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Abstract ─ In a previous study, the authors 
proposed an finite-difference time-domain 
(FDTD) implementation for a compute unified 
device architecture (CUDA) compatible graphics 
processing unit (GPU) using a thread block 
constructed as a two-dimensional (2-D) array. 
However, it was found that the larger the 
computational domain of the 2-D FDTD 
simulation using the GPU, the slower the 
computational speed.  

In the present paper, the authors investigated 
the computational performance with respect to the 
size of a thread block constructed as a 2-D array, 
and improved the performance of the 
implementation. Finally, regardless of the size of 
computational domain, the computational speed 
using a single GPU (NVIDIA GeForce GTX 280) 
achieved approximately 30.0 Gflops, which was 
approximately 20 times faster than that of a single 
core of a central processing unit (Intel 3.0-GHz 
Core 2 Duo). The improved performance was 
approximately 65% of the theoretical peak 
performance (47.23 Gflops) obtained by the 
theoretical memory bandwidth (141.7 GB/s). 
  
Index Terms ─ Finite-difference time-domain 
method, GPU computing, graphics processing unit, 
high-performance computing. 
 

I. INTRODUCTION 
A graphics processing unit (GPU) is equipped 

with a large-memory graphics accelerator board 

for use in a personal computer (PC). The GPU has 
many processors for 32-bit floating-point 
calculations. The theoretical peak performance of 
recent GPUs is greater than 1 Tflops (floating 
point operations per second). High 
performance/cost has been reported for the 
hierarchical N-body simulation using a PC cluster 
equipped with 256 GPUs [1].  

Programs can be developed that allow GPUs 
to perform general numerical calculations using a 
high-level shader language (HLSL) (Microsoft 
HLSL, NVIDIA Cg [2], etc.) or a programming 
environment (Brook [3], the NVIDIA compute 
unified device architecture (CUDA) programming 
environment [4], etc.). Implementation of the 
finite-difference time-domain (FDTD) method [5-
7] on a GPU using various programming 
environments has been reported [8-16]. The 
development of the GPU code written in HLSL 
requires technical knowledge of computer 
graphics (CG) [8]. In the FDTD simulation using 
the GPU code written in NVIDIA Cg, the 
Euclidean normalized error increased 
monotonously with respect to the time step [9]. 
The GPU-FDTD code written in Brook has also 
been reported [10]. In three-dimensional (3-D) 
FDTD simulation, 3-D to 2-D translation has been 
reported [11]. Translation from 3-D to 2-D 
becomes very complicated because the 3-D 
computational domain of the FDTD simulation is 
allocated to 2-D texture as a CG technique. 
Programming tools for the GPU based on CUDA 
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have been available since 2007. In CUDA, the 
programmer does not need to be conscious of the 
CG technique. The advantages of CUDA over Cg 
and HLSL is that CUDA allows source code to be 
written in a C-like language and the memory on 
the GPU board can be used easily. The GPU 
implementation for LU decomposition solvers 
using CUDA for computational electromagnetics 
application has been reported [17]. More GPU 
implementations of the FDTD method using 
CUDA have been provided and the computational 
performances of these implementations have been 
discussed [12-16]. The FDTD computation using 
GPU has been implemented with data reuse of the 
electromagnetic field, and the computational 
performance has been reported [12]. In [13], a 
thread block [4] was constructed as a 2-D array. 
The performance of the 2-D FDTD 
implementation using GPU was investigated with 
respect to the four arrays considered (4 × 4, 8 × 8, 
12 × 12, and 16 × 16). The FDTD computation 
was fastest for the 16 × 16 array among the four 
arrays. The GPU implementations of 3-D FDTD 
computation using CUDA have been reported [14, 
15]. A thread block was constructed as a 2-D array 
[14], and the size of the 2-D array was 16 × 16. 
However, the performance of the implementation 
was not investigated the other 2-D arrays. In [15], 
a thread block was constructed as a 1-D array, and 
GPU implementations based on two thread-to-cell 
mapping algorithms were considered. The 
performances of the implementations were 
investigated with respect to the number of threads 
per thread block. Thus, a 1-D array or a 2-D array 
is used as a thread block. 

