowns, and 22,933 
corner unknowns for the ABC truncation, whereas 
those for the PML truncation are 3,302,780,
719,112, and 22,932, respectively. Figure 8 (b) 
shows the simulated electric field intensity 
distribution in the plane 30 μm  above the 
waveguide. As can be seen, when propagating in 
the taper, the mode size becomes smaller and 
smaller with a gradually increased intensity, which 
demonstrates the wave squeezing and focusing 
phenomenon observed in the experiment [38]. The 
convergence history of the iterative solution of the 

global interface problem using the FETI-DP 
method with the SOTC-TE and the cement 
element method with the SOTC-FULL [26] is 
given in Fig. 9 for both the ABC and PML 
truncations. In both cases, the FETI-DP method 
outperforms the cement element method in terms 
of iteration steps. Also, the convergence does not 
slow down too much when the ABC is replaced 
with the PML. 

(a) 

(b) 

Fig. 8. Subwavelength waveguiding and focusing 
device. (a) Geometry; the waveguide width 
transits from in 16L d�  to out 0.5L d�  after 18 
periods, and (b) electric field in the plane 30 μm
above the waveguide. 

Fig. 9. Convergence history of the iterative 
solution of the global interface problem when the 
computational domain is truncated by ABC and 
PEC-backed PML. 
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IV. CONCLUSION 
In this paper, we presented an overview of our 

recent effort on the domain decomposition finite 
element analysis of large-scale electromagnetic 
problems. First, we described the formulation of 
the LM-based FETI-DP method to deal with 
nonconformal interface and corner meshes. Then 
we discussed an approach to employ a higher-
order transmission condition to improve the 
convergence performance of the interface iterative 
solution. Afterwards, we introduced a hybrid 
nonconformal FETI/conformal FETI-DP scheme 
to model multi-region electromagnetic problems, 
which relies on a general corner correction 
technique to handle mesh-nonconformal and 
geometry-nonconformal meshes on the inter-
region interface. Finally, we gave a few numerical 
examples to demonstrate the finite element 
analysis of various antenna arrays, where we 
employed an oblique ABC designed for absorbing 
waves radiating from an array. In addition, we 
validated the PML mesh truncation through the 
simulation of a wave-guiding and focusing device.
The application examples demonstrated that the 
finite element-based DDM is a powerful numerical 
simulation technique for the analysis of large-scale 
electromagnetic problems. 
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