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Abstract ─ The development of new and efficient 
control methodologies demands the availability of 
mathematical models for the electromagnetic 
device under control. These models must be 
solved with great accuracy and speed. The finite 
element method (FEM) gives truthful results but 
computational demanding increases with device 
geometrical complexity. This paper proposes a 
new method for dynamic behavior simulation that 
uses FEM software at its early stage, to obtain the 
co-energy map for devices concerning static 
positions for different excitation currents. 
Inductance and force maps are derived from the 
co-energy map. A numerical model of a case study 
is built with Matlab© to obtain device dynamic 
response. The software implementation procedure 
is described in detail. The achieved results are 
compared with the ones obtained from the FEM 
tool analysis. The small computation effort 
required by the proposed analysis method makes 
possible that complex control methodologies can 
be developed and tested based on the proposed 
model.  
 
Index Terms ─ Co-energy maps, dynamic 
behavior, electromagnetic actuator, numerical 
method. 
 

I. INTRODUCTION 
The electromagnetic actuators behavior 

analysis is nowadays, as in the past [1], a 
concerning subject for control in engineering areas 
as robotics or precision actuation. With the 
introduction of some simplifications, as ignoring 
material magnetic non-linearity, the analytical 
analysis of electromagnetic devices is possible 
only for the simplest geometries. The analysis 
tasks of actuators with higher structural 
complexity, with multi-excitation, or intricate 
geometry is very complex, and it is difficult to 

obtain an analytical solution. For these situations, 
the option is always to find the solution through 
the application of methodologies based on 
numerical analysis [2-10]. The dynamic behavior 
of an actuator can also be obtained through the 
experimental knowledge of the magnetic 
characteristics, as proposed in [11, 12]. 

The design of electromechanical devices 
requires the prediction of the developed force. 
This knowledge is often derived from field 
solutions obtained through numerical analysis, 
based upon different approaches, such as in [13-
16]: (1) classical virtual work; (2) Maxwell stress 
tensor; (3) Coulomb’s virtual work. These 
methods are currently used within the application 
of finite element analysis [17], but some care must 
be observed in their application. The mentioned 
methods can be classified depending on the 
number of required solutions. The classic method 
of virtual work requires two or more solutions, 
turning it computationally demanding. The 
Maxwell stress tensor and the Coulomb virtual 
work methods both require only one solution of 
the problem, making them more computationally 
efficient. 

An issue with the application of the classic 
virtual work method is that if the moving part of 
the device performs a small displacement, the 
variation observed in the co-energy of the system 
is also small; as a result, a round-off error is 
introduced. On the other hand, if the displacement 
is large, a substantial error in the differentiation 
process is also introduced. These two problems 
cannot be simultaneously minimized, because one 
of them cannot be minimized without penalizing 
the other. 

The choice of the method to be used is 
conditioned by factors such as the computational 
cost, data consistency, and precision requirements 
for the results. 

1118

1054-4887 © 2010 ACES

ACES JOURNAL, VOL. 25, NO. 12, DECEMBER 2010



The finite element analysis is a widely used 
numerical method to study electromagnetic 
problems with irregular and not homogeneous 
geometries. Finite element algorithms 
implementations are extremely efficient and 
commercially available. Nevertheless, these 
software tools are very expensive and require a 
large computation time. As a result, these 
characteristics make the execution of a high 
number of simulations difficult, with the aim of 
developing an optimal control strategy. 

The aim of the presented work is the 
development of a new methodology that, applied 
to an electromechanical device, allows its 
electrodynamics study. Applying the method 
proposed here, it is possible to obtain a device 
dynamical model, based on the co-energy map 
[18-19]. The method is called dynamic modeling 
co-energy map (DMC). 

This paper is structured as follows: in Section 
II, a theoretical analysis, based on device 
electromechanical energy conversion, is presented. 
The theoretical model possesses two components 
that describe the energy conversion process. The 
first one characterizes the electromagnetic process, 
taking into account the variation in magnetic 
induction depending on both mechanical 
displacement and current value. The second one 
describes the mechanical system. Section III 
presents a numerical analysis of the 
electromagnetic actuator, based on a 2D FEM, for 
the specific knowledge of the device. Several 
static simulations, for each device’s relative 
position and for different current levels are 
performed, allowing the construction of a three-
dimensional co-energy map. This map is the basis 
for the knowledge of the attraction force, magnetic 
flux, and inductance, which define the device 
numerical model, required for the development of 
the DMC method. Section IV presents the 
development details in Matlab© of the proposed 
method used to observe device dynamical 
response, in which computation demands are 
completely independent of the model geometry 
complexity. In Section V, the results obtained with 
the application of the proposed methodology, to a 
chosen case study, are presented. That analysis 
allows the comparison of the obtained results with 
the ones obtained with the application of the finite 
elements tool, when the iron losses are ignored. 
This allows the validation of the proposed method. 

