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Abstract ─ In this paper, different meshless 
methods are applied to the analysis of microstrip 
antennas with thin substrate. Comparison is made 
between the performance of the methods with 
respect to convergence, CPU time and condition 
number of final coefficient matrix. The exact 
modal solution and method of moments are used 
for validation. The input impedance results of all 
methods are in agreement with each other.  
  
Index Terms ─ LBIE, meshless, microstrip 
antenna, MLBE, MLPG.  
 

I. INTRODUCTION 
Meshless methods are powerful tools for 

numerical solution of partial differential equations 
(PDEs) [1]. Up to now, these methods have been 
widely used in mechanical engineering, but with 
limited use in electrical engineering [2]-[17]. 
Evidently, the purpose of meshless methods is 
elimination of mesh in discretization of operator 
equations. This goal necessitates the design of 
fitting strategies for scattered data in 
multidimensional spaces. This attempt resulted in 
the emergence of meshless shape functions with 
superb fitting capability. Consequently, expanding 
the unknown field variable over such functions not 
only makes it possible to solve problems meshfree, 
but also decreases the number of unknowns in the 
corresponding system of equations. In general but 
not necessarily, these two intrinsic benefits are 
accomplished at the expense of computational 
cost. In this work, we have applied different 
meshless methods such as meshless local Petrov-
Galerkin (MLPG) [18], local boundary integral 
equation (LBIE) [19] and meshless local boundary 

equation (MLBE) [20] to the analysis of 
microstrip antennas with thin substrate. A 
rectangular-coax-fed, a square-line-fed and a two-
element array antenna are analyzed. The 
aforementioned methods are compared with each 
other from the aspects of convergence, CPU time 
and condition number of the corresponding linear 
systems. In order to highlight the capabilities of 
meshless methods, various node arrangements for 
describing the problem domains are used including 
uniform, non-uniform and random. Clearly, by 
imposing a logical irregularity in accordance with 
the geometry and physical sense of a problem, the 
number of unknowns could be considerably 
decreased.  

The results are validated by the exact modal 
solution for the coax-fed antenna case and the 
method of moments (MoM) for the others. It is 
observed that all meshless methods have 
essentially the same convergence rates. However, 
LBIE is seen to be the most well-conditioned and 
the MLBE the fastest. 

 
II. MATHEMATICAL STATEMENT OF 

THE PROBLEM 
Microstrip structures with thin substrate are 

planar microwave components [21]. By this 
assumption, variations normal to the substrate 
become negligible and consequently, Maxwell’s 
equations simplify to a two-dimensional (2D) 
scalar Helmholtz equation with homogeneous 
Neumann boundary conditions. In addition, coax 
excitation ports can be well modeled by Dirac 
delta functions. Suppose a planar microstrip 
structure placed on the x-y plane, with the domain 
and boundary of Ω and Γ(≡∂Ω), respectively.  
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Based on these assumptions, the mathematical 
statement of the problem corresponding to a single 
feed antenna is:  
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where Ez is the component of the electric field 
normal to the substrate, k is the propagation 
constant of the field inside the structure, ω is the 
working angular frequency, μ0 is the magnetic 
permeability, xp is the position of the excitation 
port and n is the normal vector to the boundary. 
Clearly, (1) can be equivalently written as: 
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We have found that (2) is more proper for 
meshless discretization, so it is regarded as the 
mathematical statement of the problem. Our 
observations of different situations showed that 
meshless methods are incapable of handling abrupt 
changes, in the sense of convergence. In fact, we 
could not get a convergence solution of (1) unless 
we approximated the Dirac delta by a sharp bell-
shaped function. Even by applying this trick, a 
series of difficulties could be encountered. For 
example, the sharpness should not exceed a certain 
level; otherwise, the number of nodes at the 
vicinity of the excitation should be sufficiently 
increased to track the function.  

Equation (2) cannot be solved unless k is 
determined. Since in antenna applications a 
considerable amount of electromagnetic energy 
should be radiated in free space, the trivial value 
of the propagation constant in the substrate, i.e., 
ω(εμ)1/2, is incapable of modeling the behavior of 
the structure.  

