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Abstract ─ This paper assesses the performance of 
the feature selective validation (FSV) method by 
applying probability density functions to the FSV 
point-by-point analysis. As an augmentation to 
confidence histograms, probability density 
functions offer two advantages: they (1) provide 
the users of FSV with more subtle information 
about the quality of the data comparison and (2) 
make a statistical analysis of the FSV results 
available. The application of probability density 
functions in the verification of FSV is presented in 
this paper, which provides a quantitative measure 
to support the qualitative conclusions drawn in 
early publications on the FSV method used as a 
foundation for IEEE Std. 1597.1.  
  
Index Terms ─ Computational electromagnetics, 
EMC, feature selective validation, FSV, and 
statistical validity.  

 
I. INTRODUCTION 

With the publication of IEEE standard 1597.1 
“standard for validation of computational 
electromagnetics computer modeling and 
simulation” [1], the feature selective validation 
(FSV) method has become a de jure standard for 
validation of electromagnetic simulation, 
particularly focusing on EMC. However, as the 
technique becomes more widely used [3-6], the 
need for certain enhancements becomes more 
apparent. In particular, the original formulation 
used six ‘natural language’ categories into which 
the FSV data was binned in order to help the 

interpretation between purely numerical results 
and the qualitative approach used by many 
practitioners. Unfortunately, this histogram 
approach only provides a coarse level of meta-
representation and this lacks sufficient 
discrimination for more subtle usage, for example 
when comparing numerical modeling output as 
part of an optimization exercise. Continuous 
probability density functions (PDFs) offer the 
potential for greater precision in analysis over 
confidence histograms and this was demonstrated 
in a recent paper [2] but with only little detail. 
This paper addresses the issues that led to the 
development of the PDF approach, its 
implementation and interpretation and provides a 
more detailed investigation into the use of PDFs in 
the analysis of FSV comparisons, providing, for 
the first time a measure to verify the performance 
of FSV against one of the key design objectives, 
namely, to perform comparisons in the manner of 
a group of experts [7].  
 

II. THE FSV METHOD 
 
A. The FSV method 

The FSV method was developed to validate 
electromagnetic models by quantifying the 
agreement between the reference and the numerical 
results. The details of this method can be found in 
[7] and [8]. In the FSV method, datasets under 
comparison are decomposed into DC, low- and 
high-frequency components first by use of the 
Fourier transform. Then three figures of merit are 
obtained to demonstrate data agreement from 
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different perspectives based on these components. 
The amplitude difference measure (ADM) shows 
the ‘trend’ difference, while the feature difference 
measure (FDM) quantifies the differences of fine 
details. Then the ADM and FDM are combined to 
give the global difference measure (GDM). These 
figures of merit can be further represented in three 
different ways: point-by-point results (ADMi, 
FDMi, and GDMi), single value results (ADMtot, 
FDMtot, and GDMtot), which are obtained by 
taking the mean of each point-by-point result, and 
confidence histograms (ADMc, FDMc, and 
GDMc), which are discussed below. 

 
B. Natural language descriptors and confidence 
histograms 

A very practical characteristic of FSV is that it 
provides quantitative and qualitative results 
depicted by six natural language descriptors 
(excellent, very good, good, fair, poor, and very 
poor). Table I outlines the relationship between 
quantitative results and these descriptors. The 
aforementioned confidence histogram is presented 
by counting the proportions of the point-by-point 
results that fall into the six categories (N.B., the 
process of linearization is discussed in section III). 

 
Table I: FSV interpretation scale [1]. 

FSV value 
(quantitative) 

FSV interpretation 
(qualitative) 

Less than 0.1 Excellent 
Between 0.1 and 0.2 Very Good 
Between 0.2 and 0.4 Good 
Between 0.4 and 0.8 Fair 
Between 0.8 and 1.6 Poor 

Greater than 1.6 Very Poor 
 

However, the coarse categorization can mask 
some subtleties in the distribution of the FSV 
results. Figure 1 shows some typical results to be 
compared (for the sake of space, the confidence 
histogram for the GDM is presented in Fig. 3). 
Figure 2 shows histograms based on the distribution 
of the GDMi values of datasets given in Fig. 1 [8]. 
The first histogram, based on 6 bins, used in FSV as 
the standard GDMc, suggests only 1 local 
maximum (mode) at a GDM value of 0.45. While 
for the second histogram, with 30 bins, more local 
maxima (around GDM values of 0.3, 0.4, and 0.5) 
are revealed. So it is necessary to find an alternative 
indicator to show this information. Further, the 

histograms show their limitations when confronted 
with multiple comparisons. Specifically, we lack 
flexible tools in the cross-comparison of multiple 
histograms. 

