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Abstract— A fourth-order accurate in space and
second-order accurate in time, finite-difference
time-domain (FDTD) scheme for wave
propagation in cold plasma media is presented.
The formulation of Maxwell’s equations is fully
described and an elaborate study of the stability
and dispersion properties of the resulting
algorithm is conducted. The efficiency of the
proposed FDTD (2, 4) technique in cold plasma
media compared to its conventional FDTD (2, 2)
counterpart is demonstrated through numerical
results.
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. INTRODUCTON

The finite difference time domain (FDTD)
method [1, 2] has prevailed in the computationa
electromagnetics area as an accurate numerical
technique for the direct integration of Maxwell’s
equations. Its evolution has ensued from several
technological developments, resulting in the
emergence of various algorithms that extend the
method's implementation to various modern
applications. A maor group of such problems
involves pulse propagation inside dispersive
materials. Representative examples are the
simulation of light propagation in optical devices,
soil modeling in ground penetrating radar (GPR)
problems [3], and study of potential effects of
human tissue exposure to electromagnetic
radiation. The techniques that render the FDTD
method suitable for dispersive media modeling are
grounded on an appropriate formulation of either
the equation of motion of charged particles, or the
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local congtitutive relation connecting the dielectric
displacement to the electric field. In the former
occasion a differential equation, which describes
the electric field dependence on the polarization
current density, is derived and discretized via
regular differencing rules [4, 5]. For the latter case
three popular approaches have been presented.
The auxiliary differential equation (ADE) [6]
technique trandates the frequency-dependent
constitutive relation in the time domain, by inverse
Fourier transform, leading to an ordinary
differential  equation. The Z-transform based
method [7] concludes in a similar differential
eguation, assuming the complex permittivity in the
Z-domain to be atransfer function. Finaly, in the
recursive convolution (RC) [1] formulation the
convolution integral corresponding to the time
domain constitutive relation is approximated by a
discrete summation, which is then properly
calculated using a recursive procedure. The
accuracy of the aforementioned efforts for
expanding the FDTD method to frequency
dependent materias is controlled by the choice of
the gpatial increment. Specifically, Yee's scheme
is characterized by numerical dispersion errors,
which accumulate in time and contaminate the
solution. This side-effect is limited by using very
fine discretization. Considering the fact that FDTD
techniques for dispersve media introduce
auxiliary variables or store field values from
previous time steps, the fine mesh is trandated
into excessive memory demands. Furthermore, the
achievement of high frequency resolution requires
elongated simulations. An obvious way to restrict
the memory needs and total computational timesis
the use of higher-order schemes [8-12]. A fourth-
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order accurate in time and space FDTD approach
for propagation in collisionless plasma has been
presented in [13-24]. Despite the accuracy and
memory savings achieved, the proposed method is
restricted to lossless dispersive media. Recently, in
[14, 25-31], a novel higher order method for
modeling lossy media has been presented. In this
paper, a staggered fourth-order accurate in space
and second-order accurate in time FDTD scheme
for the simulation of lossy dispersive materials is
proposed. The media considered are second- and
Nth-order Lorentz, first- and Mth-order Debye,
and second-order Drude. The agorithm is based
on the ADE technique [6, 12, 21], while a
material-independent perfectly matched layer
(PML) [15-18] is utilized for the reflectionless
truncation of the computational domain. The
stability and numerica dispersion characteristics
of the proposed technique, examined for the (2, 2)
case in [16, 19, 27, 29, 31], are investigated
through the derivation of an appropriate stability
criterion as well as a dispersion relation for each
material.

1. HIGHER-ORDER FDTD SCHEMES
FOR DISPERSIVE MEDIA

The key premise of the proposed FDTD (2, 4)
method is the discretization of the spatial and
temporal derivatives using fourth-order and
second-order approximations, respectively. In
order to present a more compact methodology for
wave propagation in dispersive media, tempora
central finite difference- (8,.6,.,67), central
average- (i, 12¢), and central spatial-operators &g
are defined in tables | and I1. In the context of this
paper the spatia derivative 0/0f is substituted by
the fourth-order spatial operator,

1 1

E‘SﬁFm ~ 2a0p

(Fm_g —27Fm_% + 27Fm+% - Fm+§) (D]

where the index m corresponds to f coordinate,
unless stated otherwise.

