
Biologically Inspired Optimization of Antenna Arrays 

Paolo Rocca 1 and Randy L. Haupt 2

1 ELEDIA Research Center, Department of Information Engineering and Computer Science 
University of Trento, Via Sommarive 5, Trento, Italy 

paolo.rocca@disi.unitn.it 

2 Department of Electrical Engineering and Computer Science 
Colorado School of Mines, Golden, CO 80401, USA 

rhaupt@mines.edu

Abstract ─ Modeling biological evolution on a 
computer began in the 1960s with evolution 
strategies in Europe and genetic algorithms in the 
United States. Genetic algorithms were introduced 
to the antenna community in the early 1990s. 
Since that time, they have become ubiquitous in 
computational electromagnetics and standard 
options on commercial software packages. Other 
biological design methods based upon biological 
processes in nature have also been introduced.
This article provides an introduction to genetic 
algorithms, particle swarm optimization, and ant 
colony optimization. Several examples of antenna 
array optimization are presented to illustrate the 
power of these algorithms. 

Index Terms ─ Ant colony optimization, antenna 
arrays, genetic algorithms, numerical optimization, 
particle swarm optimization, phased arrays. 

I. INTRODUCTION 
Modeling biological evolution on a computer 

started in the 1960s when Rechenberg [1]
introduced evolution strategies while Holland [2]
introduced genetic algorithms. Evolutionary 
algorithms with real-valued solutions had a parent 
and a mutated version of a parent. Genetic 
algorithms with binary encoded solutions used 
populations of variables and crossover between 
variables to add variety. Goldberg [3] launched 
global optimization into the mainstream through 
applications of genetic algorithms to practical 
problems. 

Antenna applications of genetic algorithms 

began in the early 1990s [4]. Since that time, 
thousands of papers and some books have been 
written about antenna optimization using a genetic 
algorithm [5], [6]. Later in the 1990s, other 
biologically inspired approaches to random 
optimization appeared. The antenna community 
quickly picked up on these algorithms and tackled 
optimization with a new flare. All of these 
algorithms are random searches with the ability of 
jumping out of local minima in an effort to find 
the global minimum. In spite of the claims that one 
random search algorithm is better than another, the 
No Free Lunch (NFL) theorem says that the 
computational cost of finding a solution for a class 
of mathematical problems is the same for any 
random search algorithm when averaged over all 
problems in the class. Thus, tweaking the 
parameters of one algorithm can cause it to 
outperform another algorithm for a handful of 
problems but not for all problems. 

This paper presents three antenna array 
optimization applications that are solved using 
three different global search algorithms. We do not 
advocate one algorithm over the other because of 
the NFL theorem. These algorithms do not 
guarantee the “best” solution, but they usually find 

very good solutions that meet specifications. 

II. GENETIC ALGORITM 
The inspiration for the Genetic Algorithm or 

“GA” came from genetics and natural selection 
[7]. The GA starts with a list of randomly 
generated solutions. The list is called the 
population and each solution is an individual or 
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chromosome. The original GAs, had the solutions 
encoded into binary, but today both binary and 
continuous GAs are used [8]. Each solution is 
evaluated by the objective function output.
Maximization problems have a fitness while 
minimization problems have a cost. Those 
chromosomes with a low fitness are discarded, 
while those with a high fitness are retained in the 
population (natural selection). The most fit 
chromosomes have the highest probability of 
mating or combining chromosomes in such a way 
as to create new chromosomes or offspring that 
replace the chromosomes discarded in natural 
selection. Finally, chromosomes in the new 
population are mutated (randomly changes made 
to the chromosome). The fitness of this generation 
is evaluated, then a new generation begins with 
natural selection. This process continues until a 
suitable solution is found. 

In our first example of using biologically 
inspired algorithms to optimize antenna arrays, we 
use the binary GA to design a dynamically thinned 
array that suppresses sidelobe interference [9].
Each element can be either connected to (i.e., 
element is on) or disconnected from (i.e., element 
is off) the beam forming network by means of a 
switch (Fig. 1). The GA maximizes a quantity that 
is proportional to the Signal-to-Noise plus 
Interference Ratio (SINR) by determining the best 
configuration for the switches.

Consider a uniform array of 64 half-
wavelength spaced elements. The interference 

configuration is supposed static with two 
interfering signals impinging on the antenna from 

�421 �� and �1132 �� , while the desired signal 
arrives from broadside ( �90�� ). The power of 
each interfering signal is 30 dB above that of the 
desired signal, while the background noise
contribution is negligible. The values of the fitness 
function, defined according to [10], and of the 
SINR are shown in Fig. 2 (a) for the best 
individual (i.e., solution) of the GA population for 
each generation throughout the optimization 
process. It is worth noting how the SINR increases 
generation after generation starting from very low 
values close to -5 dB up to almost 25 dB. This is 
achieved through the generation of deeper and 
deeper sidelobe nulls in the interference directions.
In particular, Fig. 2 (b) shows the depth of the 
nulls in the directions of the two interferences for 
each generation. Although the fitness always stays 
the same or goes up, the null depths can go up, 
stay the same, or go down with each generation.
One null may go down a lot while another null 
may go up, but on the average, the SINR goes up.

