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Abstract ─ In order to further improve the 
performance of the Norm Constrained Capon 
Beamforming (NCCB) algorithm, a Modified 
Norm Constraint Capon algorithm (MNCCB) is 
proposed and investigated in detail. The proposed 
MNCCB algorithm is realized by exerting an 
orthogonal projection on the array weight vector 
and restricting the norm constraint to enhance the 
array weight vector constraint when Array 
Steering Vector (ASV) mismatch is large. The 
simulation results show that the proposed MNCCB 
can provide stronger robustness against ASV 
mismatches and can achieve higher output Signal 
to Interference plus Noise Ratio (SINR), compared 
with existing adaptive beamforming algorithms. 

Index Terms ─ Norm constraint, orthogonal 
projection, robust adaptive beamforming. 

I. INTRODUCTION 
Array signal processing has been widely used 

in radar, mobile communications, sonar and 
microphone array speech processing. Adaptive 
beamforming is one of the hottest topics in array 
signal processing. As for adaptive beamformer, it 
can adaptively adjust weight vector to achieve 
maximum gain at the direction of desired signal 
and suppress interferences by forming nulls at the 
directions of interferences [1-3]. To meet these 
applications, many beamformers have been 
proposed, such as Standard Capon Beamformer 
(SCB), Diagonal Loading SCB (DL-SCB) and 
NCCB [4-14]. However, the SCB is very sensitive 
to the ASV mismatch and may suppress the signal 
of interest, which might reduce the array output 

SINR [4-6]. As for the DL-SCB algorithm, 
although it can improve the robustness of the SCB, 
it is difficult to choose the optimal diagonal 
loading factor and it may increase the power noise 
[7]. Another effective beamformer is the Robust
Capon Beamforming algorithm (RCB) [9], which 
can enhance the robustness of the DL-SCB. It is 
proved that RCB is equivalent and belongs to the 
class of diagonal loading. The RCB may lose its 
interference suppression capability when the 
mismatch is large. Recently, a popular 
beamformer named as NCCB is studied to achieve 
higher performance compared with the basic SCB 
algorithm for small ASV mismatch [11,13], while
its performance is not good for large ASV 
mismatch. 

In this paper, an MNCCB is proposed to 
further improve the performance of NCCB for 
large ASV mismatch by using the orthogonal 
projection and norm constraint techniques. The 
proposed MNCCB algorithm can ensure 
approximate orthogonality between the weight 
vector and noise subspace, which significantly
improves the robustness performance with respect 
to ASV mismatch. The detailed theoretical 
analysis and analytical expression of the proposed 
MNCCB algorithm is provided in detail. The 
simulation results demonstrate that the proposed 
MNCCB algorithm has excellent performance 
against the ASV mismatches.

II. SIGNAL MODEL 
We consider an N  elements omnidirectional 

array, spaced with element distance of d, and 
M far field narrow band signals are incident on 
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this antenna array. A signal ( )ks t is incident from 
angle k� , and the received data X can be expressed 
as follows: 

( ) ( ) ( )t t t� �X AS N , (1) 
where � �1 2( ) ( ), ( ), , ( )

T

Nt x t x t x t�X �, ( )N, ( is 1N�  snap data 

vector. � �0 1 1( ) ( ), ( ), , ( ) T

Mt s t s t s t	�S 1, ( )1, ((1 is a vector, which 
contains the complex signal envelops from 
M narrow-band signal sources. 

� �1 2( ) ( ), ( ), , ( ) T
Nt n t n t n t�N �, ( ) T
N, (( is a vector of zero-

mean white Gaussian noise with variance of 2
n


and A is an array manifold matrix that can be 
written as � �0 1 1( ), ( ), , ( ) .M� � � 	�A a a a 1, ( 1, (,  Here, 

( -1)
1( )=[1, , , ] ,k kj j N Te e� ��a ,, �( 1)-1)-1)j ((( 1,2, , ,k M� , ,, represents 

an ASV in the direction of k� , and k�  is the phase 
difference that can be expressed as:

2 sin( )k kd�� �



� . (2) 

Assume that the signal and noise are 
statistically independent, and the covariance of the 
received data can be written as: 

� � 2( ) ( )H H
s nE t t 
� � �R X X AR A I , (3) 

where0 � �E is an expectation operator; 

� �( ) ( )H
s E t t�R S S represents the autocorrelation 

matrix of the complex signal envelops. I is the 
unit matrix and H� denotes the Hermitian 
transpose. 

