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Abstract ─ In this paper, a simple structure made 
of periodic arrays of windmill structure, printed on 
only one side of a dielectric substrate, is 
introduced. Simulation and measurement were 
carried out for one layer of infinite left-handed 
material (LHM) slab using monolayer windmill 
structure. The results showed that by carefully 
adjusting the dimensions of the windmill structure, 
magnetic and electric resonances can be coexistent 
in a frequency range where there are both negative 
magnetic and electric responses. To further verify 
the left-handed (LH) properties of this structure 
metamaterial, effective medium parameters were 
retrieved and a refraction phenomenon based on a 
wedge-shaped model was demonstrated. 
Equivalent circuits for the magnetic and electric 
resonance were also offered to give a qualitative 
explanation of the LH behaviours. 
 
Index Terms ─ Double negative (DNG), left-
handed material (LHM), monolayer, and negative 
refractive index (NRI). 
 

I. INTRODUCTION 
Artificial electromagnetic structures, called 

metamaterials, can be engineered to exhibit exotic 
electric and magnetic properties not realizable in 
nature. In 1968, Veselago [1] initially assumed a 
material with negative permittivity and 
permeability simultaneously and theoretically 
demonstrated the abnormal electromagnetic 
properties. However, research work in this area 
did not draw much attention in the engineering and 
physics communities because there are no such 
materials in natural world. His work was neglected 
for almost 30 years. In 1999, Pendry et al. [2] 
showed that negative  can be realized by using 
conducting wires and negative  by split-ring 

resonators (SRRs). Smith et al. [3] constructed a 
real structure composed of conducting wires and 
SRRs, and demonstrated its negative  and  at 
microwave frequencies. Subsequently, a great 
variety of left-handed metamaterials (LHMs) were 
proposed, such as split-triangle resonator (STRs) 
[4], multi-gap split-ring [5], SRR pairs [6, 7], 
single split-ring resonators [8], ferromagnetic host 
and wire array [9], etc. The above methods of 
realizing LHMs enrich greatly the content of 
LHMs. Nevertheless, there is an annoying problem 
for the LHMs realized by the above methods. 
Most of the above-mentioned LHMs share one 
thing in common that they print the metallic 
patterns on both sides of the substrates. It not only 
increases the complicacy of fabrication when the 
operating frequency increased to high frequency 
such as terahertz frequency but also increases the 
difficulty to add lumped active elements (for 
example, varactor diodes) on such structures to 
control their left-handed properties, because 
modern commercial components are generally 
designed for surface mount. 

In this paper, a simple metamaterial structure 
based on the windmill is proposed and 
investigated experimentally and numerically at 
microwave frequency range. Although it derives 
from the bi-layered chiral metamaterial [10, 11], 
unlike the structure in [10] that requires the 
electromagnetic waves normal to the planes of the 
printed boards, this paper’s proposed structure 
requires electromagnetic waves travel along the 
planes of the thin dielectric sheet. Compared with 
the conjugated gammadions structure [11], this 
monolayer windmill metamaterial structure is 
more easily manufactured. 
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II. UNIT-CELL DESIGN AND 
SIMULATION 

A unit cell of the single-sided windmill 
structure is shown in Fig. 1, where the metallic 
strips are printed on one side of t = 0.6 mm thick 
FR4 substrate with the relative permittivity of 4.4 
and tans = 0.02. The metallization is copper with 
a thickness of 0.017 mm. The other geometrical 
dimensions are as follows, in millimetres: L = 5, a 
= 2.05, b = 0.3, c = 0.2, d = 2.4, g = 0.6. The Y 
structure has been demonstrated to have LH 
behaviours in some frequency ranges [12]. So for 
this paper, in response to the magnetic field, the 
capacitance between four adjacent L-shaped 
structures (seen the loop in Fig. 4 (a)) and their 
own self-inductance form an equivalent L–C loop, 
which can provide a negative permeability. In 
response to the electric field, the metal thin strips 
which, parallel to the electric field can provide a 
negative permittivity. So LH behaviours are 
expected for this structure. 

 

 
 

Fig. 1. Geometry of one unit cell of the windmill 
structure metamaterial. 

 
In order to verify our speculation, the 

numerical simulations were performed for one 
layer of the windmill structure LHM slab by 
HFSS. A theoretical model based on an artificial 
waveguide with the transverse boundaries of two 
ideal magnetic conductors and two ideal electric 
conductor planes is employed. This enables the 
model to be equivalent to an infinite layer medium 
illuminated by a parallel incident plane wave. To 
be specific, input/output ports are imposed in z-
direction, and perfectly electric conducting (PEC) 

