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Abstract ─ Model validation, data verification, 
and code calibration (VV&C) in applied 
computational electromagnetics is discussed. The 
step by step VV&C procedure is given 
systematically through canonical scenarios and 
examples. Propagation over flat-Earth with 
linearly decreasing vertical refractivity profile, 
having an analytical exact solution, is taken into 
account as the real-life problem. The parabolic 
wave equation (PWE) is considered as the 
mathematical model. MatLab-based numerical 
simulators for both the split step Fourier and finite 
element implementations of the PWE are 
developed. The simulators are calibrated against 
analytical exact and high frequency asymptotic 
solutions. Problems related to the generation of 
reference data during accurate numerical 
computations are presented. 
  
Index Terms ─ Calibration, finite elements 
method, geometric optics, groundwaves, mode 
method, narrow angle, parabolic equation method, 
propagation, split step parabolic equation method, 
validation, verification, wide angle. 
 

I. INTRODUCTION 
Real life engineering and electromagnetic 

(EM) problems can be handled via measurements 
or numerical simulations because only a limited 
number of problems with idealized geometries 
have mathematical exact solutions. The challenge 
in solving real-life engineering problems is 

therefore the reliability of the results. Reliability is 
achieved after a series of (model) validation, (data) 
verification, and (code) calibration (VV&C) tests. 
These issues are discussed in [1] and this paper is 
the extended version of that presentation. 

 

 
Fig. 1. Fundamental VV&C concepts & 
procedures. 

 
Three fundamental building blocks of a 

simulation are the real-world problem entity being 
simulated, the conceptual model representation of 
that entity, and the computer implementation 
model. As illustrated in Fig. 1, engineers start with 
the definition of the real-life problem at hand. 
Electromagnetic problems, in general, are modeled 
with Maxwell’s equations and EM theory is well-
established by these equations. Maxwell’s 
equations are general and represent all linear EM 
problems. Once the geometry of the problem at 
hand (i.e., boundary conditions, BC) is given, they 
represent a unique solution; the solution found by 
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using Maxwell’s equations plus BC is the solution 
we are looking for. Unfortunately, there are only a 
few real-life problems which have mathematically 
exact solutions therefore many different and 
approximate conceptual models can be used. It is 
the process of conceptual validity which shows 
that chosen conceptual model fits into the real-life 
problem best under the specified initial and/or 
operational conditions. The next step is to develop 
a computer code for the chosen conceptual model. 
It is only after this that code verification via a 
computer programming process may be applied to 
show that the developed code represents the 
chosen conceptual model under given sets of 
conditions (accuracy, resolution, uncertainty, etc.). 
Finally, the solution for the real-life problem is 
obtained with a confidence after numerical and/or 
physical experimentation; nothing but the 
operational validity process [2].  

The suitability (validation) of the conceptual 
model and verification of the software and 
synthetically generated data are the technical 
processes that must be addressed to show that a 
model is credible. Credibility is based on two 
important checks that must be performed in every 
simulation: validation and verification. Validation 
is the process of determining that the right model 
is built, whereas verification is designed to see if 
the model is built right. The final step of the 
verification is the calibration.  

The VV&C procedure in applied 
computational electromagnetics is discussed here. 
The real-life problem chosen for this purpose is 
the two-dimensional (2D) propagation over flat-
Earth with a perfectly electrical conductor (PEC) 
surface through a non-homogeneous atmosphere. 
The linearly decreasing vertical refractivity profile 
under these circumstances yields an analytical 
exact solution. There are many 
conceptual/mathematical models which might fit 
into these conditions; one of them, the parabolic 
wave equation (PWE), is chosen as the test model. 
MatLab-based numerical simulators for both the 
split step Fourier and finite element 
implementations of the PWE are developed. The 
VV&C procedure necessitates quantitatively and 
qualitatively answering these questions: (i) How 
precise is the PWE model? (ii) To what extent 
does the PWE correspond to the real-life problem? 
(iii) Under what/which conditions do SSPE and 
FEMPE yield reliable solutions? (iv) What is the 

accuracy of the numerical calculations? In order to 
answer these questions and similar ones, one needs 
to generate a reference data and systematic 
comparisons. Here, the simulators are calibrated 
against analytical exact (in terms of modal 
summation) and high frequency asymptotic (in 
terms of geometric optic (GO)-ray summation) 
solutions. Problems related to the generation of 
reference data during accurate numerical 
computations are presented. Then, the problems 
related to model simplifications and inadequacy, 
model truncation (because of a finite number of 
modes taken into account), and error introduced 
from improper discretization are all discussed. 

