
Improved Performance of FDTD Computation Using a Thread
Block Constructed as a Two-Dimensional Array with CUDA

Naoki Takada1, Tomoyoshi Shimobaba2, Nobuyuki Masuda2, and Tomoyoshi Ito2

1Department of Informatics and Media Technology,
 Sony Institute of Higher Education, Shohoku College,
428 Nurumizu, Atsugi, Kanagawa 243-8501, JAPAN

ntakada@shohoku.ac.jp

2Graduate School of Engineering, Chiba University,
1-33 Yayoi-cho, Inage-ku, Chiba, Chiba 263-8522, JAPAN

shimobaba@faculty.chiba-u.jp, masdanb@faculty.chiba-u.jp, itot@faculty.chiba-u.jp

Abstract ─ In a previous study, the authors
proposed an finite-difference time-domain
(FDTD) implementation for a compute unified
device architecture (CUDA) compatible graphics
processing unit (GPU) using a thread block
constructed as a two-dimensional (2-D) array.
However, it was found that the larger the
computational domain of the 2-D FDTD
simulation using the GPU, the slower the
computational speed.

In the present paper, the authors investigated
the computational performance with respect to the
size of a thread block constructed as a 2-D array,
and improved the performance of the
implementation. Finally, regardless of the size of
computational domain, the computational speed
using a single GPU (NVIDIA GeForce GTX 280)
achieved approximately 30.0 Gflops, which was
approximately 20 times faster than that of a single
core of a central processing unit (Intel 3.0-GHz
Core 2 Duo). The improved performance was
approximately 65% of the theoretical peak
performance (47.23 Gflops) obtained by the
theoretical memory bandwidth (141.7 GB/s).

Index Terms ─ Finite-difference time-domain
method, GPU computing, graphics processing unit,
high-performance computing.

I. INTRODUCTION
A graphics processing unit (GPU) is equipped

with a large-memory graphics accelerator board

for use in a personal computer (PC). The GPU has
many processors for 32-bit floating-point
calculations. The theoretical peak performance of
recent GPUs is greater than 1 Tflops (floating
point operations per second). High
performance/cost has been reported for the
hierarchical N-body simulation using a PC cluster
equipped with 256 GPUs [1].

Programs can be developed that allow GPUs
to perform general numerical calculations using a
high-level shader language (HLSL) (Microsoft
HLSL, NVIDIA Cg [2], etc.) or a programming
environment (Brook [3], the NVIDIA compute
unified device architecture (CUDA) programming
environment [4], etc.). Implementation of the
finite-difference time-domain (FDTD) method [5-
7] on a GPU using various programming
environments has been reported [8-16]. The
development of the GPU code written in HLSL
requires technical knowledge of computer
graphics (CG) [8]. In the FDTD simulation using
the GPU code written in NVIDIA Cg, the
Euclidean normalized error increased
monotonously with respect to the time step [9].
The GPU-FDTD code written in Brook has also
been reported [10]. In three-dimensional (3-D)
FDTD simulation, 3-D to 2-D translation has been
reported [11]. Translation from 3-D to 2-D
becomes very complicated because the 3-D
computational domain of the FDTD simulation is
allocated to 2-D texture as a CG technique.
Programming tools for the GPU based on CUDA

