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Abstract─ The bistatic electromagnetic scattering 
from the composite model of a three-dimensional 
(3-D) arbitrarily shaped object located above a two 
-dimensional (2-D) Gaussian rough surface is 
analyzed in this work. The object suited above is 
assumed to be a perfect electric conductor (PEC) 
while the rough surface is dielectric. Firstly, the 
Poggio, Miller, Chang, Harrington, Wu and Tsai 
(PMCHWT) integral equations, electric field 
integral equation (EFIE) are implemented and ext- 
ended on the rough surface and on the surface of 
the object respectively. Then, the method of 
moments (MoM) combined with Galerkin method 
is introduced to discretize the integral equations to 
the matrix form using RWG basis function. Due to 
the  memory requirement and computational 
complexity of traditional MOM are 2( )O N ( N is 
the number of unknowns), the rank based 3-D 
Multilevel UV method (3DMLUV) is employed to 
reduce memory and CPU time overhead. The 
3DMLUV has been successfully applied in the 
scattering of PEC targets, however, when the 
object or rough surface become dielectric, the fast 
fill-in method proposed in Reference [19] often 
breaks down due to the oscillatory nature of the 
gradient of Green’s function. Therefore, the ACA 
is applied to speed up the filling of the impedance 
entries required in 3DMLUV because of its 
algebraic nature. The efficiency and accuracy of 

the proposed method are demonstrated in a 
variety of scattering problems. 
Index Terms - Composite model, bistatic scatteri- 
ng, PMCHWT, 3DMLUV, ACA 
 

I. INTRODUCTION 
Electromagnetic (EM) scattering from an object 

above a rough surface has attracted much interest 
during recent years, because of its extensive 
applications to remote sensing, target recognition, 
radar surveillance and so on [1-7]. MoM has been 
widely used to numerically simulate scattering 
from composite model of the object and the 
underlying rough surface. Yet, after discretized 
with basis function and tested, the conventional 
MoM results in a dense impedance matrix. 
Consequently, the storage, impedance matrix fill-
in, and matrix-vector multiplication operations are 
of 2( )O N complexity, where N is the number of 
unknowns. To overcome these disadvantages, a 
number of techniques have been successfully 
developed to dramatically reduced memory and 
computational cost with the iterative solution of 
surface integral equations (SIEs), such as 
Multilevel fast multipole method (MLFMM) [8-
11,13], the adaptive integral method (AIM) [12]. 
The mathematical basis of MLFMM algorithm is 
addition theorem. By the addition theorem, the 
dyadic Green function can be represented in a 
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formula in which the observation point and source 
point are separate. Based on the formula, MLFMM 
has succeeded in reducing the numerical 
complexity of memory to ( )O N  and CPU time to 

( log )O N N . AIM is FFT-based and for volume 
integral equations (VIE), it achieve the complexity 
of ( log )O N N .  

In this paper, we present an accurate method of 
moments (MoM) solution of the PMCHWT and 
EFIE surface integral equations for scattering by 3-
D, arbitrarily shaped, homogeneous objects above 
a 2-D rough surface using hybrid 3DMLUV-ACA 
method. The object is assumed to be a perfect 
electric conductor while the rough surface is 
characterized with Gaussian statistics for surface 
height and for surface autocorrelation function. 

The 3DMLUV method is developed by Deng 
using EM-interaction-based sampling algorithm. It 
is an efficient technique to analyze large scale 
scattering problems and show a computation 
complexity of ( log )O N N . The details of the 
3DMLUV can be found in[5,19]. However, before 
the EM-interaction-based sampling algorithm is 
used, the original far-field interaction submatrix 
must be given. When the object or rough surface 
becomes dielectric, the fast setup method proposed 
in Reference [19] fails due to the oscillatory nature 
of the gradient of Green’s function. The ACA 
method [14-16] is purely algebraic; hence, its 
implementation is integral equation kernel (the 
gradient of Green’s function) independent. 
Therefore, the ACA method is a perfect choice to 
speed up the filling of the impedance entries 
required in 3DMLUV. 