On the basis of the previous researches on the 
SCB, we assume that the ASV of the desired 
signal 0( )�a  is known precisely. Then, the Capon 
beamformer can be expressed as: 

0

ˆmin
,

s ( ) 1

H
i n

Ht �

�
��
�

���

w
w R w

w a
(4) 

where w is the beamformer weight vector. ˆ
i n�R  is 

the inference-plus-noise covariance matrix, which 
is commonly replaced by the sampled covariance 
matrix in the practical applications and it can be 
written as: 

1

1ˆ ( ) ( )
K

H

i
i i

K �

� �R X X , (5) 

where K  is the number of snapshots collected by 
the beamformer. The optimal solution of (4) is 
given by: 

1
0

1
0 0

( )
( ) ( )

i n
opt H

i n

�
� �

	
�

	
�

�
R aW

a R a
. (6) 

The array output power is: 
1

1
0 0

1
( ) ( )

H
out i n H

i n

P
� �

	
� 	

�

� �W R W
a R a

. (7) 

The array output SINR is expressed as: 
22

0

22 1
0 0

1 1
0 0

2 1
0 0

( )

( ) ( )
( ) ( )

ˆ( ) ( )

H
s opt

opt H
opt i n opt

H
s i n

H
i n i n i n

H
s i n

SINR

 �


 � �

� �


 � �

�

	
�

	 	
� � �

	
�

�

�

�

W a
W R W

a R a
a R R R a

a R a

, (8) 

where 22
0 ( )s E s t
 � �� � � is the desired signal power. 

The SCB algorithm can obtain high output SINR 
when the ASV of the desired signal is known 
accurately. However, in practical applications, 
there often exist differences between the assumed 
signal arrival angle and true arrival angle.
Therefore, the ASV may be imprecise, resulting in 
steering vector mismatches [12]. It is found that 
the SCB cannot provide good robustness against 
ASV errors between the presumed and actual 
ASVs. We assume that a  denotes the actual ASV 
of the desired signal. We can get: 

� ��a a , (9) 
where �  is an unknown complex vector which 
describes the effect of steering vector distortion. In 
this case, the mismatch of the ASV may result in 
desired signal suppression and get poor output 
SINR. Thus, robust adaptive beamforming is 
necessary in practical applications. 

In order to improve the robustness of the SCB,
an effective NCCB algorithm is widely 
investigated, which is realized by using a norm 
constraint on the weight vector. Thus, the NCCB
is formulated as follows: 

0
2

ˆmin
,s ( ) 1

|| ||

H

Ht �
�

�
��
� �
�

���

w
w Rw

w a
w

 (10) 

where 0( )�a is the presumed signal steering 
vector, �  denotes the 2l  norm and �  is the norm 
constraint parameter. From the analysis of [13], 
we can see that the NCCB can enhance the 
robustness of the SCB. However, the analysis and 
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simulation results show that its efficiency is not 
good enough when the ASV mismatch is large.
Although, the performance of the NCCB can be 
controlled by ,�  the optimal method for obtaining 
�  is difficult. 

III. MODIFIED NORM CONSTRAINT 
ROBUST BEAMFORMING 

In this section, we develop an MNCCB to 
improve the robustness performance, which is 
realized by adding an orthomodular constraint on 
the NCCB. Here, we first discuss the formulation 
of the MNCCB and then give the detailed 
theoretical analysis. 

Define the projection matrix as ˆ ,m	R  where 
m is positive integer. By projecting the matrix 
ˆ m	R  to the weight vector, we can get ˆˆ = m	w R w .

Thus, the MNCCB algorithm can be described as: 

0

2

ˆmin

 ,s ( ) 1
ˆ|| ||

H

H

m

t �

�	

�
��
� �
�

���

w
w Rw

w a

R w

(11) 

where � is a constraint parameter with a small 
value. It found that the optimization of (11) is a 
convex problem, which can be solved by using 
inter-point method [15]. In this paper, Lagrange 
multiplier method is employed to find the solution 
of (11).