In a previous study, the authors proposed a 
GPU implementation for FDTD computation 
using a thread block constructed as a 2-D array 
[16]. The computational domain of the FDTD 
simulation is divided into subdomains. The 
electromagnetic field data of a subdomain is stored 
in shared memory [4]. A subdomain is adjacent to 
four neighbor subdomains. In this case, a 
subdomain requires four overlapping areas that 
include the electromagnetic field data of four 
neighbor subdomains required to calculate the 
electromagnetic field on the boundaries of a 
subdomain. The proposed implementation uses 
two different subdomains for the calculation of the 
electric field and the magnetic field, and reduces 
the number of overlapping areas from four to two 

in order to reduce the number of branches in the 
CUDA program. In performance evaluation of the 
proposed implementation, NVIDIA GeForce GTX 
280 was used as a GPU, and a 16 × 16 2-D array 
was used as a thread block. However, the larger 
the computational domain of the 2-D FDTD 
simulation using the proposed implementation, the 
slower the computational speed. 

In the present paper, the authors investigated 
the performance of the proposed GPU 
implementation with respect to the size of a thread 
block constructed as a 2-D array and improved the 
performance of the proposed implementation. As a 
result, the computational speed of the 
implementation in a computational domain of 
8,192 × 8,192 peaked when the size of the thread 
block was 32 × 4. Regardless of the size of the 
computational domain, the computational speed 
using a single GPU (NVIDIA GeForce GTX 280) 
was approximately 30.0 Gflops, which is 
approximately 20 times faster than that of a single 
core of a central processing unit (CPU) (Intel 3.0-
GHz Core 2 Duo), where the Intel C compiler was 
used as C compiler. 

The remainder of the present paper is 
organized as follows. The proposed GPU 
implementation for FDTD computation using a 
thread block constructed as a 2-D array in a 
previous study is described in Section II. In 
Section III, the performance of the proposed GPU-
FDTD implementation is described in detail with 
respect to the size of a thread block constructed as 
a 2-D array, and the performance of the proposed 
implementation is improved. Finally, in Section 
IV, conclusions are presented and future research 
is described. 
 
II. GPU-FDTD IMPLEMENTATION [16] 

CUDA is a parallel computing architecture. 
NVIDIA GeForce GTX 280 has 30 streaming 
multiprocessors (SMs), each of which is composed 
of eight streaming processors (SPs) for 32-bit 
floating-point calculation, 16,384 registers, and 16 
KB of on-chip memory. The CUDA program 
consists of the CPU code and the GPU code. The 
GPU code, which is written in a C-like language, 
includes data-parallel functions, referred to 
collectively as the kernel. A kernel is executed as a 
grid of thread blocks. A thread block is an array of 
threads that can cooperate. Threads within the 
same thread block are synchronized and share data 
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in the shared memory. The CPU code is written in 
the C language, and the CPU launches the GPU 
kernel. 

In the case of the 2-D FDTD method, the 
equations in the transverse magnetic (TM) case are 
as follows: 

 
 
 
 
 
 
 
 
 
 

where ),(1 jiE n
z
  is the required value of the 

electric field at grid point (i, j) and the (n+1)-th 
time step, ∆x and ∆y are the sizes of the spatial 
division in the x and y directions, respectively, and 
∆t is the time increment. Parameters ε and μ are 
the electric permittivity and the magnetic 
permeability in the medium, respectively. A large 
quantity of electromagnetic field data in the 
computational domain for FDTD simulation is 
stored in the global memory as off-chip device 
memory on a CUDA-compatible graphics 
accelerator board. The CPU allocates the data of 

the electromagnetic fields to a global memory on 
the GPU board. The memory size of each 
electromagnetic field array in the program must be 
an integer multiple of 16 for coalesced global 
memory access [4]. If the memory size of each 
required electromagnetic field array in the 
computational domain is not an integer multiple of 
16, the memory size, which is larger than that of 
each required array, is allocated in order to be 
equal to an integer multiple of 16. Shared memory 
enables faster data access than global memory and 
accounts for 16 KB of on-chip memory in the role 
of CPU cache memory. In the proposed 
implementation, a thread block is constructed as a 
2-D array, and the computational domain of the 
FDTD simulation is divided into a small 
subdomain. The electromagnetic field data in each 
subdomain are stored in each shared memory as 
shown Fig. 1. Calculating the electric field data 

),(1 jiE n
z
  in Region 5 requires the magnetic field 

data ),2/1(2/1 jiH n
y  in Region 6 and the 

magnetic field data )2/1,(2/1  jiH n
x  in Region 8. 

