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Abstract─ A fourth-order accurate in space and 
second-order accurate in time, finite-difference 
time-domain (FDTD) scheme for wave 
propagation in cold plasma media is presented. 
The formulation of Maxwell’s equations is fully 
described and an elaborate study of the stability 
and dispersion properties of the resulting 
algorithm is conducted. The efficiency of the 
proposed FDTD (2, 4) technique in cold plasma 
media compared to its conventional FDTD (2, 2) 
counterpart is demonstrated through numerical 
results. 
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I.  INTRODUCTON 
The finite difference time domain (FDTD) 

method [1, 2] has prevailed in the computational 
electromagnetics area as an accurate numerical 
technique for the direct integration of Maxwell’s 
equations. Its evolution has ensued from several 
technological developments, resulting in the 
emergence of various algorithms that extend the 
method’s implementation to various modern 
applications. A major group of such problems 
involves pulse propagation inside dispersive 
materials. Representative examples are the 
simulation of light propagation in optical devices, 
soil modeling in ground penetrating radar (GPR) 
problems [3], and study of potential effects of 
human tissue exposure to electromagnetic 
radiation. The techniques that render the FDTD 
method suitable for dispersive media modeling are 
grounded on an appropriate formulation of either 
the equation of motion of charged particles, or the 

local constitutive relation connecting the dielectric 
displacement to the electric field. In the former 
occasion a differential equation, which describes 
the electric field dependence on the polarization 
current density, is derived and discretized via 
regular differencing rules [4, 5]. For the latter case 
three popular approaches have been presented. 
The auxiliary differential equation (ADE) [6] 
technique translates the frequency-dependent 
constitutive relation in the time domain, by inverse 
Fourier transform, leading to an ordinary 
differential equation. The Z-transform based 
method [7] concludes in a similar differential 
equation, assuming the complex permittivity in the 
Z-domain to be a transfer function. Finally, in the 
recursive convolution (RC) [1] formulation the 
convolution integral corresponding to the time 
domain constitutive relation is approximated by a 
discrete summation, which is then properly 
calculated using a recursive procedure. The 
accuracy of the aforementioned efforts for 
expanding the FDTD method to frequency 
dependent materials is controlled by the choice of 
the spatial increment. Specifically, Yee’s scheme 
is characterized by numerical dispersion errors, 
which accumulate in time and contaminate the 
solution. This side-effect is limited by using very 
fine discretization. Considering the fact that FDTD 
techniques for dispersive media introduce 
auxiliary variables or store field values from 
previous time steps, the fine mesh is translated 
into excessive memory demands. Furthermore, the 
achievement of high frequency resolution requires 
elongated simulations. An obvious way to restrict 
the memory needs and total computational times is 
the use of higher-order schemes [8-12]. A fourth-
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order accurate in time and space FDTD approach 
for propagation in collisionless plasma has been 
presented in [13-24]. Despite the accuracy and 
memory savings achieved, the proposed method is 
restricted to lossless dispersive media. Recently, in 
[14, 25-31], a novel higher order method for 
modeling lossy media has been presented. In this 
paper, a staggered fourth-order accurate in space 
and second-order accurate in time FDTD scheme 
for the simulation of lossy dispersive materials is 
proposed. The media considered are second- and 
Nth-order Lorentz, first- and Mth-order Debye, 
and second-order Drude. The algorithm is based 
on the ADE technique [6, 12, 21], while a 
material-independent perfectly matched layer 
(PML) [15-18] is utilized for the reflectionless 
truncation of the computational domain. The 
stability and numerical dispersion characteristics 
of the proposed technique, examined for the (2, 2) 
case in [16, 19, 27, 29, 31], are investigated 
through the derivation of an appropriate stability 
criterion as well as a dispersion relation for each 
material. 
 

II. HIGHER-ORDER FDTD SCHEMES 
FOR DISPERSIVE MEDIA 

The key premise of the proposed FDTD (2, 4) 
method is the discretization of the spatial and 
temporal derivatives using fourth-order and 
second-order approximations, respectively. In 
order to present a more compact methodology for 
wave propagation in dispersive media, temporal 
central finite difference- (𝛿𝛿𝑡𝑡 ,𝛿𝛿2𝑡𝑡 ,𝛿𝛿𝑡𝑡2), central 
average- (𝜇𝜇𝑡𝑡 ,𝜇𝜇2𝑡𝑡), and central spatial-operators 𝛿𝛿𝛽𝛽  

are defined in tables I and II. In the context of this 
paper the spatial derivative ∂/∂β is substituted by 
the fourth-order spatial operator, 

1
∆𝛽𝛽
𝛿𝛿𝛽𝛽𝐹𝐹𝑚𝑚  = 

1
24∆𝛽𝛽

 

(𝐹𝐹𝑚𝑚−3
2
−27𝐹𝐹𝑚𝑚−1

2
+ 27𝐹𝐹𝑚𝑚+1

2
− 𝐹𝐹𝑚𝑚+3

2
 )    (1) 

where the index m corresponds to β coordinate, 
unless stated otherwise. 