Section VI outlines the conclusions. 
 

II. ELECTROMECHANICAL ENERGY 
CONVERSION 

An electromechanical device can convert 
electrical energy into mechanical energy, or vice- 
-versa. This process is made through the device 
magnetic field. Different kinds of devices appeal 
to this principle, and operate according to similar 
physical processes, for example: transducers used 
in instrumentation, as the linear variable 
differential transformer, or actuators used in the 
electromechanical drives, generally called motors, 
if they produce force or torque, or generators, in 
case of producing electrical energy. 

Some of the methods to produce force through 
the use of the electric energy are the following 
ones: interaction of two magnetic fields, such as a 
conductor carrying current in a magnetic field; 
ferromagnetic materials that moves to reduce the 
reluctance of the magnetic circuit; 
magnetostriction or deformation of a 
ferromagnetic material in a magnetic field; 
piezoelectric effect in the application of an electric 
potential to a piezoelectric crystal. 

The magnetic actuator can be considered as a 
complete system composed by three sub-systems: 
(1) the electrical system; (2) the mechanical 
system; and (3) the coupling field. Note that in 
spite of the here adopted case study (electrovalve) 
only allowing longitudinal motion, the device 
possesses the three previously mentioned sub- 
-systems, and its analysis can provide valuable 
information about the operation of more complex 
electro-magneto-mechanical devices. 

Looking to the operation principles of an 
electromechanical device, and the respective 
process of energy conversion, it can be assumed 
that, from the energy point of view, three main 
advantages are presented [20]: (1) the problem 
formulation is simplified; (2) the analysis 
methodologies can easily be deduced; and (3) the 
experimental analysis can be made in order to 
confirm adopted analysis. For beyond the previous 
advantages, the application of the classic method 
of virtual work makes the problem formulation 
independent from the geometric complexity of the 
actuator, which can be considerable in some 
devices. 

A mechanical component, free to be moved, 
develops mechanical work by the action of a force 
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produced by electrical means [21]. The energy 
conservation law, together with governing laws of 
magnetism, electrical and mechanical equations, 
makes this possible to obtain the energy balance 
equation for the system, as follows: 

 
 ,e le fe emW W W W    (1) 

 
where eW  is the input energy, leW  the energy 

losses, feW  the stored magnetic field energy, and 

emW  the mechanical energy output. Note that the 
expressed mechanical and electrical quantities are 
positive for motor operation and negative for 
generator operation. Because frequency and speed 
are relatively low, a quasi-stationary 
electromagnetic field can be assumed and 
electromagnetic radiation losses can be neglected. 
Some fraction of the mechanical output is lost 
( fwW ), while the other part is stored in the 

mechanical system as kinetic energy ( smW ). Thus, 

the effective mechanical energy output is mW , and 

is expressed as:  
 

 .m em fw smW W W W    (2) 

 
The losses in the system can be caused by 

distinct causes, like losses in electrical conductors 

( RI 2  losses), friction and ventilation (mechanical 
losses) and magnetic losses in the coupling field. 
A small and therefore ignored fraction of the loss 
is caused by the dielectric effect in the electrical 
insulating material. Thus, the following expression 
is obtained for the final energy balance equation: 
 

     .e le fw fe sm mW W W W W W      (3)  

 
Differential energy edW  supplied by the 

source, neglecting magnetic losses, is given in (4), 
where voltage e  is the reaction from the coupling 
field over the electrical system, su  the coil supply 
voltage, R  a resistance connected in series with 
the coil, and i  the circuit current. Equation (4) 
shows also the relation between voltage e  and 
magnetic linkage flux   as follows: 

 

  2 .e sdW u i R i dt iedt i d     (4) 

Thus, as can be seen, if a change in flux 
linkage occurs, the system energy will also 
change. This variation can be promoted by means 
of a variation in excitation, a mechanical 
displacement, or both. The coupling field can be 
understood as a reservoir of energy, that receives it 
from the entrance system, the electrical system, 
and delivers it to the exit system, the mechanical 
system. Coupling field energy intakes brings on a 
reaction expressed by an induced voltage as: 

