
An Implementation of King’s Green Functions in Thin Wire 
Scattering Problems 

 
Ömer Zor1 and Burak Polat2  

 
1 Electronics Engineering Department  

Uludağ University, Bursa, TR-16059, Turkey  
omerzor@uludag.edu.tr 

 
2 Electrical and Electronics Engineering Department 

Trakya University, Edirne, TR-22030, Turkey 
burakpolat@trakya.edu.tr 

 
 

Abstract ─ We investigate electromagnetic 
scattering from metallic thin wire structures 
located over planar and spherical lossy dielectric 
half-spaces by applying Green’s function 
formulation and method of moments in the 
resonance region and under “high contrast 
approximation” (HCA). For this purpose, in the 
calculations of the impedance matrix and the 
potential column of the moment system, we 
employ the Green functions of King valid for 
arbitrary range under HCA and the asymptotic (far 
field) Green functions for planar and spherical 
impedance surfaces delivered by Norton and Wait, 
respectively. For a verification of the developed 
codes, the current distributions obtained under 
plane wave illumination on the arms of a cross 
shaped thin wire structure are compared to the 
same results obtained by the commercial software 
SNEC™. Various illustrations for the scattered 
electrical field from a thin wire plate located over 
planar and spherical half-spaces are also 
presented. 
 
Index Terms ─ Electromagnetic scattering, 
method of moments, Sommerfeld problem, thin 
wires.  
 

I. INTRODUCTION 
Ever since the pioneering work [1] by 

Sommerfeld over a century ago the interest in the 
derivation of computationally efficient solutions 
for the radiation fields of a Hertzian dipole in 
inhomogeneous media has constantly grown in 

parallel to their applications in diverse areas of 
electrical engineering. While it is impossible to 
provide a satisfactory list of all such attempts in 
literature to date, a wide account can be reached in 
[2]. The class of solutions to the Sommerfeld 
problem that constitute the topic of the present 
investigation is the Green functions derived by 
King in 1982 [3] for Hertzian dipoles radiating 
over a planar lossy dielectric half-space. The most 
distinctive aspect of King’s fully analytical 
solutions, which have been collected in [4] for 
various different properties of ambient medium, is 
that they apply for arbitrary range under high 
contrast approximation (HCA). Following 1999 to 
date, King’s method has been applied to many 
new geometries involving stratified spherical 
grounds in numerous works [5-17] initiated by his 
co-workers.  

The thin wire mesh electromagnetic model of 
an arbitrarily shaped conducting body was first 
introduced and tested experimentally in 1966 by 
Richmond [18]. This pioneering work was 
followed by numerous theoretical as well as 
experimental investigations [19-27] to specify the 
ranges of validity of wire mesh models for certain 
canonical structures. Following the development 
of the method of moments (MoM) in 1967 by 
Harrington [28], there has appeared many papers 
through the 70’s on the MoM formulation of 
scattering problems for the wire mesh structures 
over a dielectric half-space due to their importance 
in radar applications [29] Since a computationally 
efficient analytical solution of the Sommerfeld 
problem was not available until 1982 [3], in such 
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works the surface wave components of Green 
functions were generally ignored (as called 
“reflection coefficient method”) for a practical 
computation of the impedance matrix without 
estimating the relative error. This gap was then 
filled by the famous open software NEC-2 [30], 
which was developed in 1981 in Lawrence 
Livermore National Laboratory, CA with 
extensive numerical/asymptotic libraries.  

In the present work, we provide the analytical 
backbone of a software which incorporates the 
Green functions of King alternative to a similar 
role of the extensive numerical/asymptotic 
libraries of NEC-2 whenever HCA applies. While 
the developed codes equally have the ability to 
read NEC-2 formatted input files, their main 
advantage lies in the capability to evolve by proper 
substitutions of Green functions to take into 
account various terrain features in any scenario. 
Accordingly, in Section 2 we provide the MoM 
formulation of the scattering problem, while the 
details of the calculation of the elements of the 
impedance matrix are presented in Section 3. In 
Section 4 the elements of the potential column in 
MoM formulation are provided for three different 
scenarios of propagation over planar and spherical 
impedance surfaces, and their numerical 
implementations are presented in Section 5. For a 
verification of the developed codes we provide the 
amplitude and phase distributions of currents on 
the arms of a crossed wire over a planar lossy 
ground with reference to the same results obtained 
by the commercial software SNEC™ [31].  