 
II. PARABOLIC EQUATION MODEL 

FOR GROUNDWAVE PROPAGATION 
PROBLEM 

The PWE has become a classical tool in 
modeling groundwave propagation problems. It is 
derived from the 2D Helmholtz’s equation by 
separating rapidly varying phase term in a medium 
to obtain an amplitude factor which varies slowly 
in range when the direction of propagation is 
predominantly along +z paraxial direction under 

)exp( ti  time dependence [3-7] 
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where ),( xzu  denotes the wave amplitude either 
of the electric or magnetic field components for 
horizontal and vertical polarization respectively; 

 /20 k  is the free space wavenumber, n  is the 
refractive index, x  and z  stand for the transverse 
and the longitudinal coordinates, respectively 
(note that, PWE was first introduced in acoustics 
[3] and since then has been applied to a huge 
number of propagation problems not only in 
acoustics but also in electromagnetics and optics 
and has become classical. None of the lists of 
references would be complete on the PWE topic; 
therefore, the reader is referred to in [4] and the 
references there to initiate a literature search. If the 
refractive index is range-independent and 
backward propagation is ignored, (1) reduces to 
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where )1(/ 2222
0   nxkq . If the angle of 

propagation measured from the paraxial direction 
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is less than 15°, the standard parabolic equation 
(PE) can be used with the help of square root 

approximation  2/11 qq  . If this angle is 

more than 15°, Claerbout equation can be obtained 
by using the first order Padé approximation 

 )25.01/()75.01(1 qqq   to satisfy the 

propagation angle up to 35°-40° [4]. Hence, the 
PE is described as 

 ,0),(32

2

212

3

0 




















xzuA

x
A

z
A

zx
A (3) 

with coefficients 00 A , 01 2ikA  , 12 A , and 

)1( 22
03  nkA  for narrow angle case or 10 A , 

)3( 22
01  nkA , 02 2ikA  , )1(2 23

03  nikA  
for wide angle case with one-way forward 
propagation. 

Choosing the appropriate longitudinal BC 
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and transverse BC 
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with the flat-Earth assumption completes the 
definition of the conceptual model. Here, )(1 z , 

)(2 z  become constants for homogeneous path 

and 0)( zj  (j=1,2) results in Dirichlet 

(horizontal polarization) and Neumann (vertical 
polarization) boundary conditions (DBC and 
NBC), respectively for PEC surface. 

Since waves propagating upwards either go to 
infinity or bent down because of the refractivity 
variations, the open boundary upward in height 
can be modeled by using artificial lossy layer with 
the help of Hanning window in order to eliminate 
reflection effects [4-8]. The PWE and its 
application under different circumstances are 
pictured in Fig. 2. As illustrated in the figure, the 
beauty of the PWE is that all curvature effects 
including irregular terrain can be modeled via 
refractivity perturbations. On the other hand, PWE 
is an initial value problem, therefore boundary 
conditions must be satisfied artificially [4]. 
 

 
Fig. 2. 2D-PE modeling of groundwave 
propagation: a) flat Earth, b) Earth’s curvature 
effect, c) irregular terrain effect, d) mixed 
boundary condition effect. 
 
A. The split step parabolic equation (SSPE) 
propagator 

The standard fast Fourier transform (FFT) 
based SSPE solution for narrow [4] and wide [5] 
angle, respectively,  
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can be used to calculate the vertical field 
),( xzzu   from ),( xzu  along z at range steps of 

z . The FFT based PE solution uses a 
longitudinally marching procedure. First, an 
antenna pattern representing the initial height 
profile is injected. Then, this initial field is 
propagated longitudinally from z0 to z0+z and the 
transverse field profile at the next range is 
obtained. This new height profile is then used as 
the initial profile for the next step and the 
procedure goes on until the propagator reaches the 
desired range. SSPE sequentially operates between 
vertical domain and the transverse domain. SSPE 
cannot automatically handle the BCs at Earth’s 
surface. It is satisfied by removing the surface and 
taking a mirror copy of the initial vertical field 
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profile below (odd and even symmetric for DBC 
and NBC, respectively).  
 