 

 
 
Fig. 1. Data sets for comparison [8]. 
 

 
(a) 

 

 
(b) 

 

Fig. 2. Histogram of linearized GDMi value based 
on (a) 6 bins and (b) 30 bins. 

 
III. EXTRACTING PROBABILITY 
DENSITY FUNCTIONS FROM FSV 

DATA 
To solve the problems of histograms discussed 

in section II, a PDF, derived from the point-by-
point data, is introduced to show the distribution 
of values in a more general way. As a result, the 
FSV distribution functions open up opportunities 
to apply statistical methods to the FSV results, 
giving rise to potentially revealing meta-analyses. 
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A. Method 
The PDF is estimated based on a normal 

kernel function [9]. It is known that a probability 
density function ( )f x  can be written as, 

0

( ) ( )
( ) ( ) lim

2h

d F x h F x h
f x F x

dx h

  
      (1) 

where ( )F x  is the cumulative distribution function 
of the random variable x, and h is the “bandwidth”. 
For a random sample of size n from the density f, 
X: {x1, x2, … ,xn}, its empirical cumulative 
distribution function (ECDF) has the form, 

{ }ˆ ( )
N X x

F x
n


                           (2) 

where { }N X x  represents the number of 
elements less than or equal to x in X. Then the 
form in equation (1) becomes 
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which can also be rewritten as, 
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The form in equation (4) is that of a Kernel 
density estimator with uniform Kernel function, K. 
The choice of Kernel bandwidth h controls the 
smoothness of the probability density curve, the 
detail of which can be found in [9]. To obtain 
smoother PDFs, a Gaussian Kernel function is 
adopted in this paper, 

 

2

Gaussian

(1/ 2 )exp(- /2),  -1< <1,
( )

0,  otherwise.

u u
K u

 
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    (5) 

 

Due to the non-linear relationship between the 
quantitative results and the qualitative description 
in Table I, we need to pre-process the point-by-
point results according to Table II, thereby 
reflecting the qualitative information linearly in 
PDFs. 
 
B. Statistical analysis 

By introducing PDFs, it becomes possible to 
analyze FSV results using statistics, which is 
familiar to most engineers. Generally, statistical 
moments can be applied to a single PDF result. 
The second moment, variance, provides 

information on the dispersion of a set of data. The 
third moment, Skewness, gives a measure of the 
symmetry of the shape of a distribution. The 
fourth moment, Kurtosis, is a measure of the 
flatness, or peakedness, of a distribution, 
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where GDM(i) is the point-wise value of the FSV 
result (note that this also applies to the ADM(i) 
and FSM(i) results but only GDM(i) is shown 
because of space limitations). N is the number of 
points in the GDM, while µ and σ are the mean 
and standard deviation of GDM, respectively. 

 
Table II: Piecewise linear conversion. 

FSV value 
(point-by-

point) 

Linearized 
Value 

FSV 
interpretation 

X≤0.1 X Excellent 
0.1＜X≤0.2 X Very Good 
0.2＜X≤0.4 0.2+(X-0.2)/2 Good 
0.4＜X≤0.8 0.3+(X-0.4)/4 Fair 
0.8＜X≤1.6 0.4+(X-0.8)/8 Poor 
1.6＜X≤3.2 0.5+(X-1.6)/16 

Very Poor 
X＞3.2 0.6 
 
For multiple comparisons, which is a strong 

motivation for the introduction of PDFs, statistical 
tests can provide widely recognized analysis 
methods. The Kolmogorov-Smirnov test (KS-test) 
[10] is used here for the following reasons: the 
KS-test is a non-parametric test, so it has the 
advantage of making no assumption on the 
distribution of data (important to ensure the 
generality of FSV); additionally, the KS-test is a 
robust test whose result is not affected by scale 
changing like the aforementioned linearizing 
procedure. 

The KS-test aims to determine if the 
distributions of two datasets differ significantly. 
The null hypothesis is that the two datasets are 
from the same distribution. The alternative 
hypothesis is that they are from different 
distributions. The null hypothesis would be 
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rejected if the test statistic, D, is greater than the 
critical value decided by significance level. The 
statistic D is determined by the maximum vertical 
deviation between the two curves of the 
cumulative distribution functions (CDFs) of the 
datasets,  

 1 2max ( ) ( )D CDF x CDF x            (9) 

where 1 ( )CDF x  is the proportion of values less 

than or equal to x in the first data set and 2 ( )CDF x  
is the proportion of values less than or equal to x 
in the second data set. 