Firstly, let S  be the set that is defined by the 
constraints in (11): 

2
0

ˆS={ | ( ) 1,|| || }H m� �	� �w w a R w . (12) 
Define: 

2
1

ˆ ˆ( , , ) (|| || )

( 2),

H m

H

f 
 � 
 �

�

	� � 	

� 	 	 �

w w Rw R w
w a aw

(13) 

where 
  is the real-valued Lagrange multiplier 
and 0
 �  satisfying ˆ + >0.
R I  By minimizing 

1( , , )f 
 �w  with respect to ,w  we have: 

1
ˆ( , , ) Hf 
 � �w w Rw .S !w (14) 

From the discussion of the SCB algorithm shown 
in (6), a is replaced by a . Then, we get: 

1

1 1

ˆ
ˆ =

ˆ

	

	 	

R aw
a R a

. (15) 

Consider the condition: 
2

1 2

ˆ

ˆ[ ]

H

H
�

	

	
"

a R a
a R a

. (16) 

We can rewrite 1(w, , )f 
 �  as follows: 
1

1

1

2 1

ˆ ˆ ˆ( , , ) [ ( ( ) ) ]
ˆ ˆ ˆ( ( ) )

ˆ ˆ ˆ[ ( ( ) ) ]
ˆ ˆ ˆ( ( ) )

2 .

m H m H

m H m

m H m

H m H m

f 
 � � 





� 


� 


� �

	 	 	

	 	

	 	 	

	 	 	

� 	 �

�

	 �

	 �
	 �

w w R R R a

R R R
w R R R a

a R R R a

(17) 

Therefore, for the fixed parameters 
  and � , the 
unconstrained minimizer of 1( , , )f 
 �w  is given 
by: 

1
,

ˆ ˆ ˆˆ ( ( ) )m H m

 � � 
 	 	 	� �w R R R a . (18) 

Substituting (18) to (17), we can rewrite (17)
as: 

2 1
2

ˆ ˆ ˆ( , ) ( ( ) )
ˆ2 .

H m H m

H

f 
 � � 



� �

	 	 	� 	 �

	 � �

a R R R a

w Rw
 (19) 

By considering the maximization of 2 ( , )f 
 �
with respect to � , we have: 

1

1
ˆ

ˆ ˆ ˆ( ( ) )H m H m
�


 	 	 	
�

�a R R R a
. (20) 

and we can get: 

1

3 2

1 .
ˆ ˆ ˆ( ( ) )

ˆ( ) ( , )

H m H m

f f





 
 � 
�

	 	 	
�

�

� � 	

a R R R a
(21) 

Thus, the maximization of 3 ( )f 
  with respect 
to 
  can be expressed as: 

2

1 2

ˆ ˆ ˆ( ( ) )
ˆ ˆ ˆ[ ( ( ) ) ]

H m H m

H m H m


 �



	 	 	

	 	 	

� �
�

a R R R a
a R R R a

. (22) 

Hence, the optimal Lagrange multiplier 
̂  can 
be efficiently obtained by using a Newton’s 

method. 
By introducing �̂ into ,ˆ 
 �w , we get: 

1

1

ˆ ˆ ˆ( ( ) )
ˆ

ˆ ˆ ˆ( ( ) )

m H m

H m H m






	 	 	

	 	 	

��
�

R R R aw
a R R R a

, (23) 

which satisfies:
ˆ 1H �w a , (24) 

and 
2ˆ ˆ|| ||m �	 �R w . (25) 

In addition, it is observed that the proposed 
MNCCB is also an improved DL-SCB algorithm 
and the 
  is the diagonal loading factor. The 
optimal diagonal loading can be precisely 
calculated by solving the constrained quadratic 
optimization problem. 