B. The finite element method based parabolic 
equation (FEMPE) propagator 

The idea of FEM-based formulation of the PE 
is to divide the transverse domain into sub 
domains (called elements), use approximated field 
values at the selected discrete nodes in the vertical 
domain between ground and selected maximum 
height, and propagate longitudinally by the 
application of the Crank-Nicholson approach 
based on the improved Euler method which yields 
an unconditionally stable system and accurate 
method [8-10] starting from the initial field at 

0z , which is generated from a Gaussian 
antenna pattern specified by its height (hs), 
beamwidth (θbw), and elevation angle (θtilt). 

Using (3), the matrix representation form of 
the FEMPE propagator is obtained as 
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ene ,,1 , dm ...,,1 , dj ...,,1  with the help 
of basis functions ( B ) of degree d  where e  
stands for the elements, en  is the number of 

elements in the vertical domain, and )(zce
j  denotes 

the coefficients of unknown functions. The DBC 
at the surface are satisfied by eliminating the first 
column and row of matrices since the initial node 
is always zero [9-10]. 

 
C. Typical applications of the SSPE and 
FEMPE propagators 

The SSPE and FEMPE propagators are used to 
investigate various complex propagation problems 
[10-13]. Two examples are presented here in order 
to show the significance and requirement of the 
VV&C procedure in these problems. First, a 
typical irregular terrain path is generated and 
propagation above this irregular terrain through 
homogeneous atmosphere (including the Earth’s 
curvature) is simulated under both DBC and NBC. 
Three dimensional (3D) field strength vs. 
range/height plot at 300MHz is pictured in Fig. 3. 
Only, the SSPE map is shown but the FEMPE map 
is also the same; it is almost impossible to 
distinguish the maps of both propagators. The 
source is a down-tilted Gaussian beam. As 

observed, down propagation of the beam, 
reflection from the terrain, and interference 
between the direct and terrain-reflected waves are 
clearly observed. Moreover, the BC effects on the 
surface seem to be well-modeled [11-12]. 

 
Fig. 3. Irregular terrain effect (PEC ground): 3D 
field map obtained via SSPE propagator under 
DBC and NBC (hs=350m, θbw=0.5, θtilt=-0.5). 

 
Fig. 4. Surface wave propagation: 3D signal vs. 
range/height map over a 3-segment 40km mixed 
path (a 10km long, 250m high Gauss-shaped 
island is 15km away from the transmitter) (Island: 

002.0 S/m, 10r ; Sea: 5 S/m, 80r ). 
 

The other example belongs to surface wave 
propagation over a three-section mixed-path (sea-
land-sea) with a Gaussian shaped hilly island [12-
13]. Surface wave propagation along this path at 
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10MHz generated via both propagators is shown 
in Fig. 4. Here, an elevated antenna is used (a 
Gaussian shaped antenna pattern with 5 vertical 
beamwidth, tilted 2 downwards, located 500m 
above the sea surface) is used to excite surface 
waves. As observed, waves hit the sea surface 
around 5km; energy couples to the surface and 
propagates thereafter. Also, observe how surface 
wave coupling in the near vicinity of the 
transmitter is important on the signal attenuation 
and range variations. 
 

III. CANONICAL PROBLEMS AND 
GENERATING REFERENCE 

SOLUTIONS 
The crucial questions in modeling and 

simulation as presented in the previous section are 
(i) Are they correct? (ii) How accurate are they? 
(iii) How can reliable comparisons be possible? 
The answer can only be given after a step by step, 
precise VV&C procedure. This section presents 
the generation of reference data which necessitates 
exact and/or asymptotic models as well as precise 
and accurate generation of reference numerical 
data.  

 
A. Surface duct problem 

Propagation over the PEC flat Earth with a 
linearly decreasing vertical refractivity profile (i.e. 

xaxn 0
2 1)(  ) is a canonical structure with 

analytical solutions in terms of Airy functions for 
the range-independent vertical refractive index. 
Here, 0a  is a positive constant which controls the 
strength of the duct. The exact modal solution of 
the Airy type wave equation using N modes is [2] 
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where qc  is the modal excitation coefficients, q  

is the longitudinal propagation constant for the 
related mode represented by index q as 
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Ai  is the first kind of Airy function. The BC at 
the surface is satisfied with 0)(  qAi   and 

0)('  qAi   for the DBC and NBC, respectively. 

