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Abstract ─ Although many numerical methods 
have been developed to calculate photonic 
bandgap structure properties, but always 
improvement in numerical methods is necessary to 
have more efficient, accurate and flexible 
techniques. In the present work, novel periodic 
meshless shape functions including so-called 
direct and radial shape functions are presented. 
The meshless approaches, based on these periodic 
shape functions as real-space methods, can be used 
for simulation of periodic structures, like 
photonics bandgap structures, straightforwardly. 
The results on band structures derived from the 
proposed methods are then presented, discussed 
and compared with those available in the 
literature, and a very good agreement is seen. It 
shows that the proposed techniques are very 
promising to be robust techniques in the 
simulation of periodic structures such as photonic 
problems. 
  
Index Terms ─ Meshless methods, photonics 
bandgap, periodic shape functions.  

 
I. INTRODUCTION 

Accurate simulation of bandgap structures is 
indispensable development of various opto-
electromagnetic devices [1], [2]. The major groups 
of the band structure materials have periodic 
constructions. It is common to analyze periodic 
geometries by assuming that the structure extends 
to infinity in one or more directions. Sometimes, 
this is done in order to simplify the analysis. But 
the infinite structure can also be viewed as the 
ideal structure because there are no truncation 
edges present to possibly degrade the 
electromagnetic performance. When the structure 
extends to infinity, it is possible to analyze the 
electromagnetic performance by considering only 
one period of the geometrical pattern, i.e. a unit 
cell. Periodicity and antiperiodicity geometry 
aspects can be able to reduce the complexities of 
studied domain of the device [3]. 
 

One of the well-known techniques in 
analyzing photonics bandgap problems is the plane 
wave method. But this conventional technique has 
convergence problem arising from the abrupt 
change in the value of dielectric function across 
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the interface between matrix and inclusion [4]. 
Thus, real-space numerical methods have also 
been tried for more efficient calculations of 
photonic band structures. Among them, the 
periodic finite-difference time-domain (FDTD) 
method [3] and the periodic finite element method 
(FEM) [5] are commonly used. The main 
advantage of using the FEM for infinite periodic 
analysis compared to the FDTD is the ease of use 
unstructured grids that can model complex 
structures with large variation in length scale as 
well as elements that can better conform to curved 
boundaries. The computation accuracy of the 
FEM, however, depends upon the quality of the 
used mesh. In addition, the meshing process is also 
known as a very complex and time consuming 
task. 

Unlike the conventional element-based 
numerical methods, meshless methods expand the 
field quantities around a set of scattered nodes that 
can be randomly placed spatially in a problem 
domain [6]. As a result, their numerical accuracies 
are independent on the connectivity laws of the 
grid nodes. In addition, any irregular shape of 
interface between materials is easily recognized in 
meshless modeling by simply putting nodes along 
the interface, e.g., photonic crystals or other 
metamaterials which they can have any arbitrary 
shape dielectrics. One of the other unique potential 
applications for meshless methods is that the 
methods may be well-suited to adaptive 
computation which is needed in some devices like 
liquid crystal materials. Owing to these distinctive 
features, meshless methods have been introduced 
as robust and flexible computational methods in a 
variety of engineering areas, confidently. 

To our best knowledge, a few studies have 
been done on using meshless methods for 
analyzing periodic structures. This is due to this 
fact that the shape functions are usually global in 
the conventional meshless methods and 
introducing periodic boundary conditions are 
inherently different from other methods. So, for 
solving this problem in meshless approach, by 
implementing periodic shape functions, periodic 
boundary conditions can be imposed spontaneous. 
In [7], the author proposed a technique for 
constructing periodic mean least-square (MLS) 
shape functions. But as it is known, MLS shape 
functions do not have the delta function property 
and thus imposing essential boundary conditions 

would not be performed, straightforwardly. On the 
other hand, recently, some other approximations or 
shape functions, called direct shape functions 
(DSFs), have been proposed which can be created 
directly and be more efficient [8], [9]. In this 
work, a new technique is introduced to generate 
periodic meshless shape functions. The proposed 
technique is applied to DSFs and shape functions 
used in radial point interpolation method (RPIM) 
[6] to obtain periodic shape functions. Then, the 
proposed periodic shape functions are employed to 
calculate the eigenvalues and the eigenfunctions of 
the electric field in a photonic bandgap structure. 