The required data of the magnetic field, which 
overlap neighboring subdomains as shown in Fig. 
1, are also stored in each shared memory. Each 
subdomain of the proposed implementation 
includes two overlapping areas. In the CUDA 
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Fig. 1. Subdomains of the proposed GPU-FDTD implementation (TM case). 
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program, the size of each subdomain, excluding 
overlapping areas, is Nx × Ny when the size of the 
thread block constructed as a 2-D array is Nx × Ny. 
In calculating the magnetic field data Hx and Hy 
(Equations (1) and (2)), all of the threads in each 
Nx × Ny thread block first store the data of electric 
field Ez of each subdomain in the shared memory, 
whereas no data of magnetic fields Hx and Hy of 
each subdomain are stored in the shared memory. 
Next, the same electric field data ),( jiE n

z  
required in Equations (1) and (2) are stored in the 
register only once [12]. After these procedures, all 
of the threads in a thread block are used to 
calculate Equations (1) and (2) in each subdomain. 
Finally, the calculated data of magnetic fields Hx 
and Hy are stored in the global memory, while the 
calculation of electric field Ez by Equation (3) at 

the following time step is performed in the same 
manner. The subdomain used to calculate the 
electric field Ez (Subdomain for the E field shown 
in Fig. 1) differs from that used to calculate the 
magnetic fields Hx and Hy (Subdomain for the H 
field shown in Fig. 1) in order to use the shared 
memory efficiently. Therefore, two kernels for the 
electric field and magnetic field calculations are 
required in the CUDA program. The number of 
time steps is counted and stored in the global 
memory by a particular SP in each kernel if the 
calculation of the electric field Ez or the magnetic 
field Hx or Hy requires the number of time steps for 
the boundary condition. The kernel codes of the 
proposed GPU-FDTD implementation are shown 
in Fig. 2. 

 
III. PERFORMANCE 

In the present paper, the authors used the 
NVIDIA CUDA programming environment for 
the GPU and a NVIDIA GeForce GTX 280 as the 
GPU board and timed the calculations required for 
a simple 2-D model, excluding for the absorbing 
boundaries, in order to investigate the basic 
performance of the proposed GPU-FDTD 
implementation. The propagation of 
electromagnetic waves from the line source in the 
TM case was used as the calculation model. The 
line source was located in the center of the 2-D 
computational domain. The authors compared the 
GPU implementation with the conventional CPU 
implementation. In the GPU implementation, the 
authors developed a GPU-FDTD code written in 
the C language and a kernel written in a C-like 
language for the instruction set of the GPU using 
the CUDA programming environment. A kernel 
can be embedded in the code written in the C 
language for the CPU. Two kernels in the FDTD 
code were used: a kernel to calculate the magnetic 
fields Hx and Hy and a kernel to calculate the 
electric field Ez. A CUDA driver (180.22) was 
used. The GPU-FDTD code was compiled using 
NVIDIA CUDA 2.1. In the CPU implementation, 
the conventional FDTD code was written in the C 
language. Here, FDTD computation was 
performed using a single core in the CPU. The 
code for the CPU was compiled using the Intel C-
compiler (ver. 11.1) with “-msse –O3” as an 
optimized compiler option. The CPU-only 
computation used SSE instructions. In the CPU 
and GPU implementations, the authors used the 

(a) 

(b) 
Fig. 2. GPU-FDTD code, (a) kernel for 
calculating the magnetic field, (b) kernel for 
calculating the electric field. 
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same PC equipped with an Intel Core 2 Duo 
E8400 (3.0 GHz) as the CPU, 2.0 GB of memory 
(DDR3-1333), and Fedora 9 as the Linux 
operating system and timed 1,000 iterations of the 
calculation by Equations (1) through (3) for the 
GPU and CPU-only computation. 