The simulation of dispersive materials is 
founded on the ADE technique. Wave propagation 
inside the medium is fully described by the two 
Maxwell’s laws, which are discretized using the 

FDTD (2, 4) scheme, and the frequency-dependent 
constitutive relation D(r,ω) =𝜖𝜖(ω)E(r,ω), where 
𝜖𝜖(ω) is the complex permittivity defining the 
material’s dispersion properties. Taking the 
inverse Fourier transform of the previous 
constitutive relation, an ordinary differential 
equation is derived, which is then discretized 
utilizing a central differencing scheme in time. 
Assuming an Nth-order dispersion, the process, 
which has been just described, results in [8-12], 
 

𝐸𝐸𝑛𝑛+1 = ℱ (𝐸𝐸𝑛𝑛 ,…, 𝐸𝐸𝑛𝑛−𝑁𝑁+1, 𝐷𝐷𝑛𝑛+1, 𝐷𝐷𝑛𝑛 ,…, 
𝐷𝐷𝑛𝑛−𝑁𝑁+1). 

(2) 
The two discretized Maxwell’s equations along 
with equation (2) constitute the overall 
computation model. 

 
Table I: Temporal approximations. 
 Time 

Domain 
Z  Domain 𝝎𝝎𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃 

𝜹𝜹𝒕𝒕𝑭𝑭𝒏𝒏 𝐹𝐹𝑛𝑛+1
2

− 𝐹𝐹𝑛𝑛−
1
2 

𝑍𝑍1
2�

− 𝑍𝑍−1
2�  

2j sin( 𝜔𝜔∆𝑡𝑡
2

 ) 

𝜹𝜹𝟐𝟐𝟐𝟐𝑭𝑭𝒏𝒏 1
2
 (𝐹𝐹𝑛𝑛+1 −
𝐹𝐹𝑛𝑛−1) 

1
2
 (Z −𝑍𝑍−1 ) j sin(𝜔𝜔∆𝑡𝑡 ) 

𝝁𝝁𝒕𝒕𝑭𝑭𝒏𝒏 1
2
  (𝐹𝐹𝑛𝑛+1

2 +

𝐹𝐹𝑛𝑛−
1
2 ) 

1
2
 (𝑍𝑍1

2� +

𝑍𝑍−1
2�  ) 

cos( 
𝜔𝜔∆𝑡𝑡

2
) 

𝝁𝝁𝟐𝟐𝟐𝟐𝑭𝑭𝒏𝒏 1
2
 (𝐹𝐹𝑛𝑛+1 +
𝐹𝐹𝑛𝑛−1) 

1
2
 (Z +𝑍𝑍−1 ) cos( 𝜔𝜔∆𝑡𝑡 ) 

𝜹𝜹𝒕𝒕𝟐𝟐𝑭𝑭𝒏𝒏 𝐹𝐹𝑛𝑛+1

−  2𝐹𝐹𝑛𝑛
+ 𝐹𝐹𝑛𝑛−1 

Z +𝑍𝑍−1 − 
2 

−4 𝑠𝑠𝑠𝑠𝑠𝑠2 

(
𝜔𝜔∆𝑡𝑡

2
 ) 

 
A. Cold plasma media 
 Cold plasma media is described by the 
following permittivity function [2, 6, 19, 20], 
 

𝜖𝜖 (𝜔𝜔 ) = 𝜖𝜖0 � 1 + 𝜔𝜔𝑝𝑝
2

𝜔𝜔(𝑗𝑗 𝑣𝑣𝑐𝑐−𝜔𝜔)
�                  (3) 

where 𝜔𝜔𝑝𝑝 is the radian plasma frequency and 𝑣𝑣𝑐𝑐 is 

the collision frequency. The governing differential 
equation is, 

𝑣𝑣𝑐𝑐
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕2𝐷𝐷
𝜕𝜕𝑡𝑡2  = 𝜖𝜖0 ( 𝜔𝜔𝑝𝑝2E+𝑣𝑣𝑐𝑐

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕2𝐸𝐸
𝜕𝜕𝑡𝑡2  )       (4) 

which is written in difference notation as, 
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[ 𝑣𝑣𝑐𝑐
𝛿𝛿2𝑡𝑡
∆𝑡𝑡