A time convention exp( )i tω−  is assumed and 
suppressed.  

 
II. FORMULATION 

Let regions I ( 0z > ) and II ( 0z < ) be free-
space and a simple lossy dielectric with 
constitutive parameters and wave numbers given 
as 0 0( , )ε µ , 1 0 0k ω µ ε=  and 2 0 2( , , )ε µ σ , 

2 0 2 2( )k iω µ ε σ ω= + , respectively. The 
complex refractivity of ground is defined by 

2 1 2 0( )rN k k iε σ ωε= = +  with 2 0rε ε ε= . 

The HCA is defined as 2| | 1N >>  (or equivalently
| | 3N ≥ ). Analytically, the lowest value that | |N  

can take in any simple medium is limited by rε . 

Therefore, in any medium with  9ε ≥r  (especially 

seawater with 75 80rε ≈ − ), it can always be 
satisfied regardless of conductivity and the 
operating frequency.  

Under HCA, the King formulation of Green 
functions for a Hertzian dipole located at 

( , , )r x y z′ ′ ′ ′=


  and calculated at  ( , , )=
r x y z  

constitutes “direct” ( d ), “perfect image” ( i ), and 
“surface wave” ( s ) components, which can be 
represented in tensorial form by 

( , ) ( , ) ( , ) ( , )
d i s

G r r G r r G r r G r r′ ′ ′ ′= + +
       

,  

  

( , , ) ( , , ) ( , , ) ( , , )

( , , ) ( , , ) ( , , )

( , , ) ( , , ) ( , , )

ˆ ˆ ˆ ˆ ˆˆ

ˆˆ ˆ ˆ ˆˆ        

ˆ ˆˆ ˆ ˆˆ          .

d i s x d i s x d i s x d i s
x y z

y d i s y d i s y d i s
x y z

z d i s z d i s z d i s
x y z

G xxg yxg zxg

xyg yyg zyg

xzg yzg zzg

= + +

+ + +

+ + +

  

Here, a
bg  stands for the total b -axis electrical 

field component of the Hertzian dipole with unit 
moment directed along a -axis. The entire set is 
given for , 0′ >z z  as follows: 
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( )
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( )       
4

1 ( )     
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x
x
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e x xg
R R

e x x
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e z z y y
R N R N R N

R Rik R x x y y
N P P

ξ ξ
π

η η
π

η ηη
π

 ′−
= − 

 
 ′−

− − 
 
 ′ ′+ −+ − +


 Ξ ′ ′− − + −  
 
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1 1
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( )( )
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( )( )       
4

( )( )
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1        ,
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R R

x x y y e
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x x y y e
R R

R Rik R
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η
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π

η

′ ′− −
= −

′ ′− −
+

′ ′− −
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  Ξ
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  
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22
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1      ,
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R R

Rx x e ik R
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π

η
π
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y x
x yg g=  ,   
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e y y
R R

z z
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1 1

1 2

1 2

22
1 1

22
2 2

2
3 1 2

2 2
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1 1

1 2 1 2

2
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1 1

2

1 2 12
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( )
4

( )    ,
4 2

ik R
z
z

ik R ik R
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 ′−
= − 
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with 

1,2

1 22 2 2

( , )

              ( ) ( ) ( ) ,

R r r r r

x x y y z z

′ ′=

′ ′ ′ = − + − + 

   





   

1 22 2( ) ( )P x x y y′ ′ = − + −  ,  
2

1 2 2
2

( )
2

′+ + =   
k R R N z zU

N P
, 

 
and the dimensionless parameters 

1 2 2
1 1 1 1

1 11ξ = − −
ik R k R

 ,  2 2 2
1 1 1 1

3 31ξ = − −
ik R k R

 , 

1 2 2
1 2 1 2

1 11η = − −
ik R k R

 ,  2 2 2
1 2 1 2

3 31η = − −
ik R k R

, 

3
1 2

11η = −
ik R

 ,  
1 2

1 2

( )π − 
Ξ =  

 
iUe F U

k R
 , 

 
where  

1 2 1 2( ) 1 ( ) ( )UF U i U e erfc iUπ −= + − ,  
is known as the Norton attenuation function. The 
surface wave components vanish in the limit 
| |→∞N .  