LI, MAO, YU, LI, YUE: ROBUST ADAPTIVE ARRAY BEAMFORMING BASED ON MODIFIED NORM CONSTRAINT ALGORITHM 1062



Let us pay attention to the constraint 
2ˆ ˆ| || .m �	 �R w  According to Schmidt’s orthogonal 

subspace theory, R̂  can be decomposed as [16]: 

� � 2

2

ˆ

,

H
s

s n H
n n

H H
s s s n n n







� �� �
# $# $

� � � �

sΛ 0 U
R= U U

0 I U

=U Λ U + U U
 (26) 

where sU  represents the desired signal-plus-
interference subspace, which is formed by P
interferences and one desired signal. nU is the 
noise subspace. � �1, 2,s ,Λ Mdiag 
 
 
� �, M
, MM  is the big 
eigenvalues corresponding to signal and 
interferences. On the basis of the above 
discussion, we have: 

2

2

1ˆ ( )m m H Hn
s s n nm

n i

diag 


 


	 � %� %� �� �� � & &
� �� '� '

R U U U U . (27) 

We can clearly see that 
2

1n

i






" . Thereby, 

2

( )mn

i






 converges to zero when m  is large. Taking 

above discussions into consideration, we can get 
2

lim ( ) 0mn

m
i

diag 


()

� %
�� &

� '
, which means: 

2 ˆlim m m H
n n nm

 	

()
�R U U . (28) 

In practical applications, m is usually a fixed 
and finite integer, and hence the equation (28) can 
be satisfied, which means that the noise subspace 

H
n nU U  can be obtained without decomposition of 

the covariance matrix R̂ . Furthermore, it is 
indicted that the number of incident signals is not 
necessary for the estimation. 

From equations (26) and (28), we can see that 
ˆ m	R is an orthogonal projection matrix. The 

constraint 2ˆ ˆ| ||m �	 �R w  not only imposes norm 
constraint on the weight vector, but also ensures 
approximate orthogonality between the weight 
vector and noise subspace. Thus, the MNCCB 
algorithm can effectively improve the robustness 
of the SCB against large ASV mismatch. 

The proposed MNCCB algorithm can be 
summarized as follows: 

The MNCCB algorithm 
Step 1) Compute the covariance matrix R̂ ; 
Step 2) Compute the power of covariance matrix 
ˆ m	R ; 

Step 3) Project ˆ m	R  to the weight vector; 
Step 4) Solve (22) to obtain 
̂ ; 
Step 5) Substitute 
̂  to (23) to get ŵ .

IV. NUMERICAL EXAMPLES 
In this section, we will discuss the 

performance of the proposed MNCCB algorithm. 
A Uniform Line Array (ULA) with 10 
omnidirectional antennas spaced half a wave 
length uniformly. The Direction-of-Arrival (DOA) 
of the desired signal is 0°. The DOAs of the two 
independent interferences are 30° and 50°, 
respectively, while the Interference to Noise Ratio 
(INR) is INR= 30 dB. The number of snapshots is 
K � 100. The other key parameters for the 
proposed MNCCB algorithm are m � 2 and 
� � 0.03. The simulation results of the proposed 
MNCCB are obtained in comparison with SCB, 
RCB [9], ESB [8], NCCB [11], DL-SCB [7] and 
SQP [10]. 0.3N* �  is used for the RCB, and the 
diagonal loading factor in [7] is twice as great as 
the noise power, and � � 0.11 is used for NCCB. 
In all experiments, 100 Monte Carlo runs are used 
to obtain each simulation point. 

Example 1: Exactly known signal steering vector
In this example, we assume the presumed 

DOA of desired signal is also set as 0°. The 
normalized beampattern plots of the mentioned 
beamformers with the SNR= 0 dB are shown in 
Fig. 1 and the output SINR of these beamformers 
are shown in Fig. 2. It can be seen from the Fig. 1, 
that the SCB, NCCB and MNCCB perform well 
with the exactly known ASV. The peak response 
of these algorithms are well agreed with the actual 
direction of desired signal, while the nulls are 
located at the directions of interferences, which 
can help to suppress unwanted interferences. In 
addition, it is observed that the MNCCB algorithm 
has the lowest sidelobe level. From Fig. 2, we can 
see that the MNCCB algorithm has the highest 
output SINR because it exhibits deeper null than 
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other methods. Thus, we can conclude that our 
proposed MNCCB algorithm outperforms 
previously reported algorithms. 
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Fig. 1. Normalized beampatterns at zero pointing 
error. 
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Fig. 2. Output SINR versus SNR at zero pointing 
error. 