1061

1054-4887 © 2010 ACES

ACES JOURNAL, VOL. 25, NO. 12, DECEMBER 2010

have been available since 2007. In CUDA, the
programmer does not need to be conscious of the
CG technique. The advantages of CUDA over Cg
and HLSL is that CUDA allows source code to be
written in a C-like language and the memory on
the GPU board can be used easily. The GPU
implementation for LU decomposition solvers
using CUDA for computational electromagnetics
application has been reported [17]. More GPU
implementations of the FDTD method using
CUDA have been provided and the computational
performances of these implementations have been
discussed [12-16]. The FDTD computation using
GPU has been implemented with data reuse of the
electromagnetic field, and the computational
performance has been reported [12]. In [13], a
thread block [4] was constructed as a 2-D array.
The performance of the 2-D FDTD
implementation using GPU was investigated with
respect to the four arrays considered (4 × 4, 8 × 8,
12 × 12, and 16 × 16). The FDTD computation
was fastest for the 16 × 16 array among the four
arrays. The GPU implementations of 3-D FDTD
computation using CUDA have been reported [14,
15]. A thread block was constructed as a 2-D array
[14], and the size of the 2-D array was 16 × 16.
However, the performance of the implementation
was not investigated the other 2-D arrays. In [15],
a thread block was constructed as a 1-D array, and
GPU implementations based on two thread-to-cell
mapping algorithms were considered. The
performances of the implementations were
investigated with respect to the number of threads
per thread block. Thus, a 1-D array or a 2-D array
is used as a thread block.

In a previous study, the authors proposed a
GPU implementation for FDTD computation
using a thread block constructed as a 2-D array
[16]. The computational domain of the FDTD
simulation is divided into subdomains. The
electromagnetic field data of a subdomain is stored
in shared memory [4]. A subdomain is adjacent to
four neighbor subdomains. In this case, a
subdomain requires four overlapping areas that
include the electromagnetic field data of four
neighbor subdomains required to calculate the
electromagnetic field on the boundaries of a
subdomain. The proposed implementation uses
two different subdomains for the calculation of the
electric field and the magnetic field, and reduces
the number of overlapping areas from four to two

in order to reduce the number of branches in the
CUDA program. In performance evaluation of the
proposed implementation, NVIDIA GeForce GTX
280 was used as a GPU, and a 16 × 16 2-D array
was used as a thread block. However, the larger
the computational domain of the 2-D FDTD
simulation using the proposed implementation, the
slower the computational speed.

In the present paper, the authors investigated
the performance of the proposed GPU
implementation with respect to the size of a thread
block constructed as a 2-D array and improved the
performance of the proposed implementation. As a
result, the computational speed of the
implementation in a computational domain of
8,192 × 8,192 peaked when the size of the thread
block was 32 × 4. Regardless of the size of the
computational domain, the computational speed
using a single GPU (NVIDIA GeForce GTX 280)
was approximately 30.0 Gflops, which is
approximately 20 times faster than that of a single
core of a central processing unit (CPU) (Intel 3.0-
GHz Core 2 Duo), where the Intel C compiler was
used as C compiler.

The remainder of the present paper is
organized as follows. The proposed GPU
implementation for FDTD computation using a
thread block constructed as a 2-D array in a
previous study is described in Section II. In
Section III, the performance of the proposed GPU-
FDTD implementation is described in detail with
respect to the size of a thread block constructed as
a 2-D array, and the performance of the proposed
implementation is improved. Finally, in Section
IV, conclusions are presented and future research
is described.

II. GPU-FDTD IMPLEMENTATION [16]

CUDA is a parallel computing architecture.
NVIDIA GeForce GTX 280 has 30 streaming
multiprocessors (SMs), each of which is composed
of eight streaming processors (SPs) for 32-bit
floating-point calculation, 16,384 registers, and 16
KB of on-chip memory. The CUDA program
consists of the CPU code and the GPU code. The
GPU code, which is written in a C-like language,
includes data-parallel functions, referred to
collectively as the kernel. A kernel is executed as a
grid of thread blocks. A thread block is an array of
threads that can cooperate. Threads within the
same thread block are synchronized and share data

1062TAKADA, SHIMOBABA, MASUDA, ITO: IMPROVED PERFORMANCE OF FDTD COMPUTATION WITH CUDA

in the shared memory. The CPU code is written in
the C language, and the CPU launches the GPU
kernel.