In Equations (1) through (3), the authors 
replace Δt/µΔx, Δt/εΔx, and Δt/εΔy with constants. 
As a result, the number of operations in Equations 
(1) through (3) is estimated to be 12. The 
theoretical peak performance of the FDTD 
simulation using the NVIDIA GeForce GTX 280 
as a GPU is obtained as 47.23 Gflops = 141.7 
GB/s ÷ 4 byte/word × 12 operations ÷ nine words, 
where the theoretical memory bandwidth is 141.7 
GB/s, and the number of load/store data in 
Equations (1) through (3) is estimated to be nine 
words. On the other hand, the theoretical peak 
performance of the GPU is obtained as 933.12 
Gflops = three operations/SP × 240 SP × 1.296 
GHz, and the theoretical peak performance of the 
FDTD simulation using the GPU (47.23 Gflops) is 
smaller than in the latter example (933.12 Gflops). 
Therefore, the bottleneck of 2-D FDTD 
computation using the GPU is the memory 
bandwidth. 

Here, TGPU is the GPU computation time (s) in 
the computational domain of L × L, and Nitr is the 
number of time steps of the FDTD simulation. 
Subsequently, the actual computational speed 
(flops) can be obtained as 12 operations × L × L × 
Nitr/TGPU (Nitr = 1,000). When the size of the 
subdomain is 16 × 16, the two computational 
speeds of the GPU-FDTD simulation using shared 
and non-shared memory are shown in Fig. 3. In 
Fig. 3, the ‘non-shared memory’ indicates the 
basic GPU-FDTD computation without the 
subdomain for using shared memory, while 
‘shared memory’ indicates the proposed GPU-
FDTD implementation using shared memory. The 
larger the computational domain of the 2-D GPU-
FDTD simulation, the slower the computational 
speed. In the computational domain of 8,192 × 
8,192, the authors investigated the performances 
of two GPU-FDTD implementations with respect 
to the size of a thread block constructed as a 2-D 
array (Table 1). In ‘shared memory’, the thread 
block of size 32 × 4 achieved a peak speed (Table 
1(a)). In the ‘non-shared memory’, the thread 
block of size 64 × 4 achieved a peak speed (Table 
1(b)). In Table 1, the computation time using the 

proposed GPU-FDTD implementation was very 
long when Ny was larger than or equal to Nx. The 
authors analyzed the performance of the proposed 
GPU-FDTD implementation using the NVIDIA 
CUDA Visual Profiler. Bank conflicts of shared 
memory occurred when Nx ≤ 8 for all cases of the 
total  number of threads per thread block 
considered herein. Therefore, the performance of 
the global memory overall throughputs, which is 
the sum of the global memory write throughput 
and the global memory read throughput, decreased 
markedly in the GPU computation of the electric 
field and the magnetic field. For all cases of the 
total number of threads per thread block, the 
number of divergent branches within a warp 
increased in the GPU computation of the electric 
field when Nx ≤ 16. In the ‘shared memory’, the 
performance of the global memory overall 
throughputs was the best for the case in which the 
total number of threads per thread block is 128. In 
Table 1(a), a thread block of size 32 × 4 achieved 
a peak speed. In the case of the 32 × 4 thread 
block, the global memory overall throughput of 
the GPU computation of the electric field was 
99.12 GB/s, while the global memory overall 
throughput of the GPU computation of the 
ma g n e t i c  f i e l d  w a s  1 2 6 . 7 0  G B/ s .  Th e 
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Fig. 3. Computation speed versus computational 
domain L×L. 
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computational speeds using the 32 × 4 thread 
block in the ‘shared memory’ and the 64 × 4 
thread block in the ‘non-shared memory’ are 
shown in Fig. 3. Regardless of the size of the 
computational domain, the computational speed of 
the proposed GPU-FDTD implementation 
achieved approximately 30.0 Gflops. The authors 
improved the performance of the GPU-FDTD 
simulation by using the optimum size of a thread 
block constructed as a 2-D array and compared the 
computation time of the GPU-FDTD simulation 
with that of CPU-only simulation. In Fig. 4, the 
speedup factor shows the ratio of the computation 
time of the CPU only (TCPU) to that of GPU (TGPU). 
The FDTD simulation using a single GPU was 
approximately 20 times faster than that using a 
single CPU core. 

The authors estimated the effective 
performance (Fig. 5). As a result, the effective 
performance achieved approximately 65% of the 

0 2048 4096 6144 8192
0

10

20

Sp
ee

du
p 

fa
ct

or
 (

T C
PU

/T
G

PU
)

Size of L  
 
 
 
 

Table 1: Computation time for the GPU-FDTD implementations with respect to the size of the thread 
block constructed as a 2D-array (Nx × Ny) in the computational domain: 8,192 × 8,192. (a) GPU-FDTD 
implementation with shared memory, (b) basic GPU-FDTD implementation without a subdomain for 
shared memory. 