and perfectly magnetic conducting (PMC) 
boundary conditions are imposed in x and 
ydirections (perpendicular to the plane of the 
windmill structure), respectively. There are many 
methods to retrieve constitutive parameters of 
metamaterials [13-15]. Most of them use 
scattering parameters to obtain the impedance z 
and effective refractive index n and then 
calculating  = nz and  = n/z. In this paper, we 
use a standard algorithm [15] extracted from the 
scattering parameters. Figure 2 gives the simulated 
magnitudes of S11 and S21 parameters, as well as 
the retrieved real parts (solid curves) and 
imaginary parts (dashed curves) of effective 
permeability, permittivity, and refractive index. 
Figure 2 (a) shows that there is a transmission 
peak at 10.4 GHz, which indicates an LH 
passband. As clearly shown in Fig. 2 (b) and (c), 
there are obviously an electric resonance and a 
magnetic resonance. In Fig. 2 (b) and (c) show that 
the effective the effective permittivity is negative 
in 9.28 GHz12 GHz while the frequency range of 
negative effective permeability is 10.2 GHz10.7 
GHz, much narrower than the negative electric 
permittivity. In the frequency range where both the 
effective permittivity and permeability are 
negative, an LH band is expected. Figure 2 (d) 
depicts the extracted effective refractive index of 
the metamaterial at various frequencies. Clearly, 
as the frequency increases, the effective index of 
refraction changes from positive to negative then 
to positive. The refractive index varies from n = -
2.95 + j0.85 at 10.1 GHz to n = -0.018 + j2.54 at 
11.35 GHz. So as the grey area shows, the 
windmill structure is double negative between 
10.2 GHz and 10.7 GHz, and the negative index 
bandwidth is 500 MHz. 

Please note that in Fig. 2 (c) and (d), the 
negative reflective region (shaded region) is much 
wider than the negative permeability region. This 
can be explained as follows. A wider negative n' 
frequency band is observed due to the dispersion 
of fabricated prototype. Since the real part of n (n') 
is given by n' = 'z'-''z'' from n = z and z = 
sqrt(/), the imaginary parts of the permittivity 
('') and the permeability ('') also accounts for n'. 
Therefore, a negative real part of n can be 
accomplished without having ' and ' 
simultaneously negative. The amplitude of Im (n) 
is relatively small compared to the real part, which 
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suggests a low loss in the proposed left-handed 
metamaterial. 

To further verify the LH properties and obtain 
a direct image of the negative refraction of the EM 
wave for the windmill structure, we utilize a 
wedgeshaped configuration, which is stacked by 
our designed single slab planar metamaterials with 
an inclined angle of 45°in simulation. Similarly to 
[16] described methods, it stacked one unit cell 
along the y-axis in the simulation. For the wedge 
model, 7 unit cells are used along the xaxis and 
the zaxis, respectively. The refraction interface 
has a staircase pattern with one unit cell step in the 
xdirection and the zdirection, which can be 
referred to as a wedge angle of 45°. All the unit 
cells are positioned between two conducting plates 
with the absorber boundary conditions at the side 
faces.  
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Fig. 2. (a) Simulated magnitudes of S11and S21 

parameters; real (solid curves) and imaginary 
(dashed curves) of the effective, (b) relative 
permittivity, (c) relative permeability, and (d) 
index of refraction. 
 

Figure 3 shows the phenomenon of refraction 
of the EM radiation at the interface between 
designed metamaterial and vacuum. The typical 
electric field distributions at 10.4 GHz and 9 GHz 
are presented in Fig. 3 (a) and (b), in which the 
negative and the positive refractive behaviors are 
demonstrated clearly, respectively. The 
unambiguous negative refraction phenomenon is 
observed in the LH transmission passband, which 
has been ascertained from the retrieved effective 
parameter procedures as discussed above. The 

arrow lines indicate the transmission direction of 
the refracted waves, while the dashed lines are 
along the surface normal. 
 

 

 
 

Fig. 3. The distribution of the electric field in the 
wedge-shaped configuration at different frequency 
points; (a) the negative refraction at 10.4 GHz and 
(b) the positive refraction at 9 GHz. 

 
III.  EQUIVALENT CIRCUIT MODEL 

AND PARAMETRIC STUDY 
Negative effective permittivity and 

permeability can be obtained by electric and 
magnetic resonances, respectively. Both the 
electric and magnetic resonances are equivalent to 
L–C resonant circuits. The windmill structure has 
an intrinsic relation with the Jerusalem cross [17-
19]. We start with the equivalent circuit model in 
Fig. 4 when the proposed LHM responds to 
incident electromagnetic waves. The wires along 
the electric field E-direction of the incident 
electromagnetic wave excite the electric response 
and produce negative permittivity ε up to the 
plasma frequency. The linear arrow in Fig. 4 (a) 
denotes the equivalent current of electric 
resonance. In Fig. 4 (a), both A and B are 
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Fig. 6. Photograph of the experimental setup. 
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Fig. 7. Comparison between simulation and 
measurement result of (a) S11 and S21 parameters, 
(b) permittivity, (c) permeability, and (d) index of 
refraction. 
 

V.  CONCLUSION 
In summary, we studied the LH properties of 

the monolayer windmill structure by simulation 
and experiment in the microwave frequency 
regime. The windmill structure metamaterial 
simultaneously shows an electric and magnetic 
response to incident EM wave, and the LH 
transmission passband is expected. The negative 
refraction is demonstrated by simulating the 
wedge-shaped model. Furthermore, the design 
parameters and their relation to the magnetic and 
electric resonances have been investigated. The 
simplicity of structure makes the LHM easy to 
fabricate, which may be useful for potential 
applications in the future. 
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