In the case of the 2-D FDTD method, the
equations in the transverse magnetic (TM) case are
as follows:

where),(1 jiE n
z
 is the required value of the

electric field at grid point (i, j) and the (n+1)-th
time step, ∆x and ∆y are the sizes of the spatial
division in the x and y directions, respectively, and
∆t is the time increment. Parameters ε and μ are
the electric permittivity and the magnetic
permeability in the medium, respectively. A large
quantity of electromagnetic field data in the
computational domain for FDTD simulation is
stored in the global memory as off-chip device
memory on a CUDA-compatible graphics
accelerator board. The CPU allocates the data of

the electromagnetic fields to a global memory on
the GPU board. The memory size of each
electromagnetic field array in the program must be
an integer multiple of 16 for coalesced global
memory access [4]. If the memory size of each
required electromagnetic field array in the
computational domain is not an integer multiple of
16, the memory size, which is larger than that of
each required array, is allocated in order to be
equal to an integer multiple of 16. Shared memory
enables faster data access than global memory and
accounts for 16 KB of on-chip memory in the role
of CPU cache memory. In the proposed
implementation, a thread block is constructed as a
2-D array, and the computational domain of the
FDTD simulation is divided into a small
subdomain. The electromagnetic field data in each
subdomain are stored in each shared memory as
shown Fig. 1. Calculating the electric field data

),(1 jiE n
z
 in Region 5 requires the magnetic field

data),2/1(2/1 jiH n
y  in Region 6 and the

magnetic field data)2/1,(2/1  jiH n
x in Region 8.

The required data of the magnetic field, which
overlap neighboring subdomains as shown in Fig.
1, are also stored in each shared memory. Each
subdomain of the proposed implementation
includes two overlapping areas. In the CUDA

 

 

 
  (3) ,),2/1(),2/1(/

)2/1,()2/1,(/

),(),(

(2) ,),(),1(/

),2/1(),2/1(

(1) ,),()1,(/

)2/1,()2/1,(

2/12/1

2/12/1

1

2/12/1

2/12/1

jiHjiHxt

jiHjiHyt

jiEjiE

jiEjiExt

jiHjiH

jiEjiEyt

jiHjiH

n
y

n
y

n
x

n
x

n
z

n
z

n
z

n
z

n
y

n
y

n
z

n
z

n
x

n
x

































i 0

Computational domain

Global memory

1 2 3

4 5 6

7 8 9

j

i
j

Shared memory

Subdomain for the H field

Subdomain for the E field

0

Overlapping area

is 0

js

0

1xN 0

0

is 0

js

Electric field Ez

Magnetic field Hx

Magnetic field Hy

xN

1yN

0

Overlapping area
Magnetic field Hx

Fig. 1. Subdomains of the proposed GPU-FDTD implementation (TM case).

1063 ACES JOURNAL, VOL. 25, NO. 12, DECEMBER 2010

program, the size of each subdomain, excluding
overlapping areas, is Nx × Ny when the size of the
thread block constructed as a 2-D array is Nx × Ny.
In calculating the magnetic field data Hx and Hy
(Equations (1) and (2)), all of the threads in each
Nx × Ny thread block first store the data of electric
field Ez of each subdomain in the shared memory,
whereas no data of magnetic fields Hx and Hy of
each subdomain are stored in the shared memory.
Next, the same electric field data),(jiE n

z
required in Equations (1) and (2) are stored in the
register only once [12]. After these procedures, all
of the threads in a thread block are used to
calculate Equations (1) and (2) in each subdomain.
Finally, the calculated data of magnetic fields Hx
and Hy are stored in the global memory, while the
calculation of electric field Ez by Equation (3) at

the following time step is performed in the same
manner. The subdomain used to calculate the
electric field Ez (Subdomain for the E field shown
in Fig. 1) differs from that used to calculate the
magnetic fields Hx and Hy (Subdomain for the H
field shown in Fig. 1) in order to use the shared
memory efficiently. Therefore, two kernels for the
electric field and magnetic field calculations are
required in the CUDA program. The number of
time steps is counted and stored in the global
memory by a particular SP in each kernel if the
calculation of the electric field Ez or the magnetic
field Hx or Hy requires the number of time steps for
the boundary condition. The kernel codes of the
proposed GPU-FDTD implementation are shown
in Fig. 2.