The array factor and the corresponding on-off 
configuration of the switches obtained by the best 
solution of the GA optimization at the end of the 
optimization are shown in Figs. 3 (a) and 3 (b), 
respectively. It is evident in Fig. 3 (a) that the GA 
is effective in suppressing the interferences by 
placing deep nulls in the sidelobe region in their 
directions of arrival. 

Fig. 1. Sketch of a dynamic thinned array. 
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(a) 

(b) 

Fig. 2. Behavior: (a) of the fitness function and of the SINR for the best solution defined by means of the 
GA, and (b) of the null depths in the directions of the interferences versus the iteration index. 
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(a) 

(b) 

Fig. 3. Plot: (a) of the power pattern with arrows along the interference directions, and (b) of the on-off 
configuration of the switches for the best solution of the GA optimization at the final generation. 

III. PARTICLE SWARM 
OPTIMIZATION 

Particle Swarm Optimization (PSO) models 
the swarming or flocking animals and their motion 
[11][12]. PSO has a random population matrix like 
the GA, but the rows in the matrix are called 
particles instead of chromosomes. Particles are 
potential solutions that move in a particular 
direction on the cost surface with a certain 
velocity. Particles update their positions and 
velocities using formulas based on the knowledge 
about the best solution achieved by each particle in 
its movements (i.e., personal best) and by the 
complete swarm of particles (i.e., global best). 

Our second example applies PSO to optimize 
the design of a Time-Modulated Linear Array 
(TMLA) [13], allowing the generation of multiple 
beam patterns on receive. As for the antenna 
architecture of a TMLA, it is very similar to that 
of the thinned array shown in Fig. 1. Unlike 
thinned arrays, in TMLAs the switches are 
periodically turned on and off by means of proper 
time switching sequences such that the average 

harmonic patterns generated within the modulation 
period are characterized by user-defined properties 
[13]. 

The example TMLA has 16 elements with 
half-wavelength spacing. The goal is to 
simultaneously generate sum and difference 
patterns using the first (h=1) and central (h=0) 
harmonic radiation patterns. The two beam 
patterns must have the minimum Sidelobe Level 
(SLL) of the secondary lobes. Furthermore, the 
level of the higher harmonic terms (h>1), the so-
called Sideband Level (SBL), generated by the 
periodic time-modulation of the switches should 
be as low as possible. Towards this aim, the cost 
function is defined according to the guidelines of 
[13]. 

The array patterns of the best solution are 
shown in Fig. 4. Figure 4 (a) shows the difference 
and sum patterns generated by means of the 
TMLAs at the central (h=0) and first (h=1) 
harmonic radiation when controlling the switches 
according to the on-off configuration of Fig. 4 (b). 
In Fig. 4 (b), the bars represent the instants when 
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the elements are on while the elements are 
disconnected from the feeding network in the 
remaining part of the modulation period. 

Figure 5 (a) is a graph of the different 
components of the cost function, related to the 
SLL at both h=0 and h=1, and of the SBL, as well 
as the cumulative cost function values for the best 
solution of the PSO at each iteration. SLLs of -17 
dB are achieved for both power patterns [Fig. 4 

(a)] and the SBL of the higher harmonics is 
effectively suppressed for h>1 [Fig. 5 (b)]. The 
percentage of power, with respect to the total, 
associated to the pattern at the central and first 
nine harmonics is shown in Fig. 6. It is possible to 
observe that the largest amount of power is used 
for the sum and difference patterns at h=0 and 
h=1, while the power gets quickly to zero for 
higher harmonic modes. 

(a) 

(b) 

Fig. 4. Plot: (a) of the power patterns generated by the TMLA for h=0 and |h|=1, and (b) of on-off time-
modulation sequence for the best solution of the PSO optimization at convergence. 
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(a) 

(b) 

Fig. 5. Behavior: (a) of the cost function terms and of their sum for the best solution defined by means of 
the PSO versus the iteration index, and (b) of the SBL as a function of the harmonic index. 
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Fig. 6. Percentage of individual power associated to the harmonic radiations. 

IV. ANT COLONY OPTIMIZATION 
Ant Colony Optimization (ACO) is based on 

the behavior of ant colonies in obtaining food and 
carrying it back to the nest [14]. When ants search 
for food, they emit a pheromone (chemical) along 
their trail. Other ants follow the pheromone path to 
the food while laying down more pheromone.
Shorter paths to the food result in stronger trails of 
pheromone, because the pheromone evaporates 
with time. Stronger pheromone paths are also the 
shortest paths, so they attract more ants an 
eventually, the shorter path dominates. When the 
food source is gone, the pheromones gradually 
evaporate, and ants no longer follow that path. 