Example 2: Signal look direction with 5° mismatch
In the second experiment, the presumed DOA

is 5° of the desired signal. The normalized 
beampattern plot of the proposed MNCCB 
beamformer with the input SNR=0 dB is shown 
in Fig. 3 in comparison with SCB and NCCB 
algorithms. It can be seen from Fig. 3, that the 
SCB with 5° ASV mismatch completely fails and 
its main lobe departs from the actual signal 
direction, which means that it cannot distinguish 
the desired signal and interferences, and hence will 
suppress the desired signal. Additionally, although 
the performance of the NCCB is better than SCB, 
its main lobe also departs from the actual signal 
direction. However, our proposed MNCCB 

algorithm shows excellent performance in 
interference suppression, which gives deep nulls at 
the directions of inferences. Thus, the response 
peaks for the MNCCB estimation algorithm is 
located at the actual direction of desired signal 
without target signal cancellation. 
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Fig. 3. Normalized beampatterns at 5° pointing 
error. 

Figure 4 demonstrates the output SINR 
performance of the above mentioned beamformers 
versus the input SNR. We can see that the 
proposed MNCCB algorithm has better 
performance compared to other beamformers 
when the ASV mismatch is 5°. The SCB and DL-
SCB algorithms suffer from severe degradation 
when SNR increases from 0 dB to 30 dB, while 
the performance of the NCCB significantly 
degraded at low SNR. In other words, the 
proposed MNCCB algorithm is superior to other 
beamformers. 
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Fig. 4. Output SINR versus SNR at 5° pointing 
error. 

LI, MAO, YU, LI, YUE: ROBUST ADAPTIVE ARRAY BEAMFORMING BASED ON MODIFIED NORM CONSTRAINT ALGORITHM 1064



Figure 5 exhibits the output SINR 
performance with respect to the number of training 
snapshots K  at SNR=10 dB. It can be seen that 
the proposed MNCCB algorithm still has highest 
robustness against the ASV mismatch and better 
performance than other methods. 
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Fig. 5. Output SINR versus K at 5° pointing error. 

Example 3: Effect of the signal direction mismatch
In this experiment, the steering direction error 

is preselected as [-8°-8°]. The performance of 
output SINR versus signal direction mismatch is 
given in Fig. 6. We can clearly see that the 
performance of the SCB, DL-SCB and RCB are 
severely deteriorated with an increase of the signal 
direction mismatch, while the output SINR of
MNCCB is stable. It is worth noting that when the 
angle error is 8°, the output SINR of the NCCB 
and SQP are -7.5 dB and 2.2 dB, respectively, 
while the output SINR of the MNCCB is 7.9 dB, 
which exceeds the NCCB 15.4 dB. 
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Fig. 6. Output SINR against pointing error. 

Example 4: Effects of the parameters m and �
In this example, we will discuss the effects of 

the parameters m  and � on the performance of
the MNCCB algorithm with the presumed DOA is 
5°. The output SINRs with different m  and �  are 
shown in Fig. 7. It can be seen that the MNCCB is 
not insensitive to parameter m and � . The output 
SINR curves are almost the same for different m
and � .The proposed MNCCB beamformer can 
provide a good performance over a wide range of 
�  making the proposed MNCCB operable and 
practical compared with previously proposed 
methods. 
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Fig. 7. Output SINR versus SNR. 

V. CONCLUSION 
In order to improve the degradation of 

adaptive beamformer with large ASV mismatch, a 
robust adaptive beamformer denoted as MNCCB 
was proposed and its performance was verified in 
detail. The proposed MNCCB was realized via the 
modification of the norm constraint, which was to 
add an orthogonal projection in the early reported 
NCCB to improve its robustness. As a result, the 
proposed MNCCB could give better performance 
than the NCCB and the diagonal loading 
algorithms. Theoretical analysis and numerical 
examples were presented to improve the 
performance of previous beamformers. Simulation 
results demonstrated that the proposed MNCCB 
can not only provide better interference 
suppression, but also achieve higher output SINR 
with steering vector mismatch in comparison with 
existing popular robust beamforming algorithms. 
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