In thin wire approximation, we assume the 
wire mesh structure comprises cylindrical 
segments with fixed length λ<<  and radius 
a <<  , where λ  is the wavelength in the 
ambient medium, as depicted in Fig. 1.  
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Fig. 1. j-th thin wire segment with outer and local 
reference systems. 

 
In virtue of our choice of pulse basis functions 

in MoM formulation, we may assume the j-th thin 
wire segment supports a constant current jI , 
whose density function can be expressed in the 
local cylindrical coordinates ρ φj j j jO z   through 
the Dirac delta distribution δ  and the unit step 
function H  as 

( )ˆ( , , )
2

                  ( 2) ( 2) .

j
j j j j

j j

j j

aJ z z I
a

H z H z

δ ρρ φ
π
−

=

 × + − − 



 

The radiation field of j-th segment is given by the 
volume integral  

0( ) ( ; ) ( )

         ( ) ,

j j j
j j

j j

E r i G r r J r d

I f r

ωµ ϑ′ ′ ′= ⋅

=

∫
 

   





   (1) 

and the total radiatied field by a total of M  
segments in a mesh is expressed by  

1 1
( ) ( ) ( )

M M

j j j
j j

E r E r I f r
= =

= =∑ ∑


 

  

 ,  

based on the principle of superposition. 
Accordingly, the total electrical field at any point 
in space reads  

( ) ( ) ( )tot incE r E r E r= +
  

  

,  

where ( )


incE r  is the total field calculated at any  
point in the absence of the scatterer. Applying the 
collocation method, the boundary condition on the 
segments yields the linear system of equations  

1

M

mj j m
j

Z I V
=

=∑  ,  1, 2,...,m M= ,  

/2 2

0
/2 0

ˆ ˆ( ; )
2

π

ρ

φωµ
π′=−

′
′ ′= ⋅ ⋅∫ ∫





 



j

j
j j j

mj m m
a

dZ i G r r z dz , 

(2) 
                 ˆ( )inc

m m mV E r= − ⋅




  .                  (3) 
Here, ( , , )=



m m m mr x y z  denotes the central point 

and ( , , )I I I
m m mx y z  & ( , , )II II II

m m mx y z , the starting & 
end points of m-th segment in the presumed 
direction of current flow. Then, its unit tangential 
vector can be written as  
ˆ ˆ ˆ ˆ

ˆ ˆ ˆ    ( ) ( ) ( ) ,
m mx my mz

II I II I II I
m m m m m m

x y z

x x x y y y z z z

= + +

 = − + − + − 

   



 
where 

1 22 2 2( ) ( ) ( )II I II I II I
m m m m m mx x y y z z = − + − + − 

,∀m . 
At each junction the corresponding junction 
condition on currents increases the dimension of 
the linear system by one. In case of L  junctions in 
a wire mesh, the currents are calculated by 
multiplying the extended system 
[ ] [ ] [ ]( ) 1 ( ) 1M L M M M L
Z I V

+ × × + ×
⋅ =  by the Hermitian 

transpose [ ]* ( )M M L
Z

× +
 of the extended impedance 

matrix before inversion as follows: 

[ ] [ ] [ ]( )
[ ] [ ]( )

1*

1 ( ) ( )

*

( ) ( ) 1
            .

M M M L M L M

M M L M L

I Z Z

Z V

−

× × + + ×

× + + ×

= ⋅

× ⋅
 

Alternative models for junctions can be 
reached at [32-34]. 

The total radiation (far) field of the wire mesh 
can be approximated as the superposition of the 
fields generated by Hertzian dipoles with moment 

j jp I=   centered at =
 

jr r  and directed along 
ˆ

j  as  

0
1

ˆ( ) ( ; )
M

j j j
j

E r i p G r rωµ
=

= ⋅∑


  

 .  