The remainder of the paper is organized as 
follows. In section Ⅱ, we present the implementa-
tion of the PMCHWT and EFIE integral equations. 
The Galerkin method is utilized, where RWG 
functions are used as both basis and testing 
functions. The 3DMLUV-ACA is briefly 
presented. In section Ⅲ, the numerical results are 
shown, the accuracy of the proposed method is 
validated first. Finally, bistatic radar cross-section 
(RCS) of the object/rough surface and difference 
radar cross-section (d-RCS) [21] of the object are 
calculated. The influence of the rough surface root 
mean square (RMS) height, the medium 
permittivity and the altitude of the object on the 
scattering characteristic  are investigated. 

  The time factor exp( )j t  is used in this 
paper and will be suppressed below. 

 
II. THEORY 

A. MoM formulation of PMCHWT and EFIE 
integral equation  

 As shown in Fig. 1, a 3-D object (PEC) is 
located above a 2-D random rough surface 
(Dielectric) and the tapered wave ( iE , iH ) is 
employed to avoid rough surface edge scattering 
effects [22]. 

 
Fig. 1. Composite scattering model of target and 
rough surface. 
 

The air space, the space object occupied and the 
space under rough surface are denoted by Region0, 
Region1 and Region2 while the surface of the 
object and the rough surface are indicated as 1S  
and 2S . The three regions have permittivity 
and permeability given by 0 and 0 , 1 and 

1 , 2 and 2 , respectively. The electric and 
magnetic fields in Region 0, Region1 and 
Region2 are 0 0,E H , 1 1,E H  and 2 2,E H . Since 
the object is assumed to be PEC, 1 1,E H are all 
equal to zero. 

Using the surface equivalence theorem, the 
equivalent electric and magnetic current on rough 
surface and the surface of objects are , ,s s oJ M J  
respectively. So the electric and magnetic fields at 
an arbitrary point r  in Region 0 are 

  0 0 0 0

0 0

( ) Z ( ) ( )
+Z ( ) ( )

s s

o i

 


E r L J K M
L J E r

 ,                     (1a) 

 0 0 0
0

0

1( ) ( ) ( )
Z

( ) ( )

s s

o i

 

 

H r L M K J

K J H r
.            (1b) 
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Similarly, the electric and magnetic fields in 
Region 2 are 

 2 2 2 2( ) Z ( ) ( )s s   E r L J K M ,       (1c) 

  2 2 2
2

1( ) ( ) ( )
Z s s   H r L M K J   ,          (1d) 

where operators L and K are given by 
'

0,2 0,22

1( ) [ ( )]Gjk dS
k

    L X X X ,  (2a) 

'
0,2 0,2( ) G dS  K X X    .               (2b) 

The vector X represents the surface electric 
current J  and/or the surface magnetic 
current M on surface 1S or on 
surface 2S . ' 'G exp( | |) / 4 | |i ijk    r r r r  
is the Green function in homogeneous 
isotropic medium. i i ik    is the wave 
number in Region i . Thus, by equating the 
tangential component of the electric field 0E to 
zero, on surface 1S , we get 

   0 0 0 0 0 tan

tan

[Z ( ) ( ) +Z ( )] |
( ) |

s s o

i



 

L J K M L J
E r

.         (3a) 

Then, upon equating the tangential component of 
the electric fields ( 0E and 2E ) and magnetic fields 
( 0H  and 2H ), on surface 2S , we get 

    0 0 0 0 0

2 2 2 tan tan

[Z ( ) ( )+Z ( )
Z ( ) ( )] | ( ) |

s s o

s s i



   

L J K M L J
L J K M E r

,     (3b) 

    
0 0 0

0

2 2 tan tan
2

1[ ( ) ( ) ( )
Z

1 ( ) ( )] | ( ) |
Z

s s o

s s i

 

   

L M K J K J

L M K J H r
.      (3c) 

The equivalent electric and magnetic 
current , ,s s oJ M J  are approximated by using 
the RWG vector basis function ( )f r [23] as 
follows: 

                
1

1 1
1

( ) I ( )
P

s n n
n

 J r f r ,                (4a) 