An effective value for propagation constant, 
keff, can be well estimated by the cavity method 
[22]. The electric field distribution on the antenna 
can be computed by solution of (2) based on keff. 
Once this is done, the input impedance at the 
antenna port can be evaluated by: 

    ,in z p pZ h E I   x x                                        (4) 
where h is the height of substrate and I the source 
current defined as: 
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In general, this procedure is iterative but in most 
of the cases sufficient accuracy is achieved at the 
second run.  

 
III. CHOICES OF MESHLESS 

METHODS 
Meshless methods are classified as weighted 

residual methods. Therefore, by changing the form 
of residual statement and/or kind of weighting 
function, different meshless methods can be 
generated [23]. Two equivalent global weak 
statements of (2), neglecting imposition of 
boundary conditions, are: 
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where w is the weighting function and ,   n n . 
Based on these forms, three meshless methods can 
be developed: 
 
A. MLPG5 

This method is based on the first form of (6) 
with the Heaviside step function as weighting and 
leads to: 

2
, 0.nu d k ud
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                                                 (7) 

Although this choice of weighting function is 
the simplest one, an extensive study in [23] 
showed its better performance in comparison with 
more complicated weights such as MLS shape 
functions, in the sense of convergence. In this 
work, hereafter, by MLPG we mean MLPG5.  
 
B. LBIE 

This method is based on the second form of 
(6) with the Green’s function of the PDE as 
weighting, leading to: 
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The LBIE method makes it possible to impose 
the essential boundary conditions by the weak 
statement of the problem, which is an important 
capability. Thus, all of the Dirichlet, Neumann and 
Robin boundary conditions could be directly 
imposed by this method. 
 
C. MLBE 

This one is our developed method and similar 
to the LBIE is based on the second form of (6) but 
with a proper homogeneous solution of the 
differential equation as weighting and leads to: 
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In this method, w should be selected such that 
imposition of boundary conditions becomes 
possible. Clearly, MLBE preserves the valuable 
properties of the LBIE while removing singular 
integrands. Further details of the MLBE method 
are reported in [20].  

It is worth mentioning that all of these three  
meshless methods have a similar benefit over the 
others in the sense that, they reduce the 
computational complexity by transforming domain 
integrals to boundary integrals. For the problem at 
hand, this happens completely for the LBIE and 
MLBE cases, although in the case of MLPG one 
domain integral remains. On the other hand, LBIE 
requires singular integration arising from the 
presence of the Green’s function which is in 
contrast to MLPG and MLBE. Thus, we can 
expect the MLBE to be the fastest. 

IV. MESHLESS DISCRETIZATION AND 
SOLUTION 

Only MLPG method is considered in this 
section. Generalization to other methods is 
straightforward. Meshless discretization can be 
considered as a four stage process.  

First, the domain and boundary of the problem 
is represented by a sufficient number of nodes, 
e.g., N nodes. A sample 2D domain with its nodal 
description is depicted in Fig. 1. 

Second, the global weak statement of the 
problem is applied to local sub-domains. In the 
case of (2), this leads to:              

2
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Third, the unknown field variable, i.e. u, is 
expanded over a set of meshless shape functions 
with unknown coefficients. Let  1



N
i i be the 

aforementioned set. Therefore: 
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in which   
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T

Nu u   u  and hu  is the 

approximated/interpolated value of u.  
Fourth, in the local weak statement of the 

problem, i.e. (10), u is replaced by its equivalent 
expansion, i.e. (11). This completes the meshless 
discretization. The immediate result of the last step 
is formation of the following system of equations: 
 ,Ku f                                                               (12) 

where u is unknown, and entries of K and f are 
given by: 
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Once u is computed, the unknown function u 
and thus, Ez can be approximated/interpolated at 
any point in the problem domain and on its 
boundary. 

 
 

Fig. 1. Nodal geometry description of a sample  
2D problem and definitions: Ni: ith node at xi, Ωsi: 
ith local domain, ∂Ωsi: ith local boundary, Lsj: non-
intersecting part of ∂Ωsj, Γsj: intersecting part of 
∂Ωsj,   sj sj sjL . 
 