A traveling salesperson problem is perfect for 
ACO, because this problem closely resembles 
finding the shortest path to a food source. ACO 
results in premature convergence to a local 
optimal solution unless pheromone evaporation is 
implemented; a solution disappears after a period 
of time. As a result, the pheromone along the best 
path found so far by the algorithm is given some 
weight in calculating the new pheromone levels. 

The design of a sub-arrayed antenna array 
generating an optimal sum pattern through a set of 
independent and optimal weighting coefficients 
and a compromise/sub-optimal difference pattern 
by aggregating the array elements into sub-arrays 
and defining suitable sub-array weights is 
addressed by means of the ACO. A sketch of the 
antenna configuration appears in Fig. 7, where 
only half array is shown due to symmetry. 

Exploiting the theoretical guidelines of [15], it 
has been shown that the problem can be defined as 
an excitation matching problem, where the 
excitations of the compromise difference pattern 
can be obtained by approximating the values of a 
set of excitations generating an optimal difference 
power pattern. Moreover, the solution space can 
be represented in this case by means of a binary 
tree [Fig. 8 (a)], where each path identifies a 
possible sub-array configuration and the 
corresponding set of sub-array weights. 
Accordingly, the goal is to find the sub-optimal 
difference pattern closest to the optimal one. 
Besides the ad-hoc local optimization technique 
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originally proposed in [15], called Border Element 
Method (BEM), the ACO has been adopted [16]
and has showed superior performance thanks to 
the fact that it can avoid local minima. In this case, 
the ants leave pheromone on the edges of the 
binary tree proportionally to the suitability of the 
solutions obtained at the previous iteration. As a 
representative example, Fig. 8 (b) shows the 
pheromone level, higher where the lines are ticker, 
left by the ants of the colony on the edges of the 
binary tree. At the next generations, the ants will 
choose with higher probability paths/solutions 
with more pheromone. 

Our final example is a 40 element array with 4 
sub-arrays in each half of the array. The 

reference/optimal excitations are chosen to 
generate a Zolotarev difference pattern with 
SLL=-30 dB. The best solutions obtained by 
means of the ACO is shown in Fig. 9, together 
with the one achieved through the BEM. As a first 
observation, it is possible to note that the 
compromise pattern synthesized with the ACO is 
closer to the reference one than the BEM pattern. 
This fact is confirmed by the values of the cost 
function of Fig. 10. The fitness of the BEM 
oscillates as it converges. After 100 iterations, the 
BEM seems to be stuck in a local minimum, while 
the average ACO run has found a much lower 
minimum. 

Fig. 7. Sketch of a compromise sub-arrayed array. 
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(a) 

(b) 

Fig. 8. Sketch: (a) of the solution tree where each ant defines a trial sub-array configuration whose sub-
array weights are computed as in [15], and (b) of the solution tree with updated levels of pheromone left 
on the edges from the ants. 
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Fig. 9. Plot of the reference power pattern (Zolotarev) and of the compromise power patterns synthesized 
with the ACO and the BEM. 

Fig. 10. Behavior of the cost function versus the iteration index for the best solution of the ACO and the 
average of the ACO colony and for the BEM.

VI. CONCLUSIONS 
This paper presented three different 

biologically based numerical optimization 
strategies and applied each approach to an antenna 

array design problem. GA, PSO, and ACO are all 
random search algorithms that are guided by 
biological principles. Table 1 lists the major terms 
associated with each of these algorithms. They all 
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maintain a collection of possible solutions and use 
biologically based rules to search the objective 
function space for the best solution. The 
flowcharts for these algorithms are very similar as 
shown in Fig. 11. They are all very parallel in 
nature in that many individual evaluations can be 
done simultaneously. This parallelism was not a
strong point of some other well-known global 
optimizations approaches, such as simulated 
annealing and evolutionary strategies. 

Which algorithm should you use? The ACO is 
primarily designed for traveling salesman type 

problems (i.e., optimization problems where the 
solution space can be represented through a 
graph), so it is not as universally applicable to 
antenna design. Both GA and PSO have yielded 
excellent results in computational 
electromagnetics, although the PSO have been 
mainly used for the optimization of real-valued 
parameters over continuous spaces while the GA 
has binary, integer, and continuous versions [17].
We do not advocate one over the other, and the 
NFL theorem backs our decision. 

Table 1: Terms for GA, PSO, and ACO 
GA PSO ACO

Solution matrix Population Swarm Colony
Individual solution (Phenotype Space) 1 Individual Particle Ant
Individual solution (Genotype Space) Chromosome Position Path
Best solutions Parent Current position Current path
New solution Offspring Next position Next path
Iteration Generation Generation Generation
Objective function evaluation Fitness/cost Fitness/cost Desirability/cost

Fig. 11. Flowchart for biological optimization algorithms. 

                                                
1 The phenotype space is the space of the input parameter as they appear in the “real world,” while the genotype 

space is the work space of the coded parameters. 
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