                
1

2 1
1

( ) I ( )
P

s n n
n

 M r f r ,              (4b) 

               
2

3 2
1

( ) I ( )
P

o m m
m

 J r f r  ,               (4c) 

the 1P and 2P are the number of  unknown 
coefficients. Upon applying Galerkin’s 
method, the original integral equations are 
thus transformed into a set of linear equations 
given by: 

1

2

3

=

EJ EM EJ E
ss ss os s
HJ HM HJ H
ss ss os s

EJ EM EJ E
oso so oo

                         

Z Z Z VI

Z Z Z I V

I VZ Z Z

 .             (5) 

where
EJ
ssZ ,

EM
ssZ ,

HJ
ssZ ,

HM
ssZ and 

EJ
ooZ are the 

impedance submatrices of  the rough surface 
and the object, respectively. The total 
impedance matrix is complicated by the 
interactions between the object and rough 

surface represented by
EJ
osZ ,

HM
osZ and 

EJ
soZ ,

EM
soZ . 

It should be pointed out that, not all of the 
nine submatrices will be calculated. By using 
the symmetrical relationship, only six of them 
will be calculated explicitly, which are   

EJ
ssZ ,

EM
ssZ ,

HM
ssZ ,

EJ
ooZ , 

EJ
soZ ,

EM
soZ . The 

Bicgstable [20] iterative method will be used 
to solve equation (5). 

 
B. Tapered incident wave  

The tapered incident wave is given by 

     
exp[ ( cos sin cos

sin sin ) (1 )] exp[ ]
i i i i

i i x y

jk z x
y t t

  
  

  
    
E

,         (6) 

where 
2

2 2

( cos cos cos sin sin )
cos

i i i i i
x

i

x y zt
g

    


 
 ,(7a) 

              
2

2

( sin cos )i i
y

x yt
g

  
 ,             (7b) 

      2 2 2 2

2 12 11 ( )
cos

yx

i

tt
k g g





  ,          (7c) 

the ,i i  are incident angles and g is the 
tapering parameter. In order to avoid the 
rough surface edge scattering effects, g must 
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be chosen deliberately with respect to the 
rough surface length. In this paper, g is taken 
as 4g L . 

 
C. The Calculation of the RCS and DRCS 

Considering the approximation of the Green’s 
function and the gradient of Green’s function in 
the far field regions as: 

' 'exp( )( , ) exp( ( ))
4 s

jkrG jk
r


 r r k r ,       (8) 
' '( , ) ( , ) sG jkG  r r r r k .                        (9) 

Where 
sin cos sin sin cosS s s s s s      k x y z , 

r and 'r are the field and source point. 
s and s are the scattering angles. 
The scattered electric field sE can be 

calculated by (1a) (after minusing the incident 
electric field), where the far field approximat-
ion (8) and (9) will be used. Defining the 
difference induced electric and magnetic 
current as sdJ and sdM on the rough surface, 
the difference electric field can be calculated 
by: 

 0 0 0 0 0( ) Z ( ) ( )+Z ( )sd sd sd o E r L J K M L J ,   (10) 
Then, the RCS  and d-RCS d can be given 
by: 

               
2

2
2lim 4 s

r
i

r 



E
E

 ,                (11a) 

               
2

2
2lim 4 sd

d r
i

r 
 


E
E

.          (11b) 

 
D. Fast fill-in method using ACA 

When the bottom rough surface is dielectric, for 
surface integral equations (SIEs), there are two 
kinds of operators, i.e. the L  operator and K  
operator. The 3DMLUV method fill in the 

submatrix elements of  
sub
m nZ   with the fast method 

in [19]. Whereas in [19], the target are all assumed 
to be PEC. So they do not take the K  operator 
into consideration. After discretized by RWG 
basis function and tested using Galerkin method, 

the K operator in submatrix 
EM
ssZ is as follow: 

,[ ] ( ( ) ( )
2

( ) ( ))
2

EM
c cm

ss m n m m mn m

c cm
m m mn m

l

l r

  

  

  

 

Z r H r

H r




 ,        (13) 

         ' ' '( ) ( ) ( , )c c
mn m n mr G ds  H r f r r  ,         (14) 

where all the symbols have the same meaning as 
in [23]. Then the normalized area coordinate [23] 
is introduced to calculate ( )c

mn m
H r . 