 
III. CALCULATION OF THE 

ELEMENTS OF IMPEDANCE MATRIX 
The elements of the impedance matrix 

comprise three components 
d i s

mj mj mj mjZ Z Z Z= + +  , 

y

x

z

jzjy

jx

O



2a

    jO
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which require to be calculated separately through  
2 2 ( , , )

( , , )
0

2 0

ˆ ˆ( ; )
2

π

ρ

φωµ
π′=−

′
′ ′= ⋅ ⋅∫ ∫





 



j

jd i s
d i s j j j

mj m m
a

dZ i G r r z dz . 

(4) 
Since d

mjZ  and i
mjZ are space wave components, 

their calculations can be carried out directly in the 
local reference frame j j j jO x y z . Regarding d

mjZ , 
the expressions of the difference vector directed 
from the central point of j -th to m-th segment in 
local and outer reference frames are given as  

( , , )m m m mr x y z=


, 
( , , )m j m j m j m jr r x x y y z z− = − − −

 

, 
while they are related by  

( )m
j m jr T r r= ⋅ −

  

    or    
TR

m
jm jr r T r− = ⋅

  

 ,  

through the Euler transformation matrix jT   

cos cos sin cos sin
sin cos 0

cos sin sin sin cos

j j j j j

j j j

j j j j j

T
α β α β β

α α
α β α β β

 −
 = − 
  

,  

whose inverse is equal to its transpose: 
1 TR

j jT T
−

= . 
The explicit expressions of the 3-D transformation 
angles jα  ve jβ  are as follows: 

2 2 1 2sin ( ) [( ) ( ) ]II I II I II I
j j j j j j jy y x x y yα = − − + − , 

2 2 1 2cos ( ) [( ) ( ) ]II I II I II I
j j j j j j jx x x x y yα = − − + − , 

2 2 1 2sin [( ) ( ) ]II I II I
j j j j jx x y yβ = − + −  , 

cos ( )II I
j j jz zβ = −   .                  

Accordingly, under the thin wire approximation 
one has  

2 2 2 2 2
1

2

( ; ) ( ) ( ) ( )

                     2 ( ) ,

m j m m m

m j j

R r r x y z a

z z z

′ ≅ + + +

′ ′− +

 

  

and the ˆ jz -directed Green functions read 
1 1

22
1 1

( )( )( , )
4

j

j

ik Rm j m j
z d m j
x

x x z z eg r r
R R

ξ
π

′ ′− −′ = −
  , (5) 

1 1

22
1 1

( )( )( , )
4

j

j

ik Rm j m j
z d m j
y

y y z z eg r r
R R

ξ
π

′ ′− −′ = −
  , (6) 

1 1 2

1 22
1 1

( )( , )
4

ξ ξ
π

 ′−′ = − 
  

 

j

j

ik R m j
z d m j
z

e z zg r r
R R

 .  

Substituting the polar transformations 

cosj jx a φ′ ′=  ve sinj jy a φ′ ′=  in (5) and (6), a 
full period integration in (4) yields the resultant 
regular integral 

0

2

2

( , )

( , )

( , )

j

j

j

j

j

j

mx z d m j
x

d my z d m j j
mj y

mz z d m j
z

t r r

Z i t r r dz

g r r

ωµ
−

 ′
 
 ′= + 
 ′+  

′∫




 



 



 



 ,  

with 
1 1

22
1 1

( )( , )
4

j

j

ik Rm m j
z d m j
x

x z z et r r
R R

ξ
π

′−′ = −
   ,    

1 1

22
1 1

( )( , )
4

j

j

ik Rm m j
z d m j
y

y z z et r r
R R

ξ
π

′−′ = −
   , 

ˆ ˆˆ ˆ ˆm mx j my j mz j
j mx y z T= + + = ⋅      ,     

which is a calculated numerically. Similar 
considerations hold for the calculation of i

mjZ . 
In calculating the surface wave components 

s
mjZ , we express the source points in the local 

reference frame and the observation points in the 
outer reference frame. For this purpose, we set  

mr r=
 

, ′′ ′= = + ⋅
   

TR
j

jj jr r r T r  in King’s Green 

functions, where ( , , )j j j jr x y z′ ′ ′ ′=


 and 

( , , )j j j jr x y z′ ′ ′ ′=


 (see Fig. 2).  