 
II. PERIODIC SHAPE FUNCTION 

CONSTRUCTION 
Here, we introduce a simple technique to 

construct inherently suitable shape functions for 
periodicity. Our proposed technique is enforced on 
the weighting or basis functions then it would be 
affected on the shape functions, straightforwardly. 
In Fig. 1, a periodic domain with generic 
parallelogram cell is shown. The lattice vector L


 

is denoted by 
 2211 ananL


  (1) 

where 1a


, 2a


 are primitive lattice vectors and 1n , 

2n  are integers. In meshless approach, a unit cell 
is discretized by a set of nodes Ni ,,2,1  . 
Because of periodic nature of the structure, the 
field will change in a periodic manner in the 
problem domain. So 

 )()( LXuXu


  (2) 
for any point X in the unit cell. In periodic 
approach, dual points of a node such as X should 
be found, first. It can be easily performed using 
the components of the lattice vector as 

 2211 aqnapnXX pq


  (3) 

where MMMMqp ,1,,1,,   and M is 
a large integer. 00X   is actual point and the others 

pqX   are named dual points. So in fact, there are 
too many dual points for each point in the unit 
cell. But, it should be noted that only those dual 
points which are located in the neighbour cells are 
usually important. For example, in a tetrahedron 
cell, there are eight neighbour cells. In the 
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parallelogram cell, the lattice vector has two 
components 1a


 and 2a


 and each point has eight  

 
 

Fig. 1. A generic point in one of the shape function 
support domains in a unit cell. An actual point X 
and its three dual points, i.e. X1, X2, X3, are shown. 
To determine the periodic shape function 
corresponding to XI in point X, the shortest 
distance or the shortest line, i.e. dash line shown in 
the figure, must be used. 
 

dual points, i.e., 132   in the neighbour cells. 
These points can be obtained from (3) by setting 

1,0,1, qp . It should be carefully noted, 
although, in a generic periodic structure like Fig. 
1, there are some dual points, but generally only a 
few numbers of them must be considered. In fact, 
the others   have   a considerably remote distance 
from IX  which is obvious and recognizable. For 
example in Fig. 1, for point X there are eight dual 
points in the neighbour cells, but only three nearer 
dual points should be considered. For example, let 
the considered point be in the lower left corner of 
the tetrahedron. It is clear that the dual point which 
is in the top cell, does not have a distance smaller 
than the actual distance.  
According to the lattice structure, the number of 
dual points is clear and we cannot increase or 
decrease them. Also, the number of dual points 
considered must be obtained carefully and exactly.   
As it is known, in the meshless methods 
corresponding to each scattered node, there is a 
weighting or basis function )(XWi . For example, 
in direct meshless method proposed in [8] it is as 

 )exp()( ii XXXW    (4) 

where X is the vector of space coordinates, i.e. 
],[ yxX T   (for 2D problems), and iX  is the 

space coordinate of the node that related to the 
weighting function.   is a positive independent 
coefficient. In proposed approach to have a 
periodic weighting function, a modification on (4) 
should be performed. By introducing 

 iinmnearest XXXXXX  pqmn  if    (5) 

Then a periodic weighting function can be 
proposed as 

 )exp()( inearesti XXXW    (6) 

Above formula means that to construct a periodic 
shape function at a generic point X, first, the points 
of X should be obtained and then the nearest point 
to the center of the shape function, according to 
(5), would be used instead of X in the conventional 
basis function formula. This idea comes from this 
fact that the field in  nonperiodic  structures at Xi 

has a small influence on aloof points from Xi; or in 
other words, the shape functions Ni(X) would be 
vanished far away from Xi. Whereas in periodic 
structures, an aloof point may have a dual point 
which can be closed to Xi. On the other hand, 
because any point has the same value of its dual 
points, so its dual distance can be replaced instead 
of the actual distance in formulas. 
 