 

 .
d

e
dt


  (5) 

 
Energy is a state function on a conservative 

system. If losses are ignored, balance energy can 
be written as in (6), where emf  is the mechanical 

force that produces the mechanical work emdW , 

when a differential displacement dx  occurs. 
Energy eW , in a lossless device, with only one 

coil, depends on  and x, as follows: 
 

.e fe em fe emdW dW f dx dW i d f dx     (6) 

 
A different energy entity, defined as co-energy 

feW  , with no physical meaning, can be expressed 

as follows: 
 

  , .fe feW i x i W    (7) 

 
After mathematical manipulation of (7) and 

considering (6), one obtains (8), where it can be 
seen that the co-energy feW   depends on current i  

and position x : 
 

 
 
   
,

, ,
.

fe em

fe fe

dW i x di f dx

dW i x dW i x
di dx

i x

  

 
 

 

 (8) 

 
Because i  and x  are independent variables, 

  and emf  are given by the following equations, 
where L  is the device magnetic inductance: 
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 

 

,

.
,

fe

fe
em

dW i x
L

i i
dW i x

f
x




   
   

 (9) 

 
III. FINITE ELEMENTS MODELLING 

For validation purposes, the proposed 
numerical methodology is used to analyze an 
electrovalve as a case study. The device is 
modelled through Flux2D, from Cedrat [22]. It 
is assumed that the coil of the electrovalve has 
1136 turns, with a resistance of 43 . An exploded 
view of the device can be observed in Fig. 1. The 
axial view and respective physical dimensions are 
shown in Fig. 2. 

 
 

Fig. 1. Electrovalve exploded view. 
 

Base

C
a
r
c
a
s
s

Top

Coil

Steel ST37

Aluminium

Copper

Axial axis

80 mm

4 mm

0.25 mm

11.75 mm

4 mm

0.03 mm

0.03 mm

Clearance

2 mm6 mm6 mm

Air gap

2

3

1

5.5 mm3.3 mm 3.3 mm

3

2

1 Top air gap

Shell

shell

 
Fig. 2. Electrovalve axial view with physical 
dimensions. 

 

A constructive detail of the finite element model is 
shown in Fig. 3. The different regions that 
compose this model are identified on it. 

Concerning the introduction of materials 
connected with the different elements of the 
model, it is possible to recourse to a set of 
properties. For magnetic steels, the magnetization 
curve B - H  is defined by means of the following 
relation: 

 

 







 


s

rs

J

H
tana

J
H)H(B

2

12 0
0




 , (10) 

 
where 0  is the magnetic permeability of free 

space, r  the relative permeability and sJ  the 
saturated magnetization. The expression is 
generally valid, but some errors can appear for 
curve values corresponding to the transition from 
the linear to the saturation region.  

The finite element model has an infinite region 
with a half-circular form due to the device 
symmetry characteristic (see Fig. 4a), which is 
automatically generated as an extension of the 
classic analysis domain. The circular infinite 
region automatically receives cyclical conditions, 
making it physically dependent on the model 
limits; simultaneously, the inner part of the infinite 
region must present null Dirichlet conditions. 

It is necessary to assign a specific property for 
each model region. All magnetic circuit parts are 
assumed as being steel made, while the screw 
thread and surrounding air regions are assumed as 
having the properties of vacuum (r = 1), without 
any kind of associated current source. The coil 
region was also assigned the properties of vacuum, 
differing from the previous referred ones in the 
fact that a current source was considered. Each 
shell region (designated as 1 and 2 in Fig. 2) was 
assigned a constant and uniform thickness of 
0.03 mm, with properties identical to the ones of 
the vacuum. Boundary conditions were also 
imposed for the analysis of the domain limit. 
Magneto-static problems formulation uses 
Dirichlet or Newmann boundary conditions, as in 
Fig. 4b. The circular infinite region automatically 
receives cyclical conditions, making it physically 
dependent on the model limits; simultaneously, the 
inner part of the infinite region must present null 
Dirichlet conditions. 
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Fig. 3. Electrovalve FEM constructive detail. 

 

 

Fig. 4. Finite element mesh and boundary 
conditions: a) infinite region; b) electrovalve 
domain analysis. 