+ 𝛿𝛿𝑡𝑡2

(∆𝑡𝑡)2 ] 𝐷𝐷𝑛𝑛= 

𝜖𝜖0 [ 𝜔𝜔𝑝𝑝2𝜇𝜇2𝑡𝑡 + 𝑣𝑣𝑐𝑐
𝛿𝛿2𝑡𝑡
∆𝑡𝑡

+ 𝛿𝛿𝑡𝑡2

(∆𝑡𝑡)2  ] 𝐸𝐸𝑛𝑛 ,        (5) 

and solved for 𝐸𝐸𝑛𝑛+1to obtain, 
 

𝐸𝐸𝑛𝑛+1 = 1
𝜖𝜖0

{ 4𝜖𝜖∞𝐸𝐸𝑛𝑛–𝜖𝜖0�𝜔𝜔𝑝𝑝
2 (∆𝑡𝑡)2–𝑣𝑣𝑐𝑐∆𝑡𝑡+2�𝐸𝐸𝑛𝑛−1

�𝜔𝜔𝑝𝑝
2 (∆𝑡𝑡)2 + 𝑣𝑣𝑐𝑐∆𝑡𝑡+2�

+

1
𝜖𝜖0
�( 2+𝑣𝑣𝑐𝑐∆𝑡𝑡)𝐷𝐷𝑛𝑛+1– 4𝐷𝐷𝑛𝑛  + (2−𝑣𝑣𝑐𝑐∆𝑡𝑡)𝐷𝐷𝑛𝑛−1

�𝜔𝜔𝑝𝑝
2 (∆𝑡𝑡)2 + 𝑣𝑣𝑐𝑐∆𝑡𝑡+2�

�.            (6) 

Table II: Spatial approximations. 
 𝜹𝜹𝜷𝜷𝑭𝑭𝒎𝒎 Eigenvalues 

2nd-
order 

𝐹𝐹𝑚𝑚+1
2
− 𝐹𝐹𝑚𝑚−1

2
 2j sin(𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛 ,𝛽𝛽

∆𝛽𝛽
2

 ) 

4th-
order 

− 1
24

 (𝐹𝐹𝑚𝑚+3
2
−

𝐹𝐹𝑚𝑚−3
2
 ) + 9

8
 

(𝐹𝐹𝑚𝑚+1
2
− 𝐹𝐹𝑚𝑚−1

2
 ) 

2j [ 
9
8

sin(𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛 ,𝛽𝛽
∆𝛽𝛽
2

 ) 

− 1
24

sin(3𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛 ,𝛽𝛽
∆𝛽𝛽
2

 

) ] 

6th-
order 

3
640

 (𝐹𝐹𝑚𝑚+5
2
−

𝐹𝐹𝑚𝑚−5
2
 ) − 25

384
 

(𝐹𝐹𝑚𝑚+3
2
− 𝐹𝐹𝑚𝑚−3

2
 ) 

+ 75
64

 (𝐹𝐹𝑚𝑚+1
2
−

𝐹𝐹𝑚𝑚−1
2
 ) 

2j [ 
75
64

sin(𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛 ,𝛽𝛽
∆𝛽𝛽
2

 

) 

− 25
384

sin(3𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛 ,𝛽𝛽
∆𝛽𝛽
2

 

) 

+ 3
640

sin(5𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛 ,𝛽𝛽
∆𝛽𝛽
2

 

) ] 

 
III. STABILITY ANALYSIS 

 Among the principal properties of the FDTD 
method, inherent in explicit differential equation 
solvers, is the conditional stability. In the 
conventional Yee’s scheme the unbounded growth 
of errors is eluded by the proper choice of the time 
step size dictated by the Courant condition. The 
stability characteristics of the proposed higher-
order algorithm are investigated using the 
methodology presented in [17-21, 28-36], which 
combines the Von Neumann method with the 
Routh-Hurwitz criterion. It is presumed that the 
error present in the computation of any field 
quantity F is described by a single term of a 
Fourier series expansion, 
 

𝐹𝐹𝑛𝑛  = 𝐹𝐹0𝑍𝑍𝑛𝑛𝑒𝑒𝑗𝑗 ∑ 𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛 ,𝛽𝛽𝑚𝑚∆𝛽𝛽𝛽𝛽=𝑥𝑥 ,𝑦𝑦 ,𝑧𝑧            (7) 
where the complex variable Z corresponds to the 
growth factor of the error. Under this assumption, 
the temporal differencing and averaging operators 

as well as the spatial differencing operators are 
evaluated as shown in tables I and II. The time-
dependent wave equation in a source-free 
homogeneous dispersive medium is, 

𝜇𝜇 𝜕𝜕2𝐷𝐷
𝜕𝜕𝑡𝑡2 − ∇2E = 0                         (8) 

and approximated by, 

𝜇𝜇 𝛿𝛿𝑡𝑡2

(∆𝑡𝑡)2 𝐷𝐷𝑛𝑛–∑
𝛿𝛿𝛽𝛽

2

(∆𝛽𝛽)2𝛽𝛽=𝑥𝑥 ,𝑦𝑦 ,𝑧𝑧 𝐸𝐸𝑛𝑛  = 0          (9) 

where 𝛿𝛿𝛽𝛽 , (β = x, y, z) denotes the central spatial 
difference operator of arbitrary order with respect 
to the coordinate indicated by the subscript. 
Solutions of the form in equation (7) are 
substituted in equation (9) leading to a polynomial 
in Z. The stability of the finite difference scheme 
is assured if the roots of this characteristic 
polynomial are located inside or on the unit circle 
in the Z-plane, namely |Z| ≤ 1. The bilinear 
transformation, 