The simulation of dispersive materials is
founded on the ADE technique. Wave propagation
inside the medium is fully described by the two
Maxwell’s laws, which are discretized using the
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FDTD (2, 4) scheme, and the frequency-dependent
constitutive relation D(r,w) =e(w)E(r,®), where
€(w) is the complex permittivity defining the
material’s disperson properties. Taking the
inverse Fourier transform of the previous
constitutive relation, an ordinary differential
equation is derived, which is then discretized
utilizing a central differencing scheme in time.
Assuming an Nth-order dispersion, the process,
which has been just described, resultsin [8-12],

= F (E".., D™, DM,
Dn—N+1).

2
The two discretized Maxwell’s equations aong
with eguation (2) congtitute the overal
computation model.

En+1 En—N+1

Table |: Temporal approximations.

Time Z Domain
Domain

wDomain

F' 3 7' 2j sin( wTAt )

_ Fn—% — Z_l/z
S(Fr— 2(@Z-z7t) Isin(wAt)
Fn—l)
1 1 1.1 wAt
5 (F™2 4+ 5({ /2 + cos(——
Fn—%) Z_ /2 )
S(F 4+ S(z+z7t) cos(wAt)
Fn—l)

Fntl Z+Z1—  —4sin?

— 2F" 2 (“’_At)

+ Fn—l 2

A. Cold plasma media
Cold plasma media is described by the
following permittivity function [2, 6, 19, 20],

v ] ©

w(r,—w)

e(w)=eo[1 +

where w,is the radian plasma frequency and v.is
the collision frequency. The governing differential
equation s,

aD | 3%D _ 2 dE | 9%E
‘UCE-}‘F—EO((UPE-}‘UC(?—LL‘FW) (4)

which iswritten in difference notation as,
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n—
[ve D

(At)2 ]

5 57
co[wppae + v+ G5 1EY (9)

and solved for E"*1to obtain,

gr+l = L1 { 4 EM-€g|wi (At)2-v At+2|E" 1
€0 [w3(AL)? + v At+2]
1 {( 24+v, At)D 1o 4D™ + (Z—VCAt)D"_l}
€0

[w3 (At)? + v At+2]

(6)

Table 1: Spatial approximations.
Eigenvalues

P A
2] Sln(knum B TB )

.09 .
Y (Fm+§_ 2] [gSIn(knum,B 2 )

2 1. A
Fm z ) +§ _asu’l(?’knum,ﬁ?ﬁ
(F,1—F, 1) )]
2 2
3 75 AB
640 (Fm_% - )2] [aSIH(knum B
25
F ) ——
m— 384 AB
— 2 sin(3k —=
(F —F 3) ) a4 51 Glemam
75 : AB
e (G +%sm(5knum_ﬁ?

Fm—l) )]

[11. STABILITY ANALYSIS

Among the principal properties of the FDTD
method, inherent in explicit differential equation
solvers, is the conditional stability. In the
conventional Y e€' s scheme the unbounded growth
of errorsis eluded by the proper choice of the time
step size dictated by the Courant condition. The
stahility characteristics of the proposed higher-
order agorithm are investigated using the
methodology presented in [17-21, 28-36], which
combines the Von Neumann method with the
Routh-Hurwitz criterion. It is presumed that the
error present in the computation of any field
guantity F is described by a single term of a
Fourier series expansion,

F" = FyZ"e/ Yp=xy,z knum gmAB ™
where the complex variable Z corresponds to the

growth factor of the error. Under this assumption,
the temporal differencing and averaging operators
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as well as the gpatia differencing operators are
evaluated as shown in tables | and Il. The time-
dependent wave equation in a source-free
homogeneous dispersi vemediumiis,

e atz —-V?E=0 (8

and approximated by,
2 52

ﬂ(Att)z Dn_Z,B:x,y,zﬁEn =0 (9)

where &, (8 = x, y, z) denotes the central spatial
difference operator of arbitrary order with respect
to the coordinate indicated by the subscript.
Solutions of the form in equation (7) are
substituted in equation (9) leading to a polynomial
in Z. The stability of the finite difference scheme
is assured if the roots of this characteristic
polynomial are located inside or on the unit circle
in the Z-plane, namely |Z| < 1. The bilinear

transformation,
r+1

is then applied to the stability polynomial. In this
way, the exterior of the unit circlein the Z-planeis
mapped on the right-half of the r-plane. In order to
examine whether the root of the polynomia with
respect to » are nonnegative, the Routh table is
created. If the values of al the elementsin the first
column are positive or zero, the agorithm is
stable. The enforcement of the stability constraint
regarding the specified entries of the Routh table
results in certain inequalities relating the
parameters of the FDTD scheme. Following the
procedure, which has just been described, equation
(9) isformulated, with the use of tables| and Il as,