 
Fig. 2. j-th and m-th thin wire segments and 
position vectors. 

y
x

z

jr


jr ′


jzjy

jx

1R


mr


O

 

jO
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Under the thin wire approximation one has 
2 2 2

1,2

2 2 2

( ; ) ( ) ( )

                    ( )

( ) cos sin

                 2 ( )sin sin ,

( ) cos

j
m m j m j

j
m j

m j j j
j

m j j j

m j j

R r r x x y y

z z a z

x x
z y y

z z

α β

α β

β

′ ≅ − + −

′+ − + +

 −
 ′− + − 
 + 

 



  
2 2 2

2 2

( ) ( )

( ) cos
        2 sin

( )sin

        ( ) sin ,

m j m j

m j jj
j

m j j

j
j

P x x y y

x x
z

y y

z

α
β

α

β

≅ − + −

− ′−  + −  
′+

  

2
1 2 2

22
zk R R NIU

N P
+ ≅  

 
 , 

cosj
z m j m j jI z z z z z β′′= + ≅ + +  . 

By describing the following parameters 
2

0

( ) cos sin
2

j
j

x m j m j j j
dI x x x x z

π φ α β
π
′

′′= − = − −∫  , 

2
2

0

2

2 2 2 2

( )
2

    ( cos sin )

      ( 2)(cos cos sin ) ,

j

xx m j

j
m j j j

j j j

dI x x

x x z

a

π φ
π

α β

α β α

′
′= −

′= − −

+ +

∫
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∫
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2

3 1 2
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1 ,
2 2
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y y

I Rd et g ik R
R R N N P
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π π
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1 22

1
20 2 2

ik Rj
zs zs
z z

d et g ik P
N R

π φ
π π
′ Ξ

= =∫ ,  

which emerge from the full period integration of 
the surface wave components of the Green tensor, 
one reaches the resultant regular integral 
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0

2

2

      ,

s
mj

xs ys zs
mx x jx mx x jy mx x jz

xs ys zs j
my y jx my y jy my y jz

xs ys zs
mz z jx mz z jy mz z jz

Z i

t z t z t z

t z t z t z dz

t z t z t z

ωµ

−

=

 + +
 

′× + + + 
 
+ + +  

∫




  

  

  

with ˆ ˆˆ ˆ ˆ
TR

j
jj jx jy jzz z x z y z z T z= + + = ⋅ , which 

requires to be calculated numerically.  
 

IV. THREE DIFFERENT SCENARIOS 
The influence of the geometrical and physical 

properties of the ambient medium in scattering 
phenomenon appears in the expression (3), which 
is determined by the incident field. In this section, 
we consider three different scenarios for the 
incident field and the ambient medium for a 
numerical investigation.  

 
A. Scenario I: Homogeneous plane wave 

incidence and planar ground 
Let the electrical field of an incoming 

homogeneous plane wave in an arbitrary direction 
ˆin  in region I be given by 

0 ˆˆ iik n ri
iE e e ⋅=




.  
The normal of the interface is ˆ ˆn z≡ , while the 
normal of the incidence plane is calculated as  
ˆ ˆ ˆiq n n= × . By use of the identity 
ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( )i i ie q q e q q e= ⋅ − × ×  one can decompose the 

incident wave into TE and TM components as   
i i i

TE TME E E= +
  

,  
where  

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( )i ik r ik r
TE i iE q q e e q e q e⋅ ⋅= − × × = × ×

 

 


 ,   

ˆ ˆ ˆ( )i ik r
TM iE q q e e ⋅= ⋅






 ,                         
while their reflected components read 

ˆ ˆ ˆ( )r ik r
TE i TEE q e q e ⋅= × × Γ






, ˆ ˆ ˆ( )r ik r
TM i TME q q e e ⋅= ⋅ Γ






, 
with the Fresnel coefficients 
 

2 1 2

2 1 2

cos ( sin )
cos ( sin )TE

N N
N N

ψ ψ
ψ ψ
− −

Γ =
+ −

  ,     

2 1 2

2 1 2

cos ( sin )
cos ( sin )TM

N
N

ψ ψ
ψ ψ
− −

Γ =
+ −

.             

Here, [0, 2)ψ π∈  stands for the angle between 
the unit vectors n̂  and ˆin . Accordingly, the total 
incident field can be expressed by 

inc i r i r
TE TE TM TME E E E E= + + +

    

. 
  