𝑍𝑍 = 
𝑟𝑟+1
𝑟𝑟−1

                              (10) 

is then applied to the stability polynomial. In this 
way, the exterior of the unit circle in the Z-plane is 
mapped on the right-half of the r-plane. In order to 
examine whether the root of the polynomial with 
respect to r are nonnegative, the Routh table is 
created. If the values of all the elements in the first 
column are positive or zero, the algorithm is 
stable. The enforcement of the stability constraint 
regarding the specified entries of the Routh table 
results in certain inequalities relating the 
parameters of the FDTD scheme. Following the 
procedure, which has just been described, equation 
(9) is formulated, with the use of tables I and II as, 
 

( 𝑍𝑍 − 1)2𝐷𝐷0 + 4Z𝜖𝜖∞𝑣𝑣2𝐸𝐸0 = 0            (11) 

where, 
 

𝑣𝑣2=(𝑐𝑐∞∆𝑡𝑡)2 ∑ 1
(∆𝛽𝛽)2𝛽𝛽=𝑥𝑥 ,𝑦𝑦 ,𝑧𝑧 [ 9

8
sin( 𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛 ,𝛽𝛽

∆𝛽𝛽
2

 )  −
1

24
sin( 𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛 ,𝛽𝛽

3∆𝛽𝛽
2

 ) ]2 

(12) 
for fourth-order accuracy in space and 𝑐𝑐∞= 
1
√𝜇𝜇𝜖𝜖∞
� . A formula similar to equation (12) can be 

derived in a straight forward manner for any 
spatial approximation order [29-34]. The spatial 
discretization operators are shown in table II for 
the case of second- and sixth-order. Next, the 
stability properties of the FDTD (2, 4) scheme for 
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the three aforementioned cold plasmas media will 
be examined. In the case of the Drude model the 
methodology will be presented in detail, while for 
the Debye and Lorentz models only the final 
results will be provided. The constitutive relation 
in the Z-domain for the Drude model is, 
 

{ [ 
𝑣𝑣𝑐𝑐

2∆𝑡𝑡
+ 1

(∆𝑡𝑡)2 ] 𝑍𝑍2 − 2
(∆𝑡𝑡)2 Z + 1

(∆𝑡𝑡)2 −
𝑣𝑣𝑐𝑐

2∆𝑡𝑡
 } 𝐷𝐷0 = 

𝜖𝜖0 { [ 
𝜔𝜔𝑝𝑝

2

2
+ 𝑣𝑣𝑐𝑐

∆𝑡𝑡
+ 1

(∆𝑡𝑡)2 ] 𝑍𝑍2 − 2
(∆𝑡𝑡)2 Z +𝜔𝜔𝑝𝑝

2

2
− 𝑣𝑣𝑐𝑐

∆𝑡𝑡
+

1
(∆𝑡𝑡)2 } 𝐸𝐸0 

(13) 
Solving equation (11) for 𝐷𝐷0 results in, 
 

𝐷𝐷0 = − 4𝑍𝑍𝜖𝜖0𝑣𝑣2

(𝑍𝑍−1)2 𝐸𝐸0 .                  (14) 

Substituting in equation (13) the characteristic 
stability polynomial is derived, 
 

S(Z) = [
2

(∆𝑡𝑡)2 + 𝑣𝑣𝑐𝑐
∆𝑡𝑡

+ 𝜔𝜔𝑝𝑝2 ] 𝑍𝑍4 + [ 
8( 1−𝑣𝑣2)

(∆𝑡𝑡)2 −
2𝑣𝑣𝑐𝑐( 1−2𝑣𝑣2)

∆𝑡𝑡
− 2𝜔𝜔𝑝𝑝2 ] 𝑍𝑍3 + [

12
(∆𝑡𝑡)2 + 2𝜔𝜔𝑝𝑝2 −

16𝑣𝑣2

(∆𝑡𝑡)2 ] 

𝑍𝑍2 + [ 
8( 1−𝑣𝑣2)

(∆𝑡𝑡)2 − 2𝑣𝑣𝑐𝑐( 1−2𝑣𝑣2)
∆𝑡𝑡

− 2𝜔𝜔𝑝𝑝2 ] Z+ 2
(∆𝑡𝑡)2 −

𝑣𝑣𝑐𝑐
∆𝑡𝑡

+ 𝜔𝜔𝑝𝑝2. 

(15) 

After applying the billinear transformation, we 
obtain, 
 

S(r) = 
2𝑣𝑣2𝑣𝑣𝑐𝑐
∆𝑡𝑡

𝑟𝑟3 + [𝜔𝜔𝑝𝑝2 + 4𝑣𝑣2

(∆𝑡𝑡)2 ] 𝑟𝑟2 + 2𝑣𝑣𝑐𝑐
∆𝑡𝑡

 

( 1- 𝑣𝑣2)+𝜔𝜔𝑝𝑝2 + 4
(∆𝑡𝑡)2 −

4𝑣𝑣2

(∆𝑡𝑡)2            (16) 

and the corresponding Routh table is built. 
 