(a)  
Total number of threads per thread block 

512 256 128 64 

Nx × Ny Time (ms) Nx × Ny Time (ms) Nx × Ny Time (ms) Nx × Ny 
Time 

(ms) 
512 × 1 34,910.91 256 × 1 30,332.19 128 × 1 29,208.40 64 × 1 31,378.07 
256 × 2 27,860.34 128 × 2 26,828.33 64 × 2 26,546.84 32 × 2 31,021.64 
128 × 4 27,023.15 64 × 4 26,404.10 32 × 4 26,193.54 16 × 4 32,172.59 
64 × 8 28,329.08 32 × 8 27,766.32 16 × 8 31,641.55 8 × 8 49,528.76 
32 × 16 31,408.21 16 × 16 40,315.71 8 × 16 81,558.07 4 × 16 151,044.05 
16 × 32 43,464.29 8 × 32 92,666.19 4 × 32 179,097.02 2 × 32 334,621.00 

8 × 64 99,550.48 4 × 64 201,960.70 2 × 64 462,255.13 1 × 64 1,156,390.13 
4 × 128 240,642.34 2 × 128 513,940.38 1 ×128 1,135,948.50   
2 × 256 531,257.31 1 × 256 1,137,908.38     
1 × 512 1,142,198.88       

 
(b)  

Total number of threads per thread block 
512 256 128 64 

Nx × Ny Time (ms) Nx × Ny Time (ms) Nx × Ny Time (ms) Nx × Ny  Time (ms) 
512 × 1 36,148.74 256 × 1 35,712.13 128 × 1 35,765.40 64 × 1 36,315.55 
256 × 2 35,523.61 128 × 2 35,412.05 64 × 2 35,463.31 32 × 2 35,510.76 
128 × 4 35,283.57 64 × 4 35,283.14 32 × 4 35,446.44 16 × 4 36,006.95 
64 × 8 36,126.11 32 × 8 36,836.52 16 × 8 41,499.72 8 × 8 72,708.84 
32 × 16 41,103.40 16 × 16 54,172.49 8 × 16 103,208.16 4 × 16 188,353.81 
16 × 32 60,904.04 8 × 32 117,666.61 4 × 32 219,635.84 2 × 32 434,315.56 

8 × 64 133,583.14 4 × 64 259,646.30 2 × 64 571,017.06 1 × 64 1,445,463.25 
4 × 128 299,888.72 2 × 128 632,672.88 1 × 128 1,410,071.50   
2 × 256 661,946.06 1 × 256 1,422,834.38     
1 × 512 1,442,981.13       

Fig. 4. Speedup factor (TCPU / TGPU) versus 
computational domain L×L.  
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theoretical peak performance (47.23 Gflops) 
obtained using the theoretical memory bandwidth. 

 
IV. Conclusion 

The authors proposed GPU-FDTD 
implementation using a thread block constructed 
as a 2-D array in a previous study. However, in a 
16 × 16 thread block, the larger the computational 
domain of 2-D GPU-FDTD simulation, the slower 
the computational speed. In the present paper, the 
authors investigated the computational 
performance with respect to the size of a thread 
block constructed as a 2-D array. As a result, the 
computational speed of the GPU-FDTD 
simulation peaked when the thread block size was 
32 × 4. Regardless of the size of the computational 
domain, the computational speed of the GPU 
(NVIDIA GeForce GTX 280) was approximately 
30.0 Gflops, which is approximately 20 times 
faster than that using a single core of the central 
processing unit (Intel 3.0-GHz Core 2 Duo). 
Finally, after improving the performance of the 
proposed GPU-FDTD implementation, the 
effective performance was approximately 65% of 
the theoretical peak performance of GPU-FDTD 
computation using an NVIDIA GeForce GTX 280 
as a GPU. 

In the future, the authors intend to apply the 
proposed method to 3-D FDTD simulation. 
 

ACKNOWLEDGMENT 
The present study was supported in part by a 

Grant-in-Aid for Young Scientists (B), 22700060, 
from the Ministry of Education, Culture, Sports, 
Science and Technology, Japan. 