(Z —1)?Dy + 4Ze,,v*Ey =0 (12)
where,
172:((:00At)2 Zﬁ:x,yz (A[f)z [ Sll’l( knum ,B 2 ) -
3A
ﬁSIn( knum B Zﬁ )]2
(12)

for fourth-order accuracy in space and c.=
1 . A formula similar to equation (12) can be
! Jies eq (12)

derived in a draight forward manner for any
spatia approximation order [29-34]. The spatial
discretization operators are shown in table Il for
the case of second- and sixth-order. Next, the
stability properties of the FDTD (2, 4) scheme for



the three aforementioned cold plasmas media will
be examined. In the case of the Drude model the
methodology will be presented in detail, while for
the Debye and Lorentz models only the final
results will be provided. The constitutive relation
in the Z-domain for the Drude mode is,

P 2 _ 2 L % =

{ [ZAt (At)z] (At)? + (At)? 2At} Do

2 U
€0 { [ (At)2 12 (At)z z + “a T

(At)2 LE
(13)
Solving equation (11) for Dy resultsin,
4Zeyv?

0=~ oy (14)

Substituting in equation (13) the characteristic
stahility polynomial is derived,

S(2) [(At)2+ +wy 1 2%+ | 8((;)1;2)_

% 202 1 73+ [(m2 2wy — (1232 ]
72+ 8(&;; )_ZMZ;ZH 205 1 Z+ (Ar)z

E-HUP'

(15)

After applying the billinear transformation, we
obtain,

S(r) =

—r> 4 [a) +(At)2

4v?
(At)2 C@n?

and the corresponding Routh tableis built.

(L-v 2)+a) +

Tablelll: Routh-Hurwithz table.

21721% 217C (1_ )
At
W + 4v” e _
P (at)? P @n?  (Ap)?
c3 0
Cs 0
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where,

2wiv, 1-2v°2 4 (1-v?)
— pYc N
Cy = Cc =w; + . 17 )
3 At 2 41;2 155 p (At)z (

ANTY:

Enforcing the entries of the first column to be
nonnegative we get,

v2<1/,. (18)

In order to derive the numerica dispersion
relation, the following discrete solution is
assumed,

F" (L J K)=Fyexp[j(nwAt + Ik, ,Ax +
Jknum ,yAy + Kknum ,ZAZ )]

(19)

where F represents the electric or magnetic field,
indexes I, J, K denote the position of the nodes in
the mesh, AS (f=x, y, z) are the sizes of the
discretization cell, and ky,m g (B = x, y, z) the
wave numbers of the discrete modes in the f-
direction. Similarly to the continuous case, we
replace in Maxwell’s equations 6/0¢ with jwnum

Given wyy, and k., , Maxwell's equatlons can
be written in discrete form as,

Wnum #OHO = knum X EO (20—8.)

Wynym €Enum (wnum )EO = _knum X HO- (Zo'b)

where €,,,, 1S the discrete permittivity function
defined below. The numerical wave number k.,
derived for the second-order spatial approximation
is,

num AB
—ﬁ )

knum Z,B =x,y,Z Aﬁ ~—sin ( aﬁ (21)

and for the fourth-order spatial approximation,

kTLum—
2 9 knum gAB 1 num g 0B
Spnya g o (2t y _ Lgin(Yams
ag
(22)

where a; is the unit vector in g-direction (see
table 11). The previous definitions can be extended
to any order of spatial approximation. The central
operator of N-order (N: even number) has the
genera form,

8 Fn = 2} Fjoad ) G Fm% - Fm_%) (23)
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with the coefficients ¢;calculated through Taylor

series expansions and given in a closed form [18-
24] by,

j 1
N _ (=122 [(N-1)1]?

j = 2y (N—1uN—1+ ) 1,35, .. N=1
(24)
where,
n.(n—2)..53.1 n > 0,odd
n'=in.(n—2)..6.4.2 n > 0,even

1 n= -1,0.

Applying the previous formula, the coefficients
c?= 1 for Yee's scheme,ci = 9/8 and c = -1/24
for Fang's fourth order scheme, and cf= 75/64,
c$= — 25/384, cb= 3/640 for a sixth-order scheme
are yielded. It can be easily proven that the
numerical wave number for the Nth-order accurate
schemeis,

2 — . Jknum p OB
knum = 2[3 =x,y,z E Z;'v=11(jodd ) CjN sin( Tﬁ )
(X’B .
(25)

The numerical wave number k,,,,,,, isdefined as,

= Kpum ( sinfcos@a, +sinfsin@a, +

cosfa, ). (26)
The discrete counterpart of the continuous
permittivity function, called numerical
permittivity, is defined as the ratio of the discrete
values of D and E, i.e., €, = /E” Similar to

the continuous dispersion relation the discrete one
is,

knum

/10 enum( wnum )w%um = knum " knum (27)