Table III: Routh-Hurwithz table. 

𝟐𝟐𝒗𝒗𝟐𝟐𝒗𝒗𝒄𝒄
∆𝒕𝒕

 
𝟐𝟐𝒗𝒗𝒄𝒄
∆𝒕𝒕

 ( 1- 𝒗𝒗𝟐𝟐) 

𝝎𝝎𝒑𝒑
𝟐𝟐 +

𝟒𝟒𝒗𝒗𝟐𝟐

(∆𝒕𝒕)𝟐𝟐
 𝜔𝜔𝑝𝑝2 +

4
(∆𝑡𝑡)2 −

4𝑣𝑣2

(∆𝑡𝑡)2 

𝒄𝒄𝟑𝟑 0 

𝒄𝒄𝟓𝟓 0 

 
 

where, 

𝑐𝑐3 = 2𝜔𝜔𝑝𝑝
2𝑣𝑣𝑐𝑐
∆𝑡𝑡

1−2𝑣𝑣2

𝜔𝜔
𝑝𝑝  + 4𝑣𝑣2

(∆𝑡𝑡)2

2 , 𝑐𝑐5 = 𝜔𝜔𝑝𝑝2 + 4 (1−𝑣𝑣2)
(∆𝑡𝑡)2  .     (17) 

 

Enforcing the entries of the first column to be 
nonnegative we get, 
 

𝑣𝑣2 ≤ 1
2�  .                              (18) 

In order to derive the numerical dispersion 
relation, the following discrete solution is 
assumed, 
 

𝐹𝐹𝑛𝑛  ( I, J, K ) = 𝐹𝐹0 exp [ j ( n𝜔𝜔∆𝑡𝑡 + I𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛 ,𝑥𝑥∆𝑥𝑥 + 
J𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛 ,𝑦𝑦∆𝑦𝑦 + K𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛 ,𝑧𝑧∆𝑧𝑧 )] 

(19) 

where F represents the electric or magnetic field, 
indexes I, J, K denote the position of the nodes in 
the mesh, Δβ (β=x, y, z) are the sizes of the 
discretization cell, and 𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛 ,𝛽𝛽  (β = x, y, z) the 
wave numbers of the discrete modes in the β-
direction. Similarly to the continuous case, we 
replace in Maxwell’s equations ∂/∂t with j𝜔𝜔𝑛𝑛𝑛𝑛𝑛𝑛  

and ∇with −𝑗𝑗𝒌𝒌𝑛𝑛𝑛𝑛𝑛𝑛 , where 𝜔𝜔𝑛𝑛𝑛𝑛𝑛𝑛 = 
2
∆𝑡𝑡

sin(
𝜔𝜔∆𝑡𝑡

2
). 

Given 𝜔𝜔𝑛𝑛𝑛𝑛𝑛𝑛  and 𝒌𝒌𝑛𝑛𝑛𝑛𝑛𝑛 , Maxwell’s equations can 
be written in discrete form as, 

 

𝜔𝜔𝑛𝑛𝑛𝑛𝑛𝑛 𝜇𝜇0𝐻𝐻0 = 𝒌𝒌𝑛𝑛𝑛𝑛𝑛𝑛 × 𝐸𝐸0           (20-a) 

𝜔𝜔𝑛𝑛𝑛𝑛𝑛𝑛 𝜖𝜖𝑛𝑛𝑛𝑛𝑛𝑛 (𝜔𝜔𝑛𝑛𝑛𝑛𝑛𝑛 )𝐸𝐸0 = −𝒌𝒌𝑛𝑛𝑛𝑛𝑛𝑛 × 𝐻𝐻0,   (20-b) 

where 𝜖𝜖𝑛𝑛𝑛𝑛𝑛𝑛 is the discrete permittivity function 
defined below. The numerical wave number 𝒌𝒌𝑛𝑛𝑛𝑛𝑛𝑛  
derived for the second-order spatial approximation 
is, 

𝒌𝒌𝑛𝑛𝑛𝑛𝑛𝑛  = ∑ 2
∆𝛽𝛽𝛽𝛽=𝑥𝑥 ,𝑦𝑦 ,𝑧𝑧 sin( 𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛 ,𝛽𝛽∆𝛽𝛽

2
 ) 𝛼𝛼𝛽𝛽         (21) 

and for the fourth-order spatial approximation, 
 

                                                                𝒌𝒌𝑛𝑛𝑛𝑛𝑛𝑛 =                                              

∑ 2
∆𝛽𝛽𝛽𝛽=𝑥𝑥 ,𝑦𝑦 ,𝑧𝑧 [9

8
( 𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛 ,𝛽𝛽∆𝛽𝛽

2
 ) − 1

24
sin( 3𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛 ,𝛽𝛽∆𝛽𝛽

2
 )] 

𝛼𝛼𝛽𝛽 

(22) 
where 𝛼𝛼𝛽𝛽  is the unit vector in β-direction (see 
table II). The previous definitions can be extended 
to any order of spatial approximation. The central 
operator of N-order (N: even number) has the 
general form, 
 