V. NUMERICAL RESULTS  
In this section, the selected meshless methods 

are applied to the selected microstrip antennas. 
The single-element antennas are depicted in Fig. 2. 
The two-element array antenna is constructed from 
the two coax-fed antennas that are 4 cm apart. In 
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all cases εr = 2.62, h = 1.6 mm, loss tangent = 10-3 
and σ = 5.8×107 (S/m).  

Thin-plate spline (TPS) functions of 9th order 
are used for construction of meshless shape 
functions [1]. Local sub-domains are rectangles 
with side length of d. For all uniform node 
distributions, d = 1.0dr, where dr is the radial nodal 
distance. For non-uniform and random cases, d = 
1.2dr, where dr is computed based on uniform 
node arrangement.  

For error estimate we used the relative error 
defined as: 
 1 1, / ,e m m m m mr u u u u u                               (14) 

where um is the field variable of the mth pass and 
1/ 2

2u u d


 
  
 
 . 

 

(a) 

 

(b) 
Fig. 2. Geometrical description of (a) coax-fed 
antenna, (b) line-fed antenna.  
 

For the coax-fed antenna, the problem has an 
analytical modal solution which is regarded as the 
exact solution [24]. In this case, convergence 
curves, CPU time and condition numbers of the 
coefficient matrices for different methods versus 
number of unknowns are depicted in Fig. 3, based 
on uniform node arrangements.  

 

This problem is also solved by random node 
arrangement via the MLBE method. The nodal 
description and the corresponding electric field 
distribution on the patch, reconstructed at 5400 
nodes, are represented in Figs. 4(a) and 4(b), 
respectively. The computed S-parameters based on 
uniform and random node arrangements are 
reported in Fig. 4(c).  

The input impedance and the corresponding S-
parameters are shown in Fig. 5 and Fig. 6 for 
coax-fed and line-fed antennas, respectively, all 
based on uniform node arrangements. The line-fed 
case is also simulated by non-uniform node 
arrangement via the MLBE method. The nodal 
description and the corresponding electric field 
distribution, reconstructed at 7440 nodes, are 
shown in Figs. 7(a) and 7(b), respectively. In 
addition, the computed S-parameters based on 
uniform and non-uniform node arrangements are 
depicted in Fig. 7(c). It is worth mentioning that 
by this irregularity, the number of nodes is 
reduced from 374 to 214, without a considerable 
effect on S11.  

Finally, the S-parameters of the two-element 
array antenna are reported in Fig. 8. All 
simulations are performed on an Intel(R) 
Core(TM)2 CPU with 4 GB RAM.  

 
VI. CONCLUSION 

In this paper, MLPG, meshless LBIE and 
MLBE methods are compared by applying to thin 
microstrip antennas. The results are validated by 
the exact solution for the coax-fed antenna and the 
MoM for line-fed and a two-element array. It is 
observed that all the meshless methods have 
essentially the same convergence rate, with LBIE 
possessing the least condition number and MLBE 
the least CPU time. 
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(a) 

 

(b) 

 

(c) 
 
Fig. 3. Coax-fed antenna: (a) convergence curves, 
(b) computational complexity, (c) condition 
numbers. 
 

 

 

 
 
 

(a) 
 

 
 
 

(b) 
 

 
 

(c) 
 

Fig. 4. Analysis of the coax-fed antenna based on 
random node distribution by the MLBE method: 
(a) node arrangement, (b) electric filed on the 
patch, (c) |S11|. 
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(a) 

 

(b) 

 

(c) 
 
Fig. 5. Coax-fed antenna: (a) real part of input 
impedance, (b) imaginary part of input impedance 
(c) |S11|. 

 

 

(a) 

 

(b) 

 

(c) 
 
Fig. 6. Line-fed antenna: (a) real part of input 
impedance, (b) imaginary part of input impedance 
(c) |S11|. 
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(a) 
 

 
 

(b) 
 

 
 

(c) 
 

Fig. 7. Analysis of the line-fed antenna based on 
non-uniform node distribution by the MLBE 
method: (a) node arrangement, (b) electric filed on 
the patch, (c) |S11|. 

 

 

(a) 

 

(b) 
 
Fig. 6. Two-element array antenna: (a) |S11|, (b) 
|S12|. 
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