The critical value of statistic D [11] for 
different significance level can be decided by, 

   1 2 1 2/CriticalD k N N N N            (10) 

where 1N and 2N is the length of datasets being 
compared. The value of k can be obtained from 
tables [11]. For 95 % confidence, k is 1.36, for 
90 % confidence, k is 1.22. 
 

IV. FSV PERFORMANCE 
VERIFICATION 

A. Method 
When FSV was introduced in [7] and [8], its 

validation was performed by comparing the 
confidence histograms of a survey of experts and 
FSV predictions. Figure 3 shows confidence 
histograms comparison of data sets shown in Fig. 
1. By use of PDFs, the comparison can be shown 
in a more analytical way. Further, the discrepancy 
between them can be quantitatively represented by 
the result of the KS-test. 

 

 
 

Fig. 3. Comparison of confidence histograms. 
 
Due to the piecewise linear conversion of FSV 

results in Table II, the PDF results of visual 
assessment are calculated by transforming the 
qualitative results of FSV survey to typical 
quantitative values according to Table III. The 

survey results come from [8] with 50 experts 
surveyed. 

Figures 4 and 5 outline the comparison of 
PDFs and CDFs between FSV prediction and 
visual assessment of data sets shown in Fig. 1, 
respectively. The single D value, 0.15, in Fig. 5 
indicates the ‘accuracy’ of FSV when comparing 
the data sets in Fig. 1. According to the algorithm 
in equation (10), the CriticalD for 90 % confidence is 
0.17 with N1 = N2 = 100. In this case, the null 
hypothesis is accepted. 

 
Table III: Typical values of FSV categories (mid-
points in the linearized categories). 

FSV Categories Typical Values
Excellent 0.05 

Very Good 0.15 
Good 0.25 
Fair 0.35 
Poor 0.45 

Very Poor 0.55 
 

 
 

Fig. 4. Comparison of PDFs. 
 

 
 
Fig. 5. Comparison of CDFs. 

 
Further, the other 7 pairs of datasets from [8] 

are also analyzed. They are labeled as Data set 1 to 
8 in turn considering data set in Fig. 1 is named 
Data set 5. The details follow. 
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B. Comparisons of xDM with survey results 
It is known that FSV provides three types of 

measurement, ADM, FDM, and GDM. All the 
measurements can be given in the form of PDFs. 
Consequently, the discrepancy between these 
measurements and survey results can be shown by 
use of KS-test. By applying the typical values of 
FSV categories in Table III, the distributions of 
GDM of eight datasets are compared with their 
survey results in [8]. Table IV outlines the 
comparison result. It can be seen that most D 
values are smaller than the DCritical value, 0.17, 
except Data set 8, which means that it can be 
proposed that FSV results can mirror the 
assessment of experts in the majority of cases to a 
given level of accuracy in this case 90 % (or an 
inaccuracy of 1-in-10, which is about what the 
survey showed) . 

 
Table IV: D values for different datasets. 

Data set 
D Value 

(GDM vs. Survey) 
1 0.10 
2 0.15 
3 0.14 
4 0.05 
5 0.15 
6 0.06 
7 0.03 
8 0.19 

 
To evaluate the influence of typical value of 

FSV categories, the D values under different 
typical values for data sets are shown by boxplots 
in Fig. 7. As shown in Fig. 6, the typical values of 
FSV categories are linearly changed based on 
Table III, i.e., implementing a tolerance on the 
highly quantized visual results. For instance, the 
typical value for “Excellent” changes from 0 to 0.1 
and, accordingly, the “Fair” value will change 
from 0.4 to 0.5. Consequently, the estimated PDFs 
will shift in the tolerance of FSV categories. 

It can be seen from Fig. 7 that all the data sets 
have D values smaller than 0.17 with the change 
of typical values, including Data set 8. It is 
suggested that a new subtle survey is necessary to 
further verify the validity of FSV. Table V shows 
the comparison of D values when ADM and FDM 
are separately compared with survey results (using 
the typical values in Table III). D values of ADM 
and FDM for most of data sets are close to each. 

So it is reasonable to take the equal weighting of 
them when calculate GDM, as shown in equation,  

2 2GDM ADM FDM  .             (11) 

It is also observed from Table V that neither 
ADM nor FDM can represent the discrepancy 
between data set as experts do not look at just 
trend or feature differences. But it works well 
when they are combined using equation (11), as 
shown in Table IV.   