Using the discrete form of the congtitutive
equation and the temporal operators shown in the
third column of table I, which are derived by
setting Z = exp(jwtAf), the discrete expression of
the complex permittivity function for the cold
plasma medium,

Wp num

— 28
Wnum (]vc,num —Wnum ) ] ( )

Where

Wp+/€os (WAL),  Wpyn =
(w—At) and U pum vccos(—) Restricting
ourseivoﬁ to one-dimensional problems, without

loss of generality, it is obtained for the FDTD (2,
2) case,

:E0[1+

Enum

Wp num =
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2 . _1,A
knum = ZSln 1(E(‘)num Y, Ho€num ) (29)

for the FDTD (2, 4),

2 9 A

Z [ gsin( knuzm num A ) ] —

)——sm(

Wnum vV Ho€num (30)

and for the FDTD (2, 6),

2 75 sin( ka8 25 i (S )
A [ 64S ( ) 384Sln 2 +

3 Sknym A
%Sln( T )] = Wnum vV Ho€num - (31)

To investigate the dispersive features for both
second- and fourth- order schemes we consider the
following example in a second order Lorentz
med|um, let €= 2.2560, €= 360, wo= 27I'f0, f0:
200 MHz and §p= 0.1wy. Figure 1 shows the
normalized phase velocity “mm /. = k/Re{k

num }

for the second-order case with A =0.005m, O =
0.6 and the fourth- and sixth-order with A = 0.01
m, O = 0.1 where the Courant number Q is defined

as Q0 =C°At/ A- The superior performance of the
higher-order schemes is evident, even for larger A.

IV.NUMERICAL RESULTS

The efficiency of the proposed FDTD (2, 4)
scheme compared to the conventional second-
order accurate technique has been extensively
investigated through numerical results. An
analytical reference solution has been developed in
order to precisely define the potential errors of
each method [21-23]. The two schemes have been
tested in one-dimensional wave propagation
problems in homogeneous and inhomogeneous
geometries involving materidls of diverse
dispersion types. In all the examined cases, the
new agorithm has been found to be superior,
achieving higher accuracy in modeling dispersive
characteristics for equal spatial discretization, or
allowing a less dense lattice to be used, while the
same level of accuracy is ensured [33-36].

In the first case studied a Lorentz-type
medium slab is placed in free space. The resonant
frequency of the materia is set t0 wy= 2 %

10°7ad/ . the damping coefficient is equal to
6p= 0.1wq, whereas €,= 2.25¢, and €,= 3¢, [22-
27]. The wideband reflection coefficient at the
interface between air and the dispersive dielectric
is calculated by the FDTD (2, 2) and FDTD (2, 4)



ADE techniques. The computationa domain
consists of 2000 cells and the didlectric dab
occupies the region from the 700th cell to 750th
cell. For the FDTD (2, 4) scheme the spatia step
size is set to Ax = 0.005 m, O = 0.1 and the total
number of time steps N, = 14250. Two sets of
parameters are sdlected for the FDTD (2, 2)
simulations, namely (a) Ax = 0.005 m, O = 0.95
and N;= 1500 and (b) Ax = 0.0025 m, Q = 0.95,
N,= 3000 where the number of cells is doubled.
The results for the first case are depicted in Fig. 1,
aong with the reference solution. It is clearly
observed that the FDTD (2, 4) scheme is far more
accurate obtaining only slight deviations from the
exact reflection coefficient function even for
frequencies high above the resonant one [25-27].
Contrarily, its (2, 2) counterpart generates
significant errors. The reflection coefficient for the
latter group of parameters is illustrated in Fig. 2.
The graphs corresponding to the two schemes
almost coincide introducing minor shifts in the
peaks locations compared to the anaytica
solution. However, it should be reminded that in
the FDTD (2, 2) case a two times denser grid is
utilized.

In the next simulation, the propagation of the
modulated Gaussian pulse o) =

—+)2
expg— (t =) /Tz}cos(szst) where t,= 8x10-9

sec, T = 10-9 sec and f,= 600 MHz, inside a
Lorentz-type dispersive medium is explored. The
parameters of the materid ae wy= 2x

200x106744/ .. §,= 0.lw,, €,= 2.25¢, and
€,= 3¢y. For the FDTD (2, 2) scheme two different
uniform grids are considered: (a) Ax=0.01m, Q =
0.5 for 5000 time steps and (b) Ax =0.05m, Q =
0.5 for 1000 time steps. The respective parameters
for the FDTD (2, 4) scheme are Ax = 0.05m and Q
=01

In Fig. 3, the time domain electric field
located 0.2 m away from the excitation point is
illustrated for the three aforementioned cases
along with the exact solution. For an easer
observation a detail of the previous graphs is
shown in Fig. 4. It is evident that the higher order
algorithm achieves the same level of accuracy as
the FDTD (2, 2) with the first set of parameter
values, but with a five times coarser grid. In table
I11, the three methods are compared in terms of
maximum error and total computational time. It is
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noted that the proposed higher order technique is
more accurate and computationally efficient.

