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Abstract ─ We describe here a vector finite 
difference approach (VFD) to the evaluation of 
eigenvalues and modes of elliptical waveguides. 
The FD is applied using a  2D elliptical grid  in the 
waveguide section. A suitable Taylor expansion of 
the vector mode function allows to take exactly  
into account the boundary condition. To prevent 
the raising of spurious modes, our FD 
approximation results in a constrained eigenvalue 
problem, that we solve using a decomposition 
method. This approach has been evaluated 
comparing our results to known data for the 
elliptic case. 
  
Index Terms - Elliptic waveguides, mode 
eigenvalues, and vector finite difference.  
 

I. INTRODUCTION 
The full-wave solution of waveguide problems 

can be faced both with general-purpose and 
specialized numerical techniques such as mode-
matching (MM) [1] and methods of moments 
(MOM) [2]. The most effective of them is 
probably the mode-matching, since it exploit the 
modal structure of the field. However MM 
requires an accurate knowledge of the mode 
themselves to be implemented. More precisely, a 
quite large number of vector modes distribution 
and eigenvalues are needed and all the field modal 
functions must be known at the same set of points. 
The same type of information is also required in 
the analysis, using the method of moments 
(MoM), of thick-walled apertures [3-4] and slots 
[5]. Indeed, these apertures can be considered as 
stub waveguides, and the mode vectors of these 
guides are the natural basis functions for the MoM 
[6]. 

Apart from some simple geometries, where 
analytical evaluation of such mode vectors [7] is 
possible mode computation cannot be done in 
closed form, (or the closed-form solution is 
unsuitable for effective use), so, until now, many 
different numerical techniques have been 
proposed, and the most popular are based on FEM 
[8].  

The most effective method to compute the 
field structure in a guide is the frequency-domain 
finite difference (FDFD) [9-10], i.e., the direct 
discretization of the vector eigenvalue problem 
[11-14]. Of course, for curved boundary, the 
standard rectangular grid is unfit, and a suitable 
curved grid should be used [15]. Moreover the 
vast majority of FDFD approach compute the 
Hertz potentials and then extract the vector mode 
functions using a numerical derivative. In this 
work we use an extension of vector generalization 
of FDFD approach presented in [16-17] to  elliptic 
waveguides [18]. In order to improve both the 
accuracy and the computational effectiveness, a 
discretization grid fitting exactly the waveguide 
boundary is chosen. Both TE and TM modes are 
computed using an elliptic grid equivalent to the 
TM boundary condition [19] for scalar eigenvalue 
problem. For each grid point, a fourth-order 
Taylor approximations allow to replace the 
continuous eigenfunction problem with a discrete 
one. This leads to a matrix eigenvector problem, 
when additional conditions are added. These come 
out from the boundary conditions (which are 
included directly in the problem matrix), and the 
solenoidal or irrotational condition on mode 
vectors.  

As a result, a matrix eigenvalue problem with 
linear constraints is obtained [20]. This is a known 
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linear algebra problems, which can be quite easily 
reduced to a standard eigenvalue problem [21], for 
which effective procedure exist. 
 
II. DESCRIPTION OF THE TECHNIQUE 

Each  modes vector of a metallic waveguide e


 
is an eigenfunction of the  Helmholtz equation,  

 

2 2 0

0

t t

n C

e k e

e i

  

 

 

   (1) 

with additional condition, respectively (see Fig.1),  

 0t e  


  on C (TE modes) (2) 

 0t e  


  on C (TM modes), (3) 

where C is the contour of the waveguide (see Fig. 
1).   
 

 

Fig. 1. Geometry of the waveguide contour. 

  
Actually, in the MoM formulation, we need 

the modes of the surface magnetic current 

M


equivalent to the transverse dielectric field e


. 
Therefore, we prefer a problem description in 
terms of the (two-dimensional) magnetic current 

M


equivalent to the transverse field ze i M 
  

. 

We can get from equation (1), for TM modes,  
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By equation (5), it follows that 0t M  


. 