The problem that authors intend to solve is a 
magneto-static problem, being all the computation 
carried out considering a steady-state situation. 
This fact means that neither the current nor the 
model geometry change during problem solving. 
Several static simulations have been performed. 
For each relative position x of the plunger, the 
finite elements model was analyzed, considering 
different excitation currents i. This task was 
performed using batch file programming under 
Flux2D, which automatically reconfigures model 
parameters like plunger position x and current i, 
redefines model geometry and elements mesh, and 
collects the obtained data from the simulation 
process, saving it on computer hard disk for later 
processing proposes.  

Data collected from simulations allowed the 

construction of a three-dimensional co-energy 
map, and from it, the attraction force, flux and 
inductance maps are properly derived, using (9). 
These characteristics are shown in Fig. 5, and can 
completely characterize the device behavior. 
Based on them, device numerical model can also 
be constructed and used to carry out the dynamical 
analysis. Each point of the co-energy map requires 
a static FEM simulation that takes approximately 
one minute. Notice that the case study is very 
simple, more complex geometries obviously will 
require more time. Another detail that must be 
observed is the co-energy map resolution. Some 
devices could require more points than others to 
define the map surface with a good resolution. 

If devices geometrical parameters do not 
change, with the exception of the airgap length, 
there is no need to run the finite elements 
simulation again. Because the numerical model is 
implemented in a programming language 
(Matlab) [23], simulation is more versatile and 
fast, in contrast with the finite elements tool. 
 

IV. DMC NUMERICAL MODEL 
DEVELOPMENT 

The proposed numerical model is based on the 
obtained values of the inductance and force maps. 
Using a representation of order O(h4) it is possible 
to obtain the centered difference expression (11) 
for the first derivative [24]. 

 

         2 1 1 28 8
.

12
i i i i

i

f x f x f x f x
f x

h
     

  (11) 

 
Derivative results can be improved either 

diminishing the step h or using a problem 
formulation of higher order with more points. 
Alternately, Richardson extrapolation uses two 
derivative values, obtained with different steps, to 
determine a third result. According to that, the 
extrapolation from expression (12) uses step 

212 hh  . 
 

      2 1

4 1
, , .

3 3i i if x f x h f x h     (12) 

 
The applied differentiation procedure returns 

as a result the force, flux, and inductance maps, 
which are shown in Fig. 5. The device non-  
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Fig. 5. Electrovalve three-dimensional maps: co-energy, force, flux and inductance. 
 

linearity characteristic is shown in the previously 
referred maps. It is observable that inductance 
 x,iL  and force  x,iF  change not only with 

position x , but also with current i , exhibiting a 
strong influence of the magnetic circuit saturation. 
If these maps are used for device modeling, then 
simulation will take into account the actuator non-
linearity. 

The equation (13) describes the 
electromagnetic electrovalve behavior, being R  
the coil resistance and su  the applied voltage: 

 

      ,
.s

dL i x i t
u R i t

dt
   (13) 

 
Because the inductance  x,iL  is a function of 

the current i  and position x , and in turn both 
function of time, the differentiation is carried 
through t , being terms dtdi  and dtdx  placed in 
evidence, resulting: 

 

 

   

 

,
, ( ) .

( , )
( )

s

L i xdi
u L i x i t

dt i

di L i x
i t Ri t

dt x

 
    

    

 (14) 

Introducing parameters  and  as in: 
 

 
   

 

,
,

,
,

L i x
L i x i

i
L i x

i
x






  


  

 (15) 

 
equation (14) becomes: 

 

  tiR
dt

dx

dt

di
us   . (16) 

 
Mathematical expressions (17) and (18) 

describe the dynamics of the electromechanical 
actuator, in which x , y , and a  are, respectively, 
the plunger position, the velocity, and the 
acceleration, being M  the plunger mass and F  
the produced attraction force. 
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1 1

.
dy

a F F
M dt M

    (17) 

 

 .
dx

y
dt

  (18) 

 

The problem here under consideration is 
solved with Matlab© in two distinct steps. First, 
the plunger is allowed to move freely, and begins 
to do it from the considered initial position; this 
situation is described through the differential 
equations system (19). After, when stroke reaches 
its final position, it is considered that the 
movement is absent, and the velocity and 
acceleration will be zero. This situation is 
described by the differential equations system 
(20).  