' ' '

' ' ' ' ' '
1 2 3

' ' ' ' ' '
1 2 3

( ) ( ) ( , )

( ) ( , )

( ) ( , )

c c
mn m n m

c
n n n n n m

c
n n n n n m

G ds

l G d d

l G d d

    

    

 

    

    

 

    

    





H r f r r r

r r r r r r

r r r r r r

.(15) 

therefore, the integrals in (14)  can be obtained by 
calculating the following four integrals: 

      
'1 1 ' ' '

0 0
( , )m n c

mI G r r d d


 
        ,           (16) 

      
'1 1 ' ' ' '

0 0
( , )m n c

mI G r r d d


   
      ,          (17) 

       
'1 1 ' ' ' '

0 0
( , )m n c

mI G r r d d


   
     ,          (18) 

       
'1 1 ' ' ' '

0 0
( , )m n c

mI G r r d d


   
     .          (19) 

To the far interaction, the approximate 
relation is given by 

       
1= = =
3

m n m n m n m nI I I I  
         .             (20) 

Then, equation (13) can be written as: 

     

,

1 2 3

1 2 3

1 2 3

1 2 3

[ ] { ( )
2

1 1 1[( + + )
3 3 3
1 1 1( + + ) ]
3 3 3

1 1 1( ) [( + + )
2 3 3 3
1 1 1( + + )
3 3 3

EM
cm

ss m n m m

m n
n n n n n n n n

m n
n n n n n n n n

c m nm
m m n n n n n n n n

m n
n n n n n n n n

l

l l l l I

l l l l I

l r l l l l I

l l l l I

 

     

     

       

    

  



 

  

 

Z r

r r r r

r r r r

r r r r

r r r r





]}

(21) 

Due to the oscillatory nature of the gradient 
of Green’s function in (16-19), the fast fill-in 
method proposed in reference [19] breaks 
down. Therefore, The X, Y, and Z component 
of (16) will be calculated by ACA method. 
Because the oscillatory kernel has little impact 
on ACA. The ACA method has been 
described in detail in [14-16] and need not be 
repeated here. 
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E. The architecture of 3DMLUV-ACA 
To present a whole picture of the implementati-

on of 3DMLUV-ACA, we employ a presentation 
from coarser to finer considerations. Figure 2 
shows the architecture of 3DMLUV, where FFI 
stands for far-field interaction, NFI stands for 
near-field interaction, MVM stands for matrix-
vector multiplication and SVD stands for singular 
value decomposition. The criterion used to define 
the FFI and NFI is discussed in detail in [8]. 

 
Fig. 2. The architecture of  the 3DMLUV-ACA. 
 

Before the UV decomposition is implemented, 

the FFI submatrix 
sub
m nZ   must be calculated, the 

ACA method is used to speed up the filling as 
discussed above. Then, the FFI submatrix 

sub
m nZ  with low rank r  could be approximated by 

product of a U and V matrix 

                  
sub
m n m r r nZ U V    ,                       (12) 

where min( , )r m n . Only m rU  and r nV   will 
be stored in memory. Thus, the requirement of 
storage memory descends from m n  to 

( )r m n  . Moreover, during matrix-vector 
multiplication in iterative method, the original 

1
sub sub
m n nZ I   will be substituted by 1

sub
nm r r nU V I   , 

which greatly reduce the computational 
complexity. 
 

III. RESULS AND DEICUSSIONS 
A. Accuracy  and  efficiency   

The CPU employed below is Intel Core I7 
2.8GHz processor with 2G Bytes of RAM.  

To validate the 3DMLUV solution of 
PMCHWT integral equations, for plane wave with 

0 , 90i i    , the VV-polarized bistatic RCS 
of a dielectric sphere with radius of 3r  ( is 
the wavelength in free space) in free space is 
calculated and compared with Mie series in Fig. 3. 
The relative permittivity 4r  and the number of 
unknowns is 86,400. For efficiency analysis, the 
MLFMM is also used to calculate the scattering of 
the same sphere The memory requirement and 
computational time consumed are compared in 
Table 1.  