When substituted in equation (1), after replacing 
and collecting terms we get,  

    
2 2

2 2

2 2 .

t t
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i M M k i M

i M k M
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 (6) 

The TM eigenvalue problem can therefore  be  
rewritten as,  

 2 2 0t tM k M  
 

 (7) 

with additional conditions. sentence, 

 0n C
M i 
 

 (8) 

 0.t M  


 (9) 

The dual procedure can be used to compute TE 
modes, and results in equations (7) and (8), while 
equation (9) must be replaced by,  

 0.t M  


 (10) 

It is therefore clear that the only difference in 

computing e


 or M


 is the exchange of the 
additional conditions. We work, in the following, 

with M


 but the approach, using e


, is equivalent. 
It is worth noting that both, equations (9) and (10) 

are scalar equations (since M


is transverse to the 
waveguide axis). 

Vector FDFD approach to the solution of these 
problems is based on the replacement of equations 
(8), (9), and (10) with a discretized version. 

Therefore, M


 is evaluated only on the points of a 
elliptic grid (see Fig. 2) with spacing ,u v  , and 
the equations are replaced by  difference 

equations. Also M


 is expressed in ellipitcal 
component so that equation (7) becomes,  

 
   

 
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t u u v v
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For each internal grid point (see Fig. 3), a 
fourth order Taylor approximation allows to 
evaluate the surface magnetic current in terms of 
the current samples at the neighboring points. The 
expression of the Laplace vector operator in 
elliptic coordinates [21]  can be simplified if we 

let coordinates grid TE and TM A hM
 

, where  
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2 2

1

sinh sinf

h
a u v




 is the common value of 

the scale factor, 2 fa  being the inter-focal 

distance.  The u  component of 2
t M


 then 

becomes,  
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 (12) 

 
and the v component,  
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 (13) 

 

 
 
Fig. 2. Geometry of the elliptic cylindrical 
coordinates. 

 
 

Fig. 3. Internal point of the elliptic cylindrical.  
 

III. DISCRETIZATION OF THE 
EQUATIONS 

For an internal point P as in Fig. 3 we can use 
a fourth-order Taylor expression. Letting,    
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(14) 
where i  stands for both u and v, we have  

 ,B i i pA A u u  ,  , 2N i i pA A u u    

 ,D i i pA A u u   ,  , 2 .Q i i pA A u u    
 

By combining these equations we find, 
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    (15) 

And similarly in v direction,  
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  (16) 
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for the second-order derivatives of equations (12) 
and (13). Also the first-order derivatives can be 
evaluated much in the same way as,  
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Equation (17) can be used also in equations (9) 
and (10) to get, 
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In the same way, to discretize the condition of 
equation (9) (TM modes) we use equation (17) and 
get,  

 

2

, , , ,

2

, , , ,

2

1
·

8 81
·

12
8 81

· 0
1

.
2

v u

C v H v A v G v

D u N u B u Q u

A A
h v u

A A A A
h v

A A A A
h u

 

      




 






 (19) 

For then points close to the boundary, such as P 
and B in Fig. 4, an approach different must be 
used to evaluate the u- derivatives since less than 2 
grid points (D is not a grid point) are present 
outside. Therefore, both the equation for P and B 
require the mode vector at N.K.S.  

  

 
 
Fig. 4. Boundary point of the elliptic cylindrical. 

Since     , ,3 , 4k i i p s i i pA A u u A A u u      ,  

 ,K iA , ,S iA , ,B iA , and ,N iA we can evaluate the 

derivatives by a suitable linear combination as,  
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In equation (20) we have also included the BC 

', 0D uA  . In the same way, the condition of 

equations (9) and (10) becomes,   
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The elliptical framework has different singular 
points, i.e., the foci and the points on the inter-
focal segment, which require a different treatment, 
since the field are not regular there. For the focus 
of the ellipse (Fig. 5) we need the integral form of 
the eigenvalue equation. By integrating the first 
term of equation (7) on the surface S of Fig. 5, 

 2 2· ·t t
S S

M dS k M dS   
 

         (24) 

wherein the Laplace operator is equal to, 
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Substituting in equation (7) we get,  
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and use of the theorem of the gradient [19] results 
in, 
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Fig. 5. Focus A of the ellipse.  
 

The line integrals are divided in 4 parts (see 
Fig. 5). We describe here in details only the 
evaluation of the part over 1C . Letting 
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and  
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The same approach can be used for points on the 
inter-focal segment. 
   