 
1

.

s

dx
y

dt
dy

F
dt M

v y R idi

dt




 

 


   

 (19) 

 

 

0

0 .

s

dx

dt
dy

dt
v y R idi

dt




 

 


   

 (20) 

 
The traditional solving methods for differential 

equations do not keep memory of the past 
solutions. Others, like the Adam family formulas 
for non-stiff problems and backward differences 
for stiff problems, take advantage from 
remembering past solutions. This formulations 
interpolate not only the solutions iy , 1iy , piy  , 

previously found, but also the new solution 1iy  

using a polynomial )t(P . The solution at 1it  is 
approached by the derivative of the following 
polynomial:  

 

    
1

1 1 1 1, , .
i

i i i i
t t

dP
f t P t f t y

dt


   


      (21) 

 
The backward difference finite (BDF) family of 

formulas is obtained substituting the polynomial 
derivative at 1it , introducing coefficients p : 

 

 1 1 0 1 1 1, .i i i i p i ph f t y y y y          (22) 

 
The numerical differentiation formulas (NDF), 

defined by (23), and very close to the BDF, 
introduces some advantages. Here, k  is a scalar 
parameter and the coefficients k  are given by 





k

j
k j1

1 . Matlab software implements NDF 

solving methodology in function ODE15S. 
 

   (0)
1 1 1 1 1

1

1
, 0.

n
m
m n n k n n

m

h F t y k y y
m

    


    
 (23) 

 
 This function, or others like the ODE23, 

beyond solving with efficiency stiff problems, also 
has a good performance in solving non-stiff 
problems [23-25]. For each problem solving 
iteration, the values of  and  are obtained 
applying Spline interpolation and differential 
methods to the induction map. The dynamic 
simulation problem is solved using  

 
[t,u,tev,uev,ie] = ode15s(@odemodelo_val1, 

[0 tfim],uev,options,[],M,R,V1,interp_met); 

 
where the parameter odemodelo_val1 identifies 
the file that contains the numerical formulation 
made by a system of differential equations 
describing problem first phase.  Before the system 
of differential equations can be evaluated, it is 
necessary to compute parameter a(i,x) (α 
parameter), b(i,x) (β parameter) and attraction 
force f(i,x) for a specific system status (i,x). These 
operations are performed by the function 
@odemodelo_val1 applying the previously 
described theoretical formulation. The 
determination of these parameters solves the 
system of differential equations for each problem 
phase. Equations (19) and (20) are described in 
Matlab as follows: 
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Problem phase I 

dudt=zeros(size(u)); 

dudt(1)=u(2); 

dudt(2)=f/M; 

dudt(3)=(V1-u(2)*b-R*u(3))/a; 

 
Problem Phase II 

dudt=zeros(size(u)); 

dudt(1)= 0; 

dudt(2)= 0; 

dudt(3)=(V1-u(2)*b-R*u(3))/a; 

 

The integration range is defined by vector  
[0 tfim], being the simulation end defined by tfim. 
Initial conditions are defined by the vector  
uev = [x0 v0 i0], where x0 is the piston initial 
position, v0 is the piston initial velocity, and i0 the 
current in the solenoid coil at t = 0. The options of 
the ODE15s function are set with the odeset 
function: 

 
options = odeset('OutputFcn',@odeplot, 

'events',@events,'MaxStep',1e-4); 

 
This function defines the output function 

odeplot that will represent the results graphically. 
The simulation process can be stopped by an event 
that is defined by the function events. This 
function is executed whenever it is necessary to 
check if the piston position reached the end of 
problem phase I, defined by Vxcomuta.  

 
function [value,isterminal,direction] = 

events(t,u,varargin) 

 global VXcomuta; 

 value = u(1)-VXcomuta; 

 isterminal=1; 

 direction=0 

 
Finally, the parameter MaxStep defines the 

maximum integration step allowed. The 
odemodelo_val1 also receives piston height (M), 
coil resistance (R), voltage source (V1), and the 
interpolation method to be used to collect data 
form maps.  
      At the end of problem phase I the following 
solution vectors are obtained: time (t), solution (u), 
event time (tev), last values of solution (uev), and 
wish event was occurred (ie). This information is 
saved and used as initial conditions of problem 
phase II. Now, the ODE15S function is used with 
the following configuration. 

 
[t,u] = ode15s(@odemodelo_val2, 

[tev tfim],uev,options,[],M,R,V1,interp_met); 

 
This new problem stage is described by function 
odemodelo_val2.  
      After solving, the problem is possible to 
compute temporal evolution of the remaining 
variables associated with the electromechanical 
process of energy conversion. This task is 
performed applying interpolation methods in the 
respective variable map for each system state 
(t,i,x). This process allows us to compute the co-
energy (cw), inductance (l), attraction force (f), 
and magnetic flux (fl). 
Matlab application ends with the graphical 
exhibition of the dynamical results simulation. The 
solving process is shown in Fig. 6. 
The process starts by loading the problem data and 
the initial approach to solve the problem, which 
corresponds to the plunger movement. When the 
plunger’s stroke ends, another situation starts, and 
from this point forward to the end of the 
simulation, the plunger remains immobilized. Both 
problem stages are solved using ODE15S.  
 