𝛿𝛿𝛽𝛽𝐹𝐹𝑚𝑚  = ∑ 𝑐𝑐𝑗𝑗𝑁𝑁( 𝐹𝐹𝑚𝑚+𝑗𝑗
2
− 𝐹𝐹𝑚𝑚−𝑗𝑗2

 )𝑁𝑁−1
𝑗𝑗=1(𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 )      (23) 
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with the coefficients 𝑐𝑐𝑗𝑗 calculated through Taylor 
series expansions and given in a closed form [18-
24] by, 
 

𝑐𝑐𝑗𝑗𝑁𝑁 = 
(−1)

𝑗𝑗
2−

1
2

2(𝑗𝑗2)2

[(𝑁𝑁−1)!!]2

(𝑁𝑁−1−𝑗𝑗 )!!(𝑁𝑁−1+𝑗𝑗 )!!
j = 1, 3, 5, …, N−1 

(24) 
where, 

𝑛𝑛!! = �
𝑛𝑛. (𝑛𝑛 − 2) … 5.3.1         𝑛𝑛 > 0, 𝑜𝑜𝑜𝑜𝑜𝑜
𝑛𝑛. (𝑛𝑛 − 2) … 6.4.2         𝑛𝑛 > 0, 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
1                                     𝑛𝑛 =  −1, 0 .

� 

Applying the previous formula, the coefficients 
𝑐𝑐1

2= 1 for Yee’s scheme,𝑐𝑐1
4 = 9/8 and 𝑐𝑐3

4= −1/24 
for Fang’s fourth-order scheme, and 𝑐𝑐1

6= 75/64, 
𝑐𝑐3

6= − 25/384, 𝑐𝑐5
6= 3/640 for a sixth-order scheme 

are yielded. It can be easily proven that the 
numerical wave number for the Nth-order accurate 
scheme is, 
 

𝒌𝒌𝑛𝑛𝑛𝑛𝑛𝑛  = ∑ 2
∆𝛽𝛽𝛽𝛽=𝑥𝑥 ,𝑦𝑦 ,𝑧𝑧 ∑ 𝑐𝑐𝑗𝑗𝑁𝑁𝑁𝑁−1

𝑗𝑗=1(𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 ) sin( 𝑗𝑗𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛 ,𝛽𝛽∆𝛽𝛽
2

 ) 

𝛼𝛼𝛽𝛽 .      

(25) 
The numerical wave number 𝒌𝒌𝑛𝑛𝑛𝑛𝑛𝑛  is defined as, 
 

𝒌𝒌𝑛𝑛𝑛𝑛𝑛𝑛  = 𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛  ( sin𝜃𝜃 cos∅𝑎𝑎𝑥𝑥 + sin𝜃𝜃 sin∅𝑎𝑎𝑦𝑦 +
cos𝜃𝜃 𝑎𝑎𝑧𝑧  ).           (26) 

The discrete counterpart of the continuous 
permittivity function, called numerical 
permittivity, is defined as the ratio of the discrete 

values of D and E, i.e., 𝜖𝜖𝑛𝑛𝑛𝑛𝑛𝑛 =𝐷𝐷
𝑛𝑛
𝐸𝐸𝑛𝑛� . Similar to 

the continuous dispersion relation the discrete one 
is, 

𝜇𝜇0𝜖𝜖𝑛𝑛𝑛𝑛𝑚𝑚 ( 𝜔𝜔𝑛𝑛𝑛𝑛𝑛𝑛 )𝜔𝜔𝑛𝑛𝑛𝑛𝑛𝑛2  = 𝒌𝒌𝑛𝑛𝑛𝑛𝑛𝑛 .𝒌𝒌𝑛𝑛𝑛𝑛𝑛𝑛       (27) 

Using the discrete form of the constitutive 
equation and the temporal operators shown in the 
third column of table I, which are derived by 
setting Z = exp(jωtΔt), the discrete expression of 
the complex permittivity function for the cold 
plasma medium, 
 

𝜖𝜖𝑛𝑛𝑛𝑛𝑛𝑛  = 𝜖𝜖0 [ 1+ 𝜔𝜔𝑝𝑝 ,𝑛𝑛𝑛𝑛𝑛𝑛

𝜔𝜔𝑛𝑛𝑛𝑛𝑛𝑛 ( 𝑗𝑗𝑣𝑣𝑐𝑐 ,𝑛𝑛𝑛𝑛𝑛𝑛 −𝜔𝜔𝑛𝑛𝑛𝑛𝑛𝑛 )
 ]      (28) 

where 𝜔𝜔𝑝𝑝 ,𝑛𝑛𝑛𝑛𝑛𝑛 = 𝜔𝜔𝑝𝑝�cos  ( 𝜔𝜔∆𝑡𝑡 ) , 𝜔𝜔𝑛𝑛𝑛𝑛𝑛𝑛 = 
2
∆𝑡𝑡

sin(
𝜔𝜔∆𝑡𝑡

2
) and 𝑣𝑣𝑐𝑐 ,𝑛𝑛𝑛𝑛𝑛𝑛 =𝑣𝑣𝑐𝑐cos(

𝜔𝜔∆𝑡𝑡
2

). Restricting 

ourselves to one-dimensional problems, without 
loss of generality, it is obtained for the FDTD (2, 
2) case, 