III. PERFORMANCE

In the present paper, the authors used the
NVIDIA CUDA programming environment for
the GPU and a NVIDIA GeForce GTX 280 as the
GPU board and timed the calculations required for
a simple 2-D model, excluding for the absorbing
boundaries, in order to investigate the basic
performance of the proposed GPU-FDTD
implementation. The propagation of
electromagnetic waves from the line source in the
TM case was used as the calculation model. The
line source was located in the center of the 2-D
computational domain. The authors compared the
GPU implementation with the conventional CPU
implementation. In the GPU implementation, the
authors developed a GPU-FDTD code written in
the C language and a kernel written in a C-like
language for the instruction set of the GPU using
the CUDA programming environment. A kernel
can be embedded in the code written in the C
language for the CPU. Two kernels in the FDTD
code were used: a kernel to calculate the magnetic
fields Hx and Hy and a kernel to calculate the
electric field Ez. A CUDA driver (180.22) was
used. The GPU-FDTD code was compiled using
NVIDIA CUDA 2.1. In the CPU implementation,
the conventional FDTD code was written in the C
language. Here, FDTD computation was
performed using a single core in the CPU. The
code for the CPU was compiled using the Intel C-
compiler (ver. 11.1) with “-msse –O3” as an
optimized compiler option. The CPU-only
computation used SSE instructions. In the CPU
and GPU implementations, the authors used the

(a)

(b)
Fig. 2. GPU-FDTD code, (a) kernel for
calculating the magnetic field, (b) kernel for
calculating the electric field.

1064TAKADA, SHIMOBABA, MASUDA, ITO: IMPROVED PERFORMANCE OF FDTD COMPUTATION WITH CUDA

same PC equipped with an Intel Core 2 Duo
E8400 (3.0 GHz) as the CPU, 2.0 GB of memory
(DDR3-1333), and Fedora 9 as the Linux
operating system and timed 1,000 iterations of the
calculation by Equations (1) through (3) for the
GPU and CPU-only computation.

In Equations (1) through (3), the authors
replace Δt/µΔx, Δt/εΔx, and Δt/εΔy with constants.
As a result, the number of operations in Equations
(1) through (3) is estimated to be 12. The
theoretical peak performance of the FDTD
simulation using the NVIDIA GeForce GTX 280
as a GPU is obtained as 47.23 Gflops = 141.7
GB/s ÷ 4 byte/word × 12 operations ÷ nine words,
where the theoretical memory bandwidth is 141.7
GB/s, and the number of load/store data in
Equations (1) through (3) is estimated to be nine
words. On the other hand, the theoretical peak
performance of the GPU is obtained as 933.12
Gflops = three operations/SP × 240 SP × 1.296
GHz, and the theoretical peak performance of the
FDTD simulation using the GPU (47.23 Gflops) is
smaller than in the latter example (933.12 Gflops).
Therefore, the bottleneck of 2-D FDTD
computation using the GPU is the memory
bandwidth.

Here, TGPU is the GPU computation time (s) in
the computational domain of L × L, and Nitr is the
number of time steps of the FDTD simulation.
Subsequently, the actual computational speed
(flops) can be obtained as 12 operations × L × L ×
Nitr/TGPU (Nitr = 1,000). When the size of the
subdomain is 16 × 16, the two computational
speeds of the GPU-FDTD simulation using shared
and non-shared memory are shown in Fig. 3. In
Fig. 3, the ‘non-shared memory’ indicates the
basic GPU-FDTD computation without the
subdomain for using shared memory, while
‘shared memory’ indicates the proposed GPU-
FDTD implementation using shared memory. The
larger the computational domain of the 2-D GPU-
FDTD simulation, the slower the computational
speed. In the computational domain of 8,192 ×
8,192, the authors investigated the performances
of two GPU-FDTD implementations with respect
to the size of a thread block constructed as a 2-D
array (Table 1). In ‘shared memory’, the thread
block of size 32 × 4 achieved a peak speed (Table
1(a)). In the ‘non-shared memory’, the thread
block of size 64 × 4 achieved a peak speed (Table
1(b)). In Table 1, the computation time using the