 
(a) 
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(b) 

Fig. 2. The shape function corresponding to a node 
near the lower left corner. a) 3D demonstration. b) 
Equal-value contour plot. 
 

This approach can be applied to other 
meshless shape functions, straightforwardly. In the 
case of periodic local radial point interpolation 
method (RPIM) shape functions [6], the support 
domain of the point of interest must be first 
determined. For example for a node in the near 
lower left corner of a lattice, we first find scattered 
nodes in the support domain of node X, then node 
X is translated to X+ 1a


 and node search is applied 

again. The same procedure is repeated for X+ 2a


 
and for X+ 1a


+ 2a


 where 1a


, 2a


 are primitive 
lattice vectors. After determining the support 
domain, the periodic RPIM approximation can be 
written as 

 
i

ii XRaXu )()(  (7) 

where Ri(X) is the regular radial basis function 
except for the definition of distance where the new 
definition of distance discussed above is used, and 

ia  are unknown coefficients. By letting u(X) 
passes through each scattered node in the support 
domain, the unknown coefficients can be 
determined. 

Here, the introduced technique is used to make 
periodic local radial shape function. Figure 2 
shows one of the shape functions near the lower 
left corner of the parallelogram. Periodic nature of 
the shape function is appeared, clearly, in this 
figure. The shape function has non-vanishing 
values near all the four corners as a result of dual 
point technique. By using these periodic shape 

functions, meshless method can simulate an 
indicator unit cell without any other boundary 
conditions on the periodic boundaries. 

 

 
 
Fig. 3. Two different configurations for the unit 
cell used to model the desired structure. 
 

III. NUMERICAL EXAMPLE 
In this section, we attempt to validate our 

proposed techniques through numerical 
experiment by simulating a well-known problem 
in periodic structures literature.  The problem 
considered is an array of dielectric rods in free 
space periodically arranged [1]. The structure is 
assumed to be infinite in x and y directions both, 
and is infinitely long in z direction. Since the 
dielectric rods are periodically arranged, and 
because the structure is infinite in both x and y 
directions, we can simply model it by a unit cell to 
which the proposed periodic meshless methods are 
employed    to     calculate    its    frequency   band 
structures. This problem can be considered as a 
good test to measure the technique capability in 
simulating periodic and inhomogeneous regions. 

According to the Floquet-Bloch theorem, each 
components of the electromagnetic fields can be 
expressed by the product of a periodic function 
u(X), where X is spatial coordinate, and a plane 
wave with the wave vector k


, such as [7] 

 XkieXuX .)()(


  (8) 
By considering the periodic nature of the wave 
propagation, problem of obtaining electromagnetic 
fields is reduced to solving two equations for u(X). 
For TE mode 

     )()(..
)(

1. XuXuki
X

ki 





 (9) 

and for TM mode 
      )().()(.. XuXXukiki 


 (10) 
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where 2)/( c  , c is the light velocity and    
is the relative permittivity of the medium. 

 

 
 
Fig. 4. Meshless results on band structures of 
square lattice composed of circular rods calculated 
by the periodic DSF for two configurations (TM 
mode).  
 
In the meshless method, the field function, i.e., 

)(X  or u(X), would be approximated 

 



pN

i
ii XaXu

1
)(.)(~   (11) 

where ia  are unknown constants, Np denotes the 
number of nodes and i  are periodic shape 
functions. Manipulations after putting equation 
(11) into equations (9) and (10) and forming 
Galerkin's formulations for them, result in matrix 
eigenequations as 

 ]][[]][[ aBaA   (12) 
where for TE mode 

   













dXXB

dXkiXki
X

A

iiij

jiij

)().(

)(.).(.
)(

1








(13) 

and for TM mode 

 
   











dXXXB

dXkiXkiA

iiij

jiij

)().()(

)(.).(.