 
REFERENCES 

[1] T. Hamada, T. Narumi, R. Yokota, K. Yasuoka, 
K. Nitadori, and M. Taiji, “42 TFlops 
hierarchical N-body simulations on GPUs with 
applications in both astrophysics and 
turbulence,” Proceedings of the Conference on 
High Performance Computing Networking, 
Storage and Analysis, 2009. 

[2] W. R. Mark, R. S. Glanville, K. Akeley, and M. 
J. Kilgard, “Cg: A system for programming 
graphics hardware in a C-like language,” ACM 
SIGGRAPH, pp. 896-907, 2003. 

[3] I. Buck, T. Foley, D. Horn, J. Sugerman, K. 
Fatahalian, M. Houston, and P. Hanrahan, 
“Brook for GPUs: stream computing on 
graphics hardware,” ACM SIGGRAPH, pp. 
777-786, 2004. 

[4] NVIDIA, NVIDIA CUDA Programming Guide 
version 2.1, NVIDIA, 2008. 

[5] K. S. Yee, “Numerical solution of initial 
boundary value problems involving Maxwell´s 
Equations in isotropic media,” IEEE Trans. 
Antennas Propagat., vol. AP-14, pp. 302-307, 
1966. 

[6] A. Taflove, “Computational electrodynamics: 
the finite difference time domain method,” 
Artech House, Inc., 1995. 

[7] K. S. Kunz and R. J. Luebbers, “The finite 
difference time domain method for 
electromagnetics,” CRC Press, Inc., 1993. 

[8] N. Takada, N. Masuda, T. Tanaka, Y. Abe, and 
T. Ito, “A GPU implementation of the 2-D 
finite-difference time-domain code using high 
level shader Language,” ACES Journal, vol. 23, 
no. 4, pp. 309-316, 2008. 

[9] G. S. Baron, C. D. Sarris, and E. Fiume, “Fast 
and accurate time-domain simulations with 
commodity graphics hardware,” Proceedings of 
the Antennas and Propagation Society 
International Symposium, July 2005. 

[10] M. J. Inman and A. Z. Elsherbeni, 
“Programming video cards for computational 
electromagnetics application,” IEEE Antennas 
and Propagation Magazine, vol. 47, no. 6, pp. 
71-78, 2005. 

0 2048 4096 6144 8192
0

50

100

Size of L 

E
ff

ec
ti

ve
 p

er
fo

rm
an

ce
 [

%
]

 
 

Fig. 5. Effective performance of the improved 
GPU-FDTD computation versus computational 
domain L×L. 

1067 ACES JOURNAL, VOL. 25, NO. 12, DECEMBER 2010



[11] M. J. Inman, A. Z. Elsherbeni, J. G. Maloney, 
and B. N. Baker, “Practical implementation of a 
CPML absorbing boundary for GPU 
accelerated FDTD technique,” ACES Journal, 
vol. 23, no. 1, pp. 16-22, 2008. 

[12] N. Takada, T. Takizawa, Z. Gong, N. Masuda, 
T. Ito, and T. Shimobaba, “Fast computation of 
2-D finite-difference time-domain method 
using graphics processing unit with unified 
shader,” IEICE Trans. Inf. Syst., vol. J91-D, no. 
10, pp. 2562-2564, 2008. 

[13]  S. Ryoo, C. Rodrigues, S. Baghsorkhi, S. Stone, 
D. Kirk, and W. Hwu, “Optimization principles 
and application performance evaluation of a 
multithreaded GPU using CUDA,” Proc. of  the 
13th ACM SIGPLAN Symposium on Principles 
and Practice of Parallel Programming, pp.73–
82, 2008. 

[14]  P. Sypek, A. Dziekonski, and M. Mrozowski, 
“How to render FDTD computations more 
effective using graphics accelerator,” IEEE 
Trans. Magn., vol. 45, no. 3, pp. 1324-1327, 
2009. 

[15]  V. Demir and A. Z. Elsherbeni, “Compute 
Unified Device Architecture (CUDA) based 
finite-difference time-domain (FDTD) 
implementation,” ACES Journal, vol. 25, no. 4, 
pp. 303-314, 2010. 