proposed GPU-FDTD implementation was very
long when Ny was larger than or equal to Nx. The
authors analyzed the performance of the proposed
GPU-FDTD implementation using the NVIDIA
CUDA Visual Profiler. Bank conflicts of shared
memory occurred when Nx ≤ 8 for all cases of the
total number of threads per thread block
considered herein. Therefore, the performance of
the global memory overall throughputs, which is
the sum of the global memory write throughput
and the global memory read throughput, decreased
markedly in the GPU computation of the electric
field and the magnetic field. For all cases of the
total number of threads per thread block, the
number of divergent branches within a warp
increased in the GPU computation of the electric
field when Nx ≤ 16. In the ‘shared memory’, the
performance of the global memory overall
throughputs was the best for the case in which the
total number of threads per thread block is 128. In
Table 1(a), a thread block of size 32 × 4 achieved
a peak speed. In the case of the 32 × 4 thread
block, the global memory overall throughput of
the GPU computation of the electric field was
99.12 GB/s, while the global memory overall
throughput of the GPU computation of the
ma g n e t i c f i e l d w a s 1 2 6 . 7 0 G B/ s . Th e

0 2048 4096 6144 8192
0

10

20

30

C
om

pu
ta

ti
on

al
 s

pe
ed

 (
G

fl
op

s)
Size of L

Shared memory (16×16)

Non-shared memory (16×16)

Shared memory (32×4)

Non-shared memory (64×4)

Fig. 3. Computation speed versus computational
domain L×L.

1065 ACES JOURNAL, VOL. 25, NO. 12, DECEMBER 2010

computational speeds using the 32 × 4 thread
block in the ‘shared memory’ and the 64 × 4
thread block in the ‘non-shared memory’ are
shown in Fig. 3. Regardless of the size of the
computational domain, the computational speed of
the proposed GPU-FDTD implementation
achieved approximately 30.0 Gflops. The authors
improved the performance of the GPU-FDTD
simulation by using the optimum size of a thread
block constructed as a 2-D array and compared the
computation time of the GPU-FDTD simulation
with that of CPU-only simulation. In Fig. 4, the
speedup factor shows the ratio of the computation
time of the CPU only (TCPU) to that of GPU (TGPU).
The FDTD simulation using a single GPU was
approximately 20 times faster than that using a
single CPU core.

The authors estimated the effective
performance (Fig. 5). As a result, the effective
performance achieved approximately 65% of the

0 2048 4096 6144 8192
0

10

20

Sp
ee

du
p

fa
ct

or
 (

T C
PU

/T
G

PU
)

Size of L

Table 1: Computation time for the GPU-FDTD implementations with respect to the size of the thread
block constructed as a 2D-array (Nx × Ny) in the computational domain: 8,192 × 8,192. (a) GPU-FDTD
implementation with shared memory, (b) basic GPU-FDTD implementation without a subdomain for
shared memory.