 

𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛  =  
2
∆
𝑠𝑠𝑠𝑠𝑠𝑠−1( 

∆
2
𝜔𝜔𝑛𝑛𝑛𝑛𝑛𝑛 �𝜇𝜇0𝜖𝜖𝑛𝑛𝑛𝑛𝑛𝑛   )          (29) 

for the FDTD (2, 4), 
 

2
∆
 [ 

9
8

sin( 𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛 ∆
2

 )− 1
24

sin( 3𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛 ∆
2

 ) ] = 

𝜔𝜔𝑛𝑛𝑛𝑛𝑛𝑛 �𝜇𝜇0𝜖𝜖𝑛𝑛𝑛𝑛𝑛𝑛              (30) 

and for the FDTD (2, 6), 
 

2
∆
 [ 

75
64

sin( 𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛 ∆
2

)− 25
384

sin � 3𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛 ∆
2

� +
3

640
sin( 5𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛 ∆

2
 )] = 𝜔𝜔𝑛𝑛𝑛𝑛𝑛𝑛 �𝜇𝜇0𝜖𝜖𝑛𝑛𝑛𝑛𝑛𝑛 .  (31) 

To investigate the dispersive features for both 
second- and fourth- order schemes we consider the 
following example in a second order Lorentz 
medium; let 𝜖𝜖∞= 2.25𝜖𝜖0, 𝜖𝜖𝑠𝑠= 3𝜖𝜖0, 𝜔𝜔0= 2π𝑓𝑓0, 𝑓𝑓0= 
200 MHz and 𝛿𝛿0= 0.1𝜔𝜔0. Figure 1 shows the 

normalized phase velocity 𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛 𝑐𝑐�  = 𝑘𝑘 𝑅𝑅𝑅𝑅{𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛 }�  

for the second-order case with Δ = 0.005 m, Q = 
0.6 and the fourth- and sixth-order with Δ = 0.01 
m, Q = 0.1 where the Courant number Q is defined 

as Q =𝑐𝑐0∆𝑡𝑡
∆� . The superior performance of the 

higher-order schemes is evident, even for larger Δ. 
 

IV. NUMERICAL RESULTS 
The efficiency of the proposed FDTD (2, 4) 

scheme compared to the conventional second-
order accurate technique has been extensively 
investigated through numerical results. An 
analytical reference solution has been developed in 
order to precisely define the potential errors of 
each method [21-23]. The two schemes have been 
tested in one-dimensional wave propagation 
problems in homogeneous and inhomogeneous 
geometries involving materials of diverse 
dispersion types. In all the examined cases, the 
new algorithm has been found to be superior, 
achieving higher accuracy in modeling dispersive 
characteristics for equal spatial discretization, or 
allowing a less dense lattice to be used, while the 
same level of accuracy is ensured [33-36]. 
 In the first case studied a Lorentz-type 
medium slab is placed in free space. The resonant 
frequency of the material is set to 𝜔𝜔0= 2 × 
109 𝑟𝑟𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠� , the damping coefficient is equal to 
𝛿𝛿0= 0.1𝜔𝜔0, whereas 𝜖𝜖∞= 2.25𝜖𝜖0 and 𝜖𝜖𝑠𝑠= 3𝜖𝜖0 [22-
27]. The wideband reflection coefficient at the 
interface between air and the dispersive dielectric 
is calculated by the FDTD (2, 2) and FDTD (2, 4) 

1157 ACES JOURNAL, VOL. 28, No. 12, DECEMBER 2013



 
 

ADE techniques. The computational domain 
consists of 2000 cells and the dielectric slab 
occupies the region from the 700th cell to 750th 
cell. For the FDTD (2, 4) scheme the spatial step 
size is set to Δx = 0.005 m, Q = 0.1 and the total 
number of time steps 𝑁𝑁𝑡𝑡  = 14250. Two sets of 
parameters are selected for the FDTD (2, 2) 
simulations, namely (a) Δx = 0.005 m, Q = 0.95 
and 𝑁𝑁𝑡𝑡= 1500 and (b) Δx = 0.0025 m, Q = 0.95, 
𝑁𝑁𝑡𝑡= 3000 where the number of cells is doubled. 
The results for the first case are depicted in Fig. 1, 
along with the reference solution. It is clearly 
observed that the FDTD (2, 4) scheme is far more 
accurate obtaining only slight deviations from the 
exact reflection coefficient function even for 
frequencies high above the resonant one [25-27]. 
Contrarily, its (2, 2) counterpart generates 
significant errors. The reflection coefficient for the 
latter group of parameters is illustrated in Fig. 2. 
The graphs corresponding to the two schemes 
almost coincide introducing minor shifts in the 
peaks locations compared to the analytical 
solution. However, it should be reminded that in 
the FDTD (2, 2) case a two times denser grid is 
utilized. 
 In the next simulation, the propagation of the 
modulated Gaussian pulse f(t) = 