 

 
 

Fig. 6. Comparison of histograms and estimated 
PDFs given by different typical values of FSV 
categories. 
 

 
Fig. 7. Boxplots of data sets for different typical 
values of FSV categories. 
 
Table V: D values for different comparisons. 

Data set
D Value 

(ADM vs. Survey) 
D Value 

(FDM vs. Survey)
1 0.14 0.12 
2 0.07 0.16 
3 0.35 0.33 
4 0.11 0.77 
5 0.31 0.45 
6 0.26 0.24 
7 0.13 0.10 
8 0.34 0.48 
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Figure 8 (b) shows the results of Data set 2, 
the ADM is closer to survey results than FDM or 
GDM. It can be seen from Fig. 8 (a) that the 
difference between data set is mainly caused by a 
partial shift in axis X. Experts may visually correct 
this type of data and just focus on amplitude 
difference. So we can infer that experts pay little 
attention to the feature difference when they assess 
Data sets 2. In this case, how to decide the weight 
of FDM would be an interesting investigation in 
the future. 

 

 
 

(a) 
 

 
 

(b) 
 

Fig. 8. (a) Data set 2 and (b) comparisons of its 
PDFs. 

 
Figure 9 gives Data set 8 and the comparison 

of PDF results. It is indicated that the discrepancy 
between data sets is mainly caused by offset 
difference. So the ADM is much greater than the 
FDM and will dominate the GDM through 
equation (11). The equal weighting of ADM and 
FDM is also reasonable in this situation. 

 
 

(a) 
 

 
 

(b) 
 

Fig. 9. (a) Data set 4 and (b) comparisons of its 
PDFs. 
 

C. Comparison of statistical analysis 
Table VI gives the comparison of the 

statistical analysis. The slight difference between 
mean values demonstrates that the FSV method 
can mirror the process of expert assessment. The 
mean value differences also indicate that, overall, 
experts tend to give more pessimistic assessment 
than FSV method for these data sets, which may 
provide a direction to the improvement of FSV. 
Data set 2 is an exception, as discussed in sub-
section B, because experts intuitively correct the 
distortion caused by partial shift and give an 
optimistic assessment. 

The comparison of variance shows that 
experts’ assessment has tighter dispersion than 
FSV prediction. It means that FSV is more 
pessimistic in this. Again, comparisons of 
Skewness and Kurtosis show the general 
agreement between experts’ assessment and FSV 
predication. It is noted that the variance of Data set 
1’s survey result is 0, so its Skewness and Kurtosis 
cannot be obtained. 
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To sum up, the PDFs and corresponding 
statistical analysis provide solid evidence to the 
validity of FSV method. And the introduction of 

PDFs makes it possible for the FSV to be a pre-
statistical analysis method. 

 
Table VI: Comparison of statistical analysis between FSV and experts assessment. 

 Methods 1 2 3 4 5 6 7 8 

Mean 
(GDMtot) 

Survey 0.05 0.23 0.25 0.54 0.40 0.29 0.17 0.47 

FSV 0.03 0.27 0.20 0.54 0.37 0.28 0.16 0.41 

Variance 
Survey 0.0000 0.0048 0.0129 0.0006 0.0090 0.0138 0.0072 0.0037 

FSV 0.0009 0.0256 0.0069 0.0009 0.0106 0.0164 0.0140 0.0062 

Skewness 
Survey - 1.0195 1.1188 -3.7500 -0.9285 0.1033 1.8939 -0.1585

FSV 2.8684 0.0082 0.3778 0.4443 -1.0226 0.0385 0.9600 -1.0131

Kurtosis 
Survey - 4.9669 3.5826 15.0625 3.8481 2.5132 7.3729 2.4719 

FSV 14.6380 1.7572 3.0547 2.2734 3.9211 2.1639 3.0704 4.3879 
 

V. CONCLUSION 
This paper has discussed the introduction of 

PDFs as an enhancement to the presentation of 
FSV results. The performance of this indicator has 
been demonstrated in the verification of the 
performance of the FSV method itself. As the 
result of the introduction of PDFs, statistical 
analysis is employed to give quantitative results. 
By use of these analysis, the performance of FSV 
is verified when it is compared with experts’ 
assessment. Further exploration with more data 
sets and more subtle rating scales would increase 
the statistical power of this observation, which 
needs more people to test this. Furthermore, the 
FSV method can be classified as a pre-statistical 
analysis method (or a data pre-conditioning 
method), which can provide greater flexibility for 
a wider range of computational electromagnetics 
practitioners. 
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