(14) 

The radius of the circular cross section, as shown 
in Fig. 3, is ar 2.0  for this example. Dielectric 
constants are 0.1m  and 9.81   for matrix 
and rods, respectively. According to Bloch's state 
in periodic structures, the wave numbers in the 
Brillouin zone are only needed to be considered. 

We use two different unit cells for this 
problem, one configuration with a rod in the center 
of the cell (Conf. 1) and in the other one the unit  

 
 

Fig. 5. Meshless results on band structures of 
square lattice composed of circular rods calculated 
by the periodic RPIM for two configurations (TM 
mode). 

 
cell is chosen so that one quarter of four rods are 
in each corner of the lattice (Conf. 2), as shown in 
Fig. 3. Since these two problems are similar to 
each other, we expect that the frequency band 
diagrams obtained by applying periodic meshless 
methods to these two unit cells be the same, too. 
The results will show it is indeed the case. It can 
be considered as an initial criterion of the accuracy 
of the results. In this study we have used multi-
quadrics (MQ) RPIM shape functions with shape 
parameters chosen as q=0.98 and 5.0c  [6]. 
Moreover, the  problem  domain  is  discretized by  
417 nonuniform meshless nodes. For DSF 
approach, the shape parameter cd/3 , where 
dc is the average nodal spacing, is chosen with the 
same meshless nodes [8]. 
In this case, there exists a wide bandgap in TM 
modes as known in literature [7]. Meshless results 
on band structures also confirm the wide bandgap 
in TM modes as shown in Figs. 4 and 5 for both 
DSF and RPIM approaches, respectively. In these 
diagrams, the normalized frequency is drawn for 
different modes versus wave number, i.e., k


, in 

Brillouin zone. The results have a good agreement 
with those obtained by other methods such as the 
plan wave expansion method (PWEM) [10]. 
Although, the DSF meshless method accuracy is 
less than the accuracy of the RPIM meshless 
method, its simulation time is better than RPIM 
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method as known as one of the advantages of 
direct meshless methods [8], [9]. Table 1 
illustrates the consuming time for shape function 
construction in two comparable methods, the 
proposed method and the RPIM approach.  
 
Table 1: Consuming time for two different 
meshless approach 

Computational time 
(sec) 

Number of 
nodes 

RPIM 
method 

Direct 
method 

289 5 2 

361 10 3 

441 25 7 

529 58 13 
625 110 20 

 
It can be seen, when the number of nodes 
increases, the RPIM method processing time 
increases, extremely. All simulations were 
performed on the same PC with a CPU of 2.4 GHz 
and a RAM of 2 GB. 

 
IV. CONCLUSION 

We have presented successfully a new 2D 
meshless method applicable to analyze any infinite 
periodic structures, like photonic crystals. The 
periodic radial and direct shape functions, as two 
advanced meshless shape functions, based on the 
proposed approach were introduced and a 2D 
photonic crystal structure was simulated. In this 
approach, any complex dielectric boundaries can 
be modeled only by putting nodes on the 
boundaries, effortlessly. The photonic bandgap 
structure was analyzed and the obtained results 
matched well with the reference solutions. It thus 
demonstrates that the periodic meshfree shape 
functions implemented are very efficient for the 
problems of periodicity. The periodic approach 
has been presented in 2D quadrilateral cell, but 
generally 3D cells could be possible. 
Nevertheless, this paper presented a simple 
bandgap problem. But more complicate problems 
can be investigated in the future such as photonic 
crystals with nonlinear and anisotropic materials 
or application of the time-domain meshless 
method in photonic structures, etc. In the other 

words, the proposed method is applicable to each 
periodic structure with no limitations. 
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