B. Scenario II: A monopole antenna and 

planar impedance ground 
In virtue of (1), the incident far field of a 

monople antenna located at r r′=
   along ̂M  

direction with moment Mp  can be expressed as 

 0
ˆ( ) ( ; )ωµ ′= ⋅



  



inc
M ME r i p G r r . (7) 

The elements of the Green tensor can be specified 
as the Green functions delivered by Norton [35] 
under HCA and grazing wave incidence as 
follows:  

1 1

1 2

1 2

2

2
1 1

2
2

2 2 2
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2

2

2
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4
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4
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 
  ′− ′+ − − −  

  
′ −

− 
 +
 ′−
− ∆ − 
 

  

1 1

1 2

1 2

2
1 1

2 2 2
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2
2
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1 1   ( )( )
4
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4

  (1 ) ( ) (1 ) ( ) ,
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y
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h

v
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h N v N

x x y y eg
R R

Rex x y y R
R P P R

x x y y e
P R

R F q R F W

π

π

π

′ ′− −
= −

  ′ ′− − − + −  
  

′ ′− −
−

 × − + ∆ − 
1 1

1 2

1 2

2
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2
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( )( )       
4

       (1 ) ( ) ,
4
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z

ik R

v
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N v N
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x x z z eR
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+
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In Norton’s formulation the ground is modeled by 
a scalar impedance boundary condition (cf.[36, 
Sec.1.15]) with normalized surface impedance  

1 22 2
2(1 ) 1 (1 )( )N N N P R ∆ = −  , 

With respect to free space characteristic 
impedance 0 120π=Z , while the reflection 
coefficients and ground parameters therein are 
given as 

2

2

N
v

N

z z RR
z z R

′+ − ∆
=

′+ + ∆   ,  
2 0

2 0
h

z z RR
z z R

δ
δ

′+ −
=

′+ +  ,      

1 2 2
2

N
N

ik R z z RW
P

 
 
 

+ + ∆′=  , 

2
0 NNδ = ∆    ,    2 01 2

2
z z Rik Rq

P
δ′+ + =  

 
. 

 
C. Scenario III: A monopole antenna and 

spherical impedance ground 
In this case, the expression (7) still applies, 

while the Green functions can be adopted as the 
set given by Wait 37,38] which are derived based 
on the Pol and Bremmer theory [39,40]. 
Accordingly, the z , x , and y  axes of the outer 
Cartesian coordinates in the vicinity of the 
scatterer can be coincided respectively with the 
spherical coordinate curves r ,θ ,φ  of the globe, 
whose origin is the central point as depicted in Fig. 
3. 

 
 

 

Fig. 3. Spherical earth and its global coordinate 
system θφOr . 

Thereby, the Cartesian tensor components of the 
Green functions are suitable for our purposes with 

0θ ′ =  can be calculated as  

( , , )r θ φ( , , )r θ φ′ ′ ′

rr′

b

z θ ′ θ

OI II
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where 
1 22(1 ) 1 (1 )N N ∆ = −  represents the 

surface impedance normalized w.r.t. free space 
characteristic impedance 0 120π=Z ; 

(4 3) 6378b = × [ ]km  is the effective radius of 
earth taking into account first order tropospheric 
refractions; 1 3

1( 2)A k b= , q iA= ∆ , and 
2

1q N q=  are ground constants; 1h r b′= −  and 

2h r b= −  are the heights of the source and 
observation points above the ground; 1 1 1y k h A= ; 

2 1 2y k h A= ; and [ ]( ) ( ) ( )i iw t B t iA tπ= +  

with ( )iA t , ( )iB t  denoting standard Airy 
functions. The Green functions are derived under 
the natural assumption 1,2h b<<  and the Rayleigh 

hypothesis 2| | 1∆ << , which fits well with HCA. 
The parameters st  and mt  correspond to the 
discrete complex roots of the Stokes equations 

( ) ( ) 0w t qw t′ − =  and 1( ) ( ) 0w t q w t′ − = , 
respectively. They are the eigenvalues of the 
ground wave modes which are located in the first 
quadrant of the complex plane and their 
magnitudes increase with index number. In their 
determination, we apply the algorithm available in 
[41, pp. 340-343]. 