(a)
Total number of threads per thread block

512 256 128 64

Nx × Ny Time (ms) Nx × Ny Time (ms) Nx × Ny Time (ms) Nx × Ny
Time

(ms)
512 × 1 34,910.91 256 × 1 30,332.19 128 × 1 29,208.40 64 × 1 31,378.07
256 × 2 27,860.34 128 × 2 26,828.33 64 × 2 26,546.84 32 × 2 31,021.64
128 × 4 27,023.15 64 × 4 26,404.10 32 × 4 26,193.54 16 × 4 32,172.59
64 × 8 28,329.08 32 × 8 27,766.32 16 × 8 31,641.55 8 × 8 49,528.76
32 × 16 31,408.21 16 × 16 40,315.71 8 × 16 81,558.07 4 × 16 151,044.05
16 × 32 43,464.29 8 × 32 92,666.19 4 × 32 179,097.02 2 × 32 334,621.00

8 × 64 99,550.48 4 × 64 201,960.70 2 × 64 462,255.13 1 × 64 1,156,390.13
4 × 128 240,642.34 2 × 128 513,940.38 1 ×128 1,135,948.50
2 × 256 531,257.31 1 × 256 1,137,908.38
1 × 512 1,142,198.88

(b)

Total number of threads per thread block
512 256 128 64

Nx × Ny Time (ms) Nx × Ny Time (ms) Nx × Ny Time (ms) Nx × Ny Time (ms)
512 × 1 36,148.74 256 × 1 35,712.13 128 × 1 35,765.40 64 × 1 36,315.55
256 × 2 35,523.61 128 × 2 35,412.05 64 × 2 35,463.31 32 × 2 35,510.76
128 × 4 35,283.57 64 × 4 35,283.14 32 × 4 35,446.44 16 × 4 36,006.95
64 × 8 36,126.11 32 × 8 36,836.52 16 × 8 41,499.72 8 × 8 72,708.84
32 × 16 41,103.40 16 × 16 54,172.49 8 × 16 103,208.16 4 × 16 188,353.81
16 × 32 60,904.04 8 × 32 117,666.61 4 × 32 219,635.84 2 × 32 434,315.56

8 × 64 133,583.14 4 × 64 259,646.30 2 × 64 571,017.06 1 × 64 1,445,463.25
4 × 128 299,888.72 2 × 128 632,672.88 1 × 128 1,410,071.50
2 × 256 661,946.06 1 × 256 1,422,834.38
1 × 512 1,442,981.13

Fig. 4. Speedup factor (TCPU / TGPU) versus
computational domain L×L.

1066TAKADA, SHIMOBABA, MASUDA, ITO: IMPROVED PERFORMANCE OF FDTD COMPUTATION WITH CUDA

theoretical peak performance (47.23 Gflops)
obtained using the theoretical memory bandwidth.

IV. Conclusion

The authors proposed GPU-FDTD
implementation using a thread block constructed
as a 2-D array in a previous study. However, in a
16 × 16 thread block, the larger the computational
domain of 2-D GPU-FDTD simulation, the slower
the computational speed. In the present paper, the
authors investigated the computational
performance with respect to the size of a thread
block constructed as a 2-D array. As a result, the
computational speed of the GPU-FDTD
simulation peaked when the thread block size was
32 × 4. Regardless of the size of the computational
domain, the computational speed of the GPU
(NVIDIA GeForce GTX 280) was approximately
30.0 Gflops, which is approximately 20 times
faster than that using a single core of the central
processing unit (Intel 3.0-GHz Core 2 Duo).
Finally, after improving the performance of the
proposed GPU-FDTD implementation, the
effective performance was approximately 65% of
the theoretical peak performance of GPU-FDTD
computation using an NVIDIA GeForce GTX 280
as a GPU.

In the future, the authors intend to apply the
proposed method to 3-D FDTD simulation.

ACKNOWLEDGMENT
The present study was supported in part by a

Grant-in-Aid for Young Scientists (B), 22700060,
from the Ministry of Education, Culture, Sports,
Science and Technology, Japan.

REFERENCES

[1] T. Hamada, T. Narumi, R. Yokota, K. Yasuoka,
K. Nitadori, and M. Taiji, “42 TFlops
hierarchical N-body simulations on GPUs with
applications in both astrophysics and
turbulence,” Proceedings of the Conference on
High Performance Computing Networking,
Storage and Analysis, 2009.