— Exact
sl —o— FDTD(2.2) ||
- —— FDTD(2.4)

Reflection Coefficient (dB)
=

20

3 J 5 6 7
Frequency (GHz)

Fig. 1. The reflection coefficient as a function of
frequency. Comparison is made between the exact
data, FDTD (2, 4) and FDTD (2, 2) with Ax =
0.005 m.

— Exact
—— FDTD(2.2)
—— FDTD(24)

Reflection Coefficient (dB)

: Fli:qucnty {Ellzj ’ ‘ !
Fig. 2. The reflection coefficient as a function of
frequency. Comparison is made between the exact
data, FDTD (2, 4) Ax = 0.05 m and FDTD (2, 2)

with Ax = 0.0025 m.

Findly, the air-slab problem is solved by the
FDTD (2, 2) and FDTD (2, 4) agorithms
assuming that the dab is filled with a third order
Debye dispersive material. The characteristic
parameters of the three poles are e€51= 3¢y, 71= 9,
4X10_9%C, €= 2E0,T2: 10_10560, and
€53=€0, T3 = 107% sec, while the infinite
permittivity is set equal to 2.25 €,. In both cases,
the computational space consists of 2000 cells, the
spatia step sizeis 0.01m and Q = 0.8. The dectric
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field function in the time-domain is presented in
Fig. 5. It is again obvious that the proposed higher
order scheme accomplishes better accuracy.

08F E[P\

0.6-

— Exact H
—— FDTD(2.2)- Ax=0.01m

‘‘‘‘‘ FDTD(2,2)- Ax=005m ||
—-- FDTD(24)- Ax=005m

=
T

i

3

Electric Field (V/m)
|
I
|
|
__——-w-—("“’-J

04+ li
|

0 2‘ ;l flu ?Ié I‘(J I‘Z I‘4 Ilﬁ IIK 20
Time (nsec)

Fig. 3. Electric field waveforms of the exact,

FDTD (2, 4) and FDTD (2, 2) with two different

grids.

Having verified that FDTD (2, 4) can be
efficiently extended to cold plasma medias, it is
applied to wave scattering by an infinite height
cylinder made of cold plasma placed in air. The
computational space consists of 200x200 cells.
The cylinder is excited by a plane wave. The wave
front is assumed to be a modulated Gaussian pulse
centered at 20 GHz. The excitation frequency is
stable, while for the plasma frequency of the cold
plasma three values have been selected, namely
28.7 GHz, 5.74 GHz, and 0.287 GHz.

02FT

— Exact

— _ FDTD(2.2)- Ax=0.01m
v FDTD(2.2) - Ax=0.05m

-— - FDTD(24) - Ax=005m

e
o

e

Electric Field (V/m)

o

=]

@
T

tii«'i tiiti 518 ; 712 7‘.4 Titi 718 ?IZ 812
Time (nsec)

Fig. 4. Details of Fig. 3, observed that the

proposed technique produces an acceptable close

to the (2, 2) scheme result but with a five-times

coarser grid.
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/ — Exact
X - - FDTD(2.2)
Y = - FDTD(24)

Electric Field (V/m)

&
i

I L I L L I L I I L I
315 32 325 33 335 34 345 35 355 36 365

t (nec)
Fig. 5. Electric field waveforms of the exact,
FDTD (2,4) and FDTD (2, 2).

V. CONCLUSION

A novel FDTD (2, 4) scheme for the
simulation of wave propagation inside cold plasma
media has been presented. Its stability properties
for three specific models have been investigated
and appropriate stability conditions have been
derived. Additionally, the numerical dispersion
characteristics have been examined and for the
case of a second-order Lorentz medium, it has
been verified that the proposed algorithm is more
powerful than the conventional second-order
technique, as expected. The efficiency of the
FDTD (2, 4) algorithm has aso been explored in
various numerical examples, where it has been
compared to the FDTD (2, 2) method and an
analytical solution. In all the cases considered, it
has been proven that the former achieves better
accuracy when the same grid is used or the same
level of accuracy for coarser grids. Additionaly,
the presented method accomplishes minimum
errors, while reducing the overall computational
time.
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