V. RESULTS ANALYSIS 
The results obtained from the application of 

the proposed methodology to the case study can be 
visualized and compared with the ones obtained 
with the application of the finite elements tool, 
ignoring magnetic and iron losses. The results 
obtained considering the losses are also presented. 
The simulation was carried out considering a 
plunger mass M  of 0.2 kg, an airgap length of 
2.5 mm, and a DC voltage source of 30V, feeding 
a coil with 1136 turns and a resistance of 43 . 
The plunger was initially considered immobilized, 
so that initial velocity and current were null. The 
established time for simulation was 70 msec, being 
0.1 msec the maximum time step allowed in the 
FEM tool. 

Results obtained from the proposed numerical 
model simulation are shown in Fig. 7, being also 
shown the ones obtained from Flux2D 
simulation. The comparison between these results 
allows us to conclude that the first ones are closely 
fitting the second ones, corresponding to when the 
losses are neglected. 

The DMC method allows that, after a non- 
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Fig. 6. Problem solving flowchart. 

-geometric parameter change, like in voltage or 
coil resistance, the simulation can easily be 
repeated without solving the FEM model again. 
The proposed method is computationally efficient, 
taking less than two minutes, while the FEM tool 
takes about one hour to give equivalent results. 
Because the DMC problem is implemented using a 
high level programming language, changes can 
easily be introduced, allowing the validation of the 
device control strategy, for example. 

The application of this methodology to a more 
complex device analysis, with more coils and/or a 
higher geometry complexity is not difficult, and 
the computation demands are completely 
independent from those complexities. From the 

analysis of Fig. 7, it can be noticed that the initial 
plunger movement is very small. As can be seen, 
current increases very quickly at this stage, but 
inductance stays almost constant. After reaching a 
first maximum, current decreases because 
inductance increases very quickly. When plunger 
movement stops, the current starts to increase 
again until it reaches a steady-state value, and 
because saturation effects are taken into account, 
inductance value decreases. 

 
V. CONCLUSION 

Dynamical simulation of electromagnetics 
actuators is usually accomplished with finite 
element tools. These kinds of tools appeal for high 
computational performance, are expensive, and 
take a long time to accomplish the simulation. 
Furthermore, FEM model complexity has high 
influence in the computation time and depends 
from the device’s geometrical complexity. The 
previously described context turns the 
development and improvement of control 
methodologies hard to accomplish with FEM 
tools. Moreover, the development of advanced 
control methodologies could take advantage from 
an integration of electromagnetic device 
simulation with a numerical programming 
language. 

This work proposes a simulation method to 
perform the dynamic behavior analysis of the 
electromagnetic actuators. This methodology uses 
a FEM software package at an early stage. After 
FEM model generation, several static simulations 
are performed to obtain the device co-energy map. 
The co-energy map must be obtained for each 
specific device. This approach is application 
specific to the electromagnetic actuator. 
      The co-energy map could be obtained through 
other methods like tube flux or experimentally. If 
device geometrical structure does not change, 
there is no need to run a new finite element model 
again. This data is used to make a device 
numerical model that, after being implemented in 
Matlab, is used to observe the dynamical 
response of a case study device. From method 
implementation, we can conclude that computation 
effort to solve the problem is completely 
independent from the model geometry complexity. 
Introducing small changes, the proposed model 
could be easily applied to an actuator with a more  

1126SANTO, CALADO, CABRITA: DYNAMIC SIMULATION OF ELECTROMAGNETIC ACTUATORS BASED ON THE CO-ENERGY MAP



 
 

Fig. 7. Results as functions of time for a stroke of 2.5mm, with su  = 30V, R  = 43 Ω and M  = 0.2 Kg: 
a) current; b) force; c) flux; d) position; e) velocity; f) inductance. 

 
complex geometry or with several excitation coils. 
The results can contribute to optimize actuator 
control methodology, with less computational 
effort. The mechanical load subsystem can be 
easily changed to simulate different mechanical 
loads or introduce friction effects. 
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