[16] N. Takada, T. Shimobaba, N. Masuda, and T. 
Ito, “High-speed FDTD simulation algorithm 
for GPU with compute unified device 
architecture,” Proc. 2009 IEEE AP-S Int. 
Symposium and USNC/URSI National Radio 
Science Meeting, session 126, 126.9, 2009. 

[17] M. J. Inman, A. Z. Elsherbeni and C. J. Reddy, 
“CUDA based LU decomposition solvers for 
CEM applications,” ACES Journal, vol. 25, no. 
4, pp. 339-347, 2010. 

 
Naoki Takada received a B.E. 
degree and an M.S. degree in 
Electrical Engineering from 
Gunma University, Gunma, Japan 
in 1994 and 1996, respectively 
and a Ph.D. in Electrical 
Engineering from Gunma 
University in 2000. From 1996 to 

June 2001, he was a research associate at Oyama 
National College of Technology, Tochigi, Japan. 
From July 2001 to March 2005, he was a research 
scientist with the High-Performance Biocomputing 
Research Team, Bioinformatics Group, Genomic 
Science Center (GSC), Institute of Physical and 
Chemical Research (RIKEN), Yokohama, Japan 

and joined the “Protein Explorer Project” for a 
petaflops special-purpose computer (MDGRAPE-
3) system for molecular dynamics simulation of 
proteins. This project was the Protein 3000 project 
supported by the Ministry of Education, Culture, 
Sports, Science, and Technology of Japan. He was 
a lecturer from April 2005 to 2009 and an 
associate professor from 2010, at Shohoku College, 
Atsugi, Japan. 

His research interests are GPGPU, distributed 
and parallel computation including the FDTD 
method, a special-purpose computer for the FDTD 
method, numerical simulation including the FDTD 
method, the CIP method, and molecular dynamics, 
and electromagnetic theory. He is a member of 
ACES and IEICE. 
 

Tomoyoshi Shimobaba received 
B.E. and M.E. degrees from 
Gunma University in 1997 and 
1999. And he received a Ph.D. 
from Chiba University in 2002. 
From 2002 to 2005, he was a 
special postdoctoral researcher at 

RIKEN. From 2005 to 2009, he was an associate 
professor at the Graduate School of Science and 
Engineering, Yamagata University. He is currently 
an associate professor at the Graduate School of 
Engineering, Chiba University. 

His research interests include 3D display, 
digital holography, and special-purpose computing 
using FPGA and GPU. He is a member of OSA, 
IEICE, and ITE. 
 

Nobuyuki Masuda received a 
bachelor degree and a master 
degree in System Science from 
the University of Tokyo, Tokyo, 
Japan in 1993 and 1995, 
respectively, and a Ph.D. in 
System Science from the 
University of Tokyo in 1998. 

From 2000 to March 2004, he was a research 
associate at Gunma University, Gunma, Japan. 
Since April 2004, he has been a research associate 
at Chiba University, Chiba, Japan. 

His research interests include a special-
purpose computer for digital-holographic particle-
tracking velocimetry and computer-generated 
holograms on GPU. He is a member of IEICE, 
IPSJ, and ASJ. 

1068TAKADA, SHIMOBABA, MASUDA, ITO: IMPROVED PERFORMANCE OF FDTD COMPUTATION WITH CUDA



Tomoyoshi Ito received a B.E. 
degree, M.S. degree, and Ph.D. 
from the University of Tokyo, 
Tokyo, Japan in 1989, 1991, and 
1994, respectively. He was a 
research associate from 1992 to 
1994 and an associate professor 

from 1994 to 1999 at Gunma University, Gunma, 
Japan. From 1999 to 2005, he was an associate 
professor at Chiba University, Chiba, Japan, and 
since 2005, he has been a professor. 

His research interests are high-performance 
computing and its applications. He was an initial 
member of the GRAPE project, which has 
produced special-purpose computers for 
astrophysics. He developed the first machine, 
GRAPE-1, in 1989 and the second machine with 
high accuracy, GRAPE-2, in 1990 and the third 
machine for protein simulation, GRAPE-2A, in 
1991. From 1992, he has also designed and built 
special-purpose computers for holography named 
HORN. Using HORN computers, he is trying to 
develop a three-dimensional television. He is a 
member of OSA and IEICE. 

1069 ACES JOURNAL, VOL. 25, NO. 12, DECEMBER 2010