The critical distance, beyond which the 
influence of the curvature of earth on wave 
propagation cannot be disregarded, has been 
determined by Houdzoumis [42] as 

1/3
1( 2)C b k bρ −= . 

In order to enrich any scenario by including 
any terrain feature, either land to sea transitions or 
obstacles (“islands”) along the propagation path as 
devised by Furutsu [43-49] or layered media, it is 
sufficient to substitute the appropriate set of Green 
functions into (2) and (3).  

The oceanographic parameters such as mean 
wind speed, fetch length, and wave directionality 
as described in any sea spectrum [50], [51, pp. 
386-403], [52, pp. 109-139], [53-55] can also be 
taken into account by modifying the normalized 
surface impedance as ∆ = ∆ + ∆add , where the 

additional term ∆add  was first calculated 
analytically by Barrick [56] as a 2-D spectral 
integral involving the sea spectrum using 
perturbation technique and the Rayleigh 
hypothesis.   
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V. NUMERICAL IMPLEMENTATIONS 
In this section, we provide certain numerical 

results for the three scenarios in Sec. 4 in the 
frequency range 3 45 [ ]MHz−  for propagation 
over seawater with 80rε = , 4 [ ]S mσ = . First, 
for a verification of the developed codes we 
consider the case depicted in Fig. 4 where a 
crossed wire above planar sea surface is 
illuminated by a homogeneous plane wave with 
incidence angle 45ψ =  and unit electrical field 
amplitude.  

 

 

Fig. 4. A crossed wire located above planar sea 
surface and illuminated by a homogeneous plane 
wave. 

The four arms of the cross are assumed to 
have the same length 3.33 [ ]m  while the height of 
the bottom arm from ground is 8 [ ]=h m  . The 
horizontal arms are assumed to lie along the y - 
axis.  

In the first set of illustrations, the operating 
frequency is taken 3 [ ]f MHz=  ( 100 [ ]mλ = ) 
for which each arm length is 30λ  and 

2 25λ=h . In virtue of thin wire approximation, 
the geometrical parameters of the segments are 
picked as 0.5 [ ] 200 [ ]m mλ= =  and 

1 40 [ ] 4000 [ ] 20a m mλ= = =  . They fall 
into the range in which the values of the computed 
fields remain insensitive. Under this 
parameterization, the total number of segments 
read 27.  

In Figs. 5 and 6, we provide the amplitude and 
phase distributions of currents on the arms of the 
crossed wire and relative errors calculated by 
%100 | (SNEC ) / SNEC |− CODE with refere-
nce to the same results obtained by the commercial 
software SNEC™. 

Fig. 5. The amplitude distributions of currents on 
vertical and horizontal arms and relative errors at 
3 [ ]MHz .  

Fig. 6. The phase distributions of currents on 
vertical and horizontal arms and relative errors at 
3 [ ]MHz .  
 

In the second set of illustrations in Figs. 7 and 
8, the operating frequency is taken 15 [ ]f MHz=  
( 20 [ ]mλ = ) for which the arm length is 6λ  
and 2 5λ=h , while 0.5[ ] 40 [ ]m mλ= =  and 

1 40 [ ] 800 [ ] 20a m mλ= = =  .   
The relative errors in the two sets of 

illustrations, which are restricted by 10% , stem 
from the choice of poorly converging pulse basis 
functions in the MoM scheme, as opposed to the 
more realistic sinusoidal basis functions employed 
in SNEC™.  It is seen that the error due to 
theoretical failure of pulse basis functions in 
satisfying the zero current tip condition reflects on 

x

z

ψ

iE


h
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the entire geometry through matrix inversion in 
the current calculation. 

 

 
Fig. 7. The amplitude distributions of currents on 
vertical and horizontal arms and relative errors at 
15 [ ]MHz .

 

Fig. 8. The phase distributions of currents on 
vertical and horizontal arms and relative errors at 
15 [ ]MHz .  
 

As an application of the second scenario, a 
wire mesh plate with side length 7 [ ]m  and 
diagonal length 10 [ ]D m≅  is illuminated by a 
monopole with unit moment at a distance of 
10 [ ]km  as depicted in Fig. 9. 