 

 
(a) 

 
(b) 

Fig. 3. (a) Bistatic RCS of a dielectric sphere; (b) 
Number of iterations. 
 
Table 1: Memory Requirements and Relative 
Computational Time.  
Method Unknowns Memory(MB) Time(s) 
MLFMM 86,400 978 2027 
3DMLUV 86,400 946 2160 

Geometry Set up 
matrix 

Solve 
matrix 

Calculate 
RCS

Generate 
MLUV 

tree 

Set up FFI 
matrix 

Set up NFI 
matrix 

MVM 

Submatrix  
fill-in 
using 
ACA 

3-D UV 
decomposit SVD NFI FFI 
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From Fig. 3 and Table 1, it can be 
concluded that 3DMLUV-ACA not only show 
a high computation accuracy but also is highly 
efficient. The memory 3DMLUV method 
needed is even lower than the MLFMM 
method. But because of the fill-in time 
consumed by 3DMLUV, the computation time 
needed is slightly more than MLFMM method. 
 
B. Statistic composite EM scattering  

In this section, statistic composite scattering is 
presented and discussed by making 100 Monte 
Carlo simulations of the rough surface. The 
tapered incident wave with 30 , 90i i    is 
used for all experiments below. 

Case 1: Given surface length 16x yL L   , 

correlation length 0.5x yl l   , RMS height 
0.04h  , the relative dielectric permittivity 
2.5 0.18r j   . let a PEC cube with side length 

of 2a   lie at altitudes of 2 ,10d    
respectively. Figure 4 presents the VV-polarized 
DRCS. Because the object at the lower altitude has 
more intense interaction with the underlying rough 
surface, the DRCS for 2d   is generally larger 
than that for 10d  . 

 

 
Fig. 4. DRCS of the cube above rough surface for 
different altitude. 
 

Case 2: Considering a cylinder with a radius of  
1R   and a length of  3H   lie at an altitude 

of 3d   above the dielectric Gaussian rough 

surface. The rough surface has the same 
parameters as in Case 1 except that the RMS 
heights vary as 0.01 ,0.02 ,0.08h    . Figure 5 
gives the VV-polarize RCS. It is obviously that the 
composite bistatic RCS is closely correlated with 
RMS heights. The composite RCS appears as a 
peak near 30s    , which is more significant for 
the smoother surface with lower value of h . And 
the incoherent scattering increases while the 
coherent scattering decreases as the roughness 
increases. 

 

 
Fig. 5. RCS of the cylinder above rough surface 
for different RMS heights. 
 

Case 3: let a PEC sphere with radius of  
1.5r  lie at an altitude of  3d  above a 

Gaussian dielectric rough surface. The rough 
surface has the same parameters as in Case 1. 
Figure 6 presents the composite HH-polarized 
bistatic RCS and DRCS for different permittivities. 
The imaginary part of the permittivity is kept the 
same while the real part of the permittivity vary as 
2.5, 5 and 10.  

From Fig. 6, we can see that the permittivity 
also has an important influence on the scattering 
characteristic. The surface with higher permittivity 
has higher reflectance. So the composite RCS and 
DRCS is larger for rough surface with higher 
permittivity. 

 
IV. CONCLUSION 

The 3DMLUV/ACA method is proposed to 
simulate the scattering from the dielectric objects. 
By investigating the bistatic electromagnetic 
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scattering from the composite model of a 3-D 
arbitrarily shaped object located above a 2-D  
Gaussian dielectric rough surface, this method is 
proved to be accurate and highly efficient. 
Furthermore, due to the algebraic nature of 
3DMLUV/ACA, this method can be easily 
extended to the composite scattering of dielectric 
object located above the dielectric rough surface 
with a few modifications. 

 

 
(a) 

 
(b) 

Fig. 6. RCS and DRCS of the sphere above rough 
surface for different permittivities. 
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