[2] W. R. Mark, R. S. Glanville, K. Akeley, and M.
J. Kilgard, “Cg: A system for programming
graphics hardware in a C-like language,” ACM
SIGGRAPH, pp. 896-907, 2003.

[3] I. Buck, T. Foley, D. Horn, J. Sugerman, K.
Fatahalian, M. Houston, and P. Hanrahan,
“Brook for GPUs: stream computing on
graphics hardware,” ACM SIGGRAPH, pp.
777-786, 2004.

[4] NVIDIA, NVIDIA CUDA Programming Guide
version 2.1, NVIDIA, 2008.

[5] K. S. Yee, “Numerical solution of initial
boundary value problems involving Maxwell´s
Equations in isotropic media,” IEEE Trans.
Antennas Propagat., vol. AP-14, pp. 302-307,
1966.

[6] A. Taflove, “Computational electrodynamics:
the finite difference time domain method,”
Artech House, Inc., 1995.

[7] K. S. Kunz and R. J. Luebbers, “The finite
difference time domain method for
electromagnetics,” CRC Press, Inc., 1993.

[8] N. Takada, N. Masuda, T. Tanaka, Y. Abe, and
T. Ito, “A GPU implementation of the 2-D
finite-difference time-domain code using high
level shader Language,” ACES Journal, vol. 23,
no. 4, pp. 309-316, 2008.

[9] G. S. Baron, C. D. Sarris, and E. Fiume, “Fast
and accurate time-domain simulations with
commodity graphics hardware,” Proceedings of
the Antennas and Propagation Society
International Symposium, July 2005.

[10] M. J. Inman and A. Z. Elsherbeni,
“Programming video cards for computational
electromagnetics application,” IEEE Antennas
and Propagation Magazine, vol. 47, no. 6, pp.
71-78, 2005.

0 2048 4096 6144 8192
0

50

100

Size of L

E
ff

ec
ti

ve
 p

er
fo

rm
an

ce
 [

%
]

Fig. 5. Effective performance of the improved
GPU-FDTD computation versus computational
domain L×L.

1067 ACES JOURNAL, VOL. 25, NO. 12, DECEMBER 2010

[11] M. J. Inman, A. Z. Elsherbeni, J. G. Maloney,
and B. N. Baker, “Practical implementation of a
CPML absorbing boundary for GPU
accelerated FDTD technique,” ACES Journal,
vol. 23, no. 1, pp. 16-22, 2008.

[12] N. Takada, T. Takizawa, Z. Gong, N. Masuda,
T. Ito, and T. Shimobaba, “Fast computation of
2-D finite-difference time-domain method
using graphics processing unit with unified
shader,” IEICE Trans. Inf. Syst., vol. J91-D, no.
10, pp. 2562-2564, 2008.

[13] S. Ryoo, C. Rodrigues, S. Baghsorkhi, S. Stone,
D. Kirk, and W. Hwu, “Optimization principles
and application performance evaluation of a
multithreaded GPU using CUDA,” Proc. of the
13th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pp.73–
82, 2008.

[14] P. Sypek, A. Dziekonski, and M. Mrozowski,
“How to render FDTD computations more
effective using graphics accelerator,” IEEE
Trans. Magn., vol. 45, no. 3, pp. 1324-1327,
2009.

[15] V. Demir and A. Z. Elsherbeni, “Compute
Unified Device Architecture (CUDA) based
finite-difference time-domain (FDTD)
implementation,” ACES Journal, vol. 25, no. 4,
pp. 303-314, 2010.

[16] N. Takada, T. Shimobaba, N. Masuda, and T.
Ito, “High-speed FDTD simulation algorithm
for GPU with compute unified device
architecture,” Proc. 2009 IEEE AP-S Int.
Symposium and USNC/URSI National Radio
Science Meeting, session 126, 126.9, 2009.