In Figs. 10 and 11, we plot the elevation (Oxz ) 
and azimuth (Oxy ) patterns  of the total 

(normalized) scattered field 2 2
1010 log (4 | | )r Eπ



 
at 15 , 30 , 45 [ ]MHz  for which the operating 

wavelength corresponds to 2D , D , 2 3D , 
respectively. The symmetries observed in the 
patterns are due to the symmetric structure of the 
plate as well as the thin wire approximation that 
the current flows only along longitudinal direction 
in every segment. 

 

Fig. 9. A wire mesh plate illuminated by a 
monopole residing on planar sea surface. 
 

 

 
 

Fig. 10. Elevation patterns for the total scattered 
field at a)15 ,b)30 , c) 45 [ ]MHz . 
 

 

Fig. 11. Azimuth patterns for the total scattered 
field at a)15 ,b)30 , c) 45 [ ]MHz . 

 

x

z

7 [ ]m

10 [ ]km

y 7 [ ]m
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In Fig. 12, we consider the same scatterer and 
source as in Fig. 9 on the spherical sea surface 
illuminated from a distance 310 [ ]km .  

Fig. 12. A wire mesh plate illuminated by a 
monopole on spherical sea surface. 

 

The total scattered field 1020 log | |


E  
measured over the sea surface from the origin in 
the direction of the monopole is plotted in Fig. 13 
at 15 , 30 , 45 [ ]MHz , for which the critical 
distances are calculated respectively as 
77.216 [ ]km , 61.287 [ ]km , 53.539 [ ]km . As 
expected physically, there is an increased 
attentuation beyond the critical distances 
proportional with frequency. 
 

Fig. 13. The total scattered field by a wire mesh 
plate calculated over sea surface at 15 , 30 ,
45 [ ]MHz . 
 

VI. CONCLUDING REMARKS 
In the present work, we provided a MoM 

formulation for thin wire structures located over a  
lossy dielectric ground under HCA employing 
King’s range independent Green functions. Since 
we are focused on the analytical aspects of the 
formulation in the first place, our choice of pulse 
basis functions as the simplest option in a MoM 
scheme has resulted in a predictable and 
unavoidable relative error in current calculation as 
compared to the same results by the commercial 
software SNEC™, which employs (more realistic) 
sinusoidal pulse basis functions. Since such a 

deficiency is not associated with the success of the 
analytical calculations, the relative error can 
totally be removed by picking the same set of 
sinusoidal basis functions as in NEC softwares. 
While the current codes equally have the ability to 
read NEC-2 formatted input files, they are 
developed in the MATLABTM environment with 
no commercial concern on total computational 
time at the time being. However, the numerical 
implementations put it very clearly that an 
electromagnetic simulation software that 
incorporates the Green functions of King may not 
only provide an alternative to the similar role of 
the extensive numerical/asymptotic libraries of 
NEC-2 whenever HCA applies (see also [57,58]), 
but also provides a capability to evolve by proper 
substitutions of Green functions to take into 
account various terrain features in any scenario. 
This is especially important since the physical 
(antenna) measurements around critical distances 
over earth have been reported to diverge seriously 
from those calculated by NEC-3 and NEC-4 while 
they follow the analytical results derived by King 
smoothly (see [59, Sec. 1] and the references cited 
therein). In light of the expertise gained the 
research is planned to pursue along the following 
areas of investigation:  
i) Replacing the pulse basis functions in MoM 

scheme with sinusoidal basis functions 
following reference works as [60] to eliminate 
the current relative error with reference to 
NEC based softwares completely;  

ii) Providing a time domain analysis ability to 
investigate the scattering of actual radar wave 
forms (as in [61-63]) from mesh structures 
above sea surface; 

iii) Extending the impedance matrix for dielectric 
coated mesh structures for stealth applications. 
This is managed by reformulating the MoM 
matrix by describing a first order impedance 
boundary condition on each wire segment. For 
an analytical demonstration of the validity of 
the impedance boundary condition on 
arbitrarily shaped surfaces one may refer to 
[64];  

iv) Incorporating Green functions of layered and 
complex media available in literature ([4-17]) 
for arbitrary range; 

v) Investigation of most efficient NEC2 pre-
processors (cf.[65]), modeling guidelines 
(cf.[66,67]), programming platforms and 
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algorithms to minimize the computational time 
for integration and linear algebraic operations 
at the stage of developing a commercial 
product. 
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