IV. SOLUTION OF CONSTRAINED 
EIGENVALUE PROBLEM 

The discretized version of equation (1) for TM  
modes are obtained collecting equation (7) and the 
constraint in equations (8) and (9) to get a 
constrained eigenvalue  problem. In the same way, 
equation (7) and the constraint of equations (8) 
and (10)  are equivalent to the TE problems. Both 
can be written as,  

 
0T

Ax x
C x





 (30) 

when, A  is the discrete Laplace operator, 
including the boundary condition, and C  is the 
discrete form of the  constraint  (2) or (3), A  is a 
(2n, 2n) matrix, and C  is (2n, m) with n > m and 

2
tk   . Following [20], we can solve equation 

(30) by letting x Q y  , where Q is the 
orthogonal (2n, 2n) matrix obtained by the QR 
factorization of the matrix C. Inserting x Q y   
in the first of equation (30), and pre-multiplying 

by  TQ  we get,  

A Q y Q y      TQ A Q y   
TQ Q y y      , which can be recast as 

By y , where TB Q A Q    is a (2n, 2n) 
matrix. This matrix can then be partitioned as,  

 11 12

21 22

.
B B u u

B y y
B B v v

        (31) 

Now C Q R  , and the constraint becomes 

analogously 0TR y  . Since R is partitioned into 

an invertible 1T  and a null matrix, both n n  then, 

 10 0 0.T u
R y T

v
      (32) 
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 So the constraint can be expressed as  
0u  [23]. Therefore, we need to extract the 

eigenvalues of  22B ,  

 22B v v   (33) 

where 22B  is a (n, n) matrix. Therefore, we still 

needs the eigenvalues of an n n  matrix which, at 
variance of the scalar case, is a full one. After the 
eigenvalues and eigenvectors of 22B  are computed 

(by standard  routines) the actual eigenvectors x 

can be computed 
0

x Q
v

  . 

 
V. NUMERICAL RESULTS 

 The high-order VFD elliptic waveguide 
described in the previous section has been 
extensively validated, to assess its accuracy and 
effectiveness. It is well-known that an analytical 
solution is known for elliptic waveguide [18] but 
its effectiveness is very poor, so that it is 
unsuitable for our comparison. Therefore, we have 
chosen to test our data on the cut-off frequencies 
against the data of Zhang and Chen [24], which 
are very accurate but quite hard to compute, and 
the data of Tsogkas et.al. reported [25], which is 
the most recent paper on the topic. We have 
chosen a set of waveguide with a minor axis equal 
to 4 (in arbitrary units) and different eccentricities 
ex . The discretization step v  has been always 
set to 1°, while different values of u has been 
used for each test. The resulting eigenvalue 
problem has been solved using standard MATLAB 
routines, on a PC with two Intel Xeon E5504 
CPUs @ 2.00 GHz, 48 GB RAM, OS: MS 
Windows 7 Professional. 
 The main results of our validation are 
collected in Figs. 7 and 8. From them it appears 
that our VFD approach is able to give a very high 
accuracy, with a difference (with respect to the 
accurate data of [24]), which is smaller than 
0.01%. On the other hand, the recent approach 
proposed in [25] has an accuracy around 1%. The 
results reported in Fig. 9, show also that the 
accuracy of our VFD is essentially independent 
from the eccentricity. The computation time of the 
VFD approach is the sum of the matrix filling time  
and the time needed to extract eigenvalue and 
eigenvectors of the full matrix. The latter is high 
since we deal with full matrices so that the total 

time is essentially equal to it. For example, for a 
grid with Du = 0.0065 and 72000 points, the 
filling matrix time is 6,10 sec and the time to 
extract eigenvalue and eigenvectors is 800 sec. 
 

 
 

Fig. 7. Relative error on the cut-off frequency of 
the first modes of an elliptic waveguide ex = 0.6. 

 

Fig. 8. Relative error on the cut-off frequency of 
the first modes of an elliptic waveguide ex = 0.8. 
 

 
Fig. 9. Relative error on the cut-off frequency of 
the proposed VFD approach for different 
eccentricities. 
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VI. CONCLUSION 
 A new approach to the VFD computation of 
modes of an elliptic waveguide has been 
presented. We describe here a high vector finite 
difference frequency domain approach to the mode 
computation for both TE and TM modes. The 
main idea is the use of a discretization grid 
tailored to the waveguide boundary. 
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