exp�− (𝑡𝑡 − 𝑡𝑡0)2

𝑇𝑇2� �cos(2π𝑓𝑓𝑠𝑠t) where 𝑡𝑡0= 8×10−9 

sec, T = 10−9 sec and 𝑓𝑓𝑠𝑠= 600 MHz, inside a 
Lorentz-type dispersive medium is explored. The 
parameters of the material are 𝜔𝜔0= 2π 
200×106 𝑟𝑟𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠� , 𝛿𝛿0= 0.1𝜔𝜔0, 𝜖𝜖∞= 2.25𝜖𝜖0 and 
𝜖𝜖𝑠𝑠= 3𝜖𝜖0. For the FDTD (2, 2) scheme two different 
uniform grids are considered: (a) Δx = 0.01 m, Q = 
0.5 for 5000 time steps and (b) Δx = 0.05 m, Q = 
0.5 for 1000 time steps. The respective parameters 
for the FDTD (2, 4) scheme are Δx = 0.05m and Q 
= 0.1. 
 In Fig. 3, the time domain electric field 
located 0.2 m away from the excitation point is 
illustrated for the three aforementioned cases 
along with the exact solution. For an easier 
observation a detail of the previous graphs is 
shown in Fig. 4. It is evident that the higher order 
algorithm achieves the same level of accuracy as 
the FDTD (2, 2) with the first set of parameter 
values, but with a five times coarser grid. In table 
III, the three methods are compared in terms of 
maximum error and total computational time. It is 

noted that the proposed higher order technique is 
more accurate and computationally efficient. 
 

 
 

Fig. 1. The reflection coefficient as a function of 
frequency. Comparison is made between the exact 
data, FDTD (2, 4) and FDTD (2, 2) with Δx = 
0.005 m. 
 

 
 

Fig. 2. The reflection coefficient as a function of 
frequency. Comparison is made between the exact 
data, FDTD (2, 4) Δx = 0.05 m and FDTD (2, 2) 
with Δx = 0.0025 m. 

 
 Finally, the air-slab problem is solved by the 
FDTD (2, 2) and FDTD (2, 4) algorithms 
assuming that the slab is filled with a third order 
Debye dispersive material. The characteristic 
parameters of the three poles are 𝜖𝜖𝑠𝑠1= 3𝜖𝜖0, 𝜏𝜏1= 9, 
4×10−9sec, 𝜖𝜖𝑠𝑠2= 2𝜖𝜖0, 𝜏𝜏2= 10−10sec, and 
𝜖𝜖𝑠𝑠3=𝜖𝜖0, 𝜏𝜏3 = 10−6 sec, while the infinite 
permittivity is set equal to 2.25 𝜖𝜖0. In both cases, 
the computational space consists of 2000 cells, the 
spatial step size is 0.01m and Q = 0.8. The electric 
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field function in the time-domain is presented in 
Fig. 5. It is again obvious that the proposed higher 
order scheme accomplishes better accuracy. 
 

 
 

Fig. 3. Electric field waveforms of the exact, 
FDTD (2, 4) and FDTD (2, 2) with two different 
grids. 

 
 Having verified that FDTD (2, 4) can be 
efficiently extended to cold plasma medias, it is 
applied to wave scattering by an infinite height 
cylinder made of cold plasma placed in air. The 
computational space consists of 200×200 cells. 
The cylinder is excited by a plane wave. The wave 
front is assumed to be a modulated Gaussian pulse 
centered at 20 GHz. The excitation frequency is 
stable, while for the plasma frequency of the cold 
plasma three values have been selected, namely 
28.7 GHz, 5.74 GHz, and 0.287 GHz. 
 

 
 

Fig. 4. Details of Fig. 3, observed that the 
proposed technique produces an acceptable close 
to the (2, 2) scheme result but with a five-times 
coarser grid. 

 
Fig. 5. Electric field waveforms of the exact, 
FDTD (2, 4) and FDTD (2, 2). 

 
V.  CONCLUSION 

 A novel FDTD (2, 4) scheme for the 
simulation of wave propagation inside cold plasma 
media has been presented. Its stability properties 
for three specific models have been investigated 
and appropriate stability conditions have been 
derived. Additionally, the numerical dispersion 
characteristics have been examined and for the 
case of a second-order Lorentz medium, it has 
been verified that the proposed algorithm is more 
powerful than the conventional second-order 
technique, as expected. The efficiency of the 
FDTD (2, 4) algorithm has also been explored in 
various numerical examples, where it has been 
compared to the FDTD (2, 2) method and an 
analytical solution. In all the cases considered, it 
has been proven that the former achieves better 
accuracy when the same grid is used or the same 
level of accuracy for coarser grids. Additionally, 
the presented method accomplishes minimum 
errors, while reducing the overall computational 
time. 
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