[17] M. J. Inman, A. Z. Elsherbeni and C. J. Reddy,
“CUDA based LU decomposition solvers for
CEM applications,” ACES Journal, vol. 25, no.
4, pp. 339-347, 2010.

Naoki Takada received a B.E.
degree and an M.S. degree in
Electrical Engineering from
Gunma University, Gunma, Japan
in 1994 and 1996, respectively
and a Ph.D. in Electrical
Engineering from Gunma
University in 2000. From 1996 to

June 2001, he was a research associate at Oyama
National College of Technology, Tochigi, Japan.
From July 2001 to March 2005, he was a research
scientist with the High-Performance Biocomputing
Research Team, Bioinformatics Group, Genomic
Science Center (GSC), Institute of Physical and
Chemical Research (RIKEN), Yokohama, Japan

and joined the “Protein Explorer Project” for a
petaflops special-purpose computer (MDGRAPE-
3) system for molecular dynamics simulation of
proteins. This project was the Protein 3000 project
supported by the Ministry of Education, Culture,
Sports, Science, and Technology of Japan. He was
a lecturer from April 2005 to 2009 and an
associate professor from 2010, at Shohoku College,
Atsugi, Japan.

His research interests are GPGPU, distributed
and parallel computation including the FDTD
method, a special-purpose computer for the FDTD
method, numerical simulation including the FDTD
method, the CIP method, and molecular dynamics,
and electromagnetic theory. He is a member of
ACES and IEICE.

Tomoyoshi Shimobaba received
B.E. and M.E. degrees from
Gunma University in 1997 and
1999. And he received a Ph.D.
from Chiba University in 2002.
From 2002 to 2005, he was a
special postdoctoral researcher at

RIKEN. From 2005 to 2009, he was an associate
professor at the Graduate School of Science and
Engineering, Yamagata University. He is currently
an associate professor at the Graduate School of
Engineering, Chiba University.

His research interests include 3D display,
digital holography, and special-purpose computing
using FPGA and GPU. He is a member of OSA,
IEICE, and ITE.

Nobuyuki Masuda received a
bachelor degree and a master
degree in System Science from
the University of Tokyo, Tokyo,
Japan in 1993 and 1995,
respectively, and a Ph.D. in
System Science from the
University of Tokyo in 1998.

From 2000 to March 2004, he was a research
associate at Gunma University, Gunma, Japan.
Since April 2004, he has been a research associate
at Chiba University, Chiba, Japan.

His research interests include a special-
purpose computer for digital-holographic particle-
tracking velocimetry and computer-generated
holograms on GPU. He is a member of IEICE,
IPSJ, and ASJ.

1068TAKADA, SHIMOBABA, MASUDA, ITO: IMPROVED PERFORMANCE OF FDTD COMPUTATION WITH CUDA

Tomoyoshi Ito received a B.E.
degree, M.S. degree, and Ph.D.
from the University of Tokyo,
Tokyo, Japan in 1989, 1991, and
1994, respectively. He was a
research associate from 1992 to
1994 and an associate professor

from 1994 to 1999 at Gunma University, Gunma,
Japan. From 1999 to 2005, he was an associate
professor at Chiba University, Chiba, Japan, and
since 2005, he has been a professor.

His research interests are high-performance
computing and its applications. He was an initial
member of the GRAPE project, which has
produced special-purpose computers for
astrophysics. He developed the first machine,
GRAPE-1, in 1989 and the second machine with
high accuracy, GRAPE-2, in 1990 and the third
machine for protein simulation, GRAPE-2A, in
1991. From 1992, he has also designed and built
special-purpose computers for holography named
HORN. Using HORN computers, he is trying to
develop a three-dimensional television. He is a
member of OSA and IEICE.

1069 ACES JOURNAL, VOL. 25, NO. 12, DECEMBER 2010