Here, the prime denotes the derivative with respect 
to the vertical coordinate. The problem is then 
reduced to find the modal excitation coefficients 

from a given antenna pattern using orthonormality 
property from a given source function as: 
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Here,   is the spatial width and hs is the height of 
the Gaussian source )(xg . The Gaussian source 
pattern is often used in applications since it 
represents various antenna types (but any other 
source profile may also be used). The Gaussian 
antenna pattern can also be defined in the vertical 
wavenumber domain as 
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The tilt (or elevation) angle ( tilt ) is introduced by 
shifting the antenna pattern, i.e., 

)sin()( 0 tiltxx kkgkg  . The vertical field in 
the spatial domain is then obtained by taking the 
inverse Fourier transform of (11). 

The fundamental issue here is the construction 
of the reference data. An antenna radiation pattern 
may be used for the transmitter modeling which is 
mathematically achieved by locating a vertical 
Gaussian pattern, ),()( 0 xzuxg  , on a specified 
height. Then, the modal summation in (8) is used 
together with the orthonormality condition (10) 
and the number of modes and their excitation 
coefficients are derived numerically for a given 
error boundary. Note that, modal excitation 
coefficients are real if the antenna pattern has no 
vertical tilt (i.e., antenna pattern is horizontal, 
parallel to the flat-Earth). These modal excitation 
coefficients become complex when upslope or 
downslope tilt is introduced. Moreover, the modes 
are confined between the Earth’s surface and 
modal caustics which depend on the mode 
number; the higher the mode, the higher the 
location of the caustic. Therefore, the number of 
modes used in the superposition directly depends 
on the antenna height.  

Finally, vertical boundaries of the numerical 
integration during the modal excitation coefficient 
extraction from the orthonormality property 
increase as the mode number increases. The 
specification of the number of numerical 
integration steps for the calculation of modal 
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excitation coefficients is crucial. The code must 
adopt the number of integration steps 
automatically as the mode index increases. 

Table 1 lists the number of modes required to 
establish a given Gaussian antenna pattern for a 
fixed error and antenna tilt. As seen from this 
table, the number of modes tremendously 
increases as the antenna tilt increases. It is quite 
inefficient to continue the modal summation 
procedure for the tilts beyond 10. 
 
Table 1: Number of modes used with respect to 
maximum initial field error<1e-8 ( 300f MHz 

250sh m, 35.0bw , 600/ dxdM M/km) 
Tilt angle 

(°) 
# of modes 

(N) 
Tilt angle 

() 
# of modes 

(N) 
   2099 
   3114 
   4380 
   5984 
   7926 
    

 
B. Single knife-edge problem and the four ray 
model 

It appears that the surface duct model in Sec. 
III. A can be used within the paraxial region 
because the numerical instabilities and 
insufficiencies meet there during the generation of 
the reference data. The single-knife-edge problem, 
the four ray model (4Ray), and Fresnel integral 
representations [14] can be used as an alternative 
model from which reliable reference data can be 
generated. The scenario of this canonical problem 
is pictured in Fig. 5. Here, th , rh , and wh  are the 
heights of the transmitter, receiver, and the knife-
edge obstacle; 1d  and 2d are the distances from 
source to obstacle and from obstacle to receiver, 
respectively. 

Possible four rays are as follows: Ray 1 is the 
direct path between the transmitter and the 
receiver. Ray 2 is considered as the ray from the 
transmitter reflected from the right side of the 
knife-edge obstacle. This ray reaches the receiver 
directly or tip-diffraction may occur. Ray 3 is 
considered as the ray from the transmitter reflected 
from the left side of the knife-edge obstacle. Same 
as before, this ray also reaches the receiver 

directly or tip-diffraction will occur. Ray 4 is 
considered as the ray from the transmitter reflected  

 
Fig. 5. (Top) The geometry of the flat-Earth and 
the single knife-edge problem. (Bottom) The 
construction of Ray 4 from the source/receiver 
images and h0. 
 

from both the left side and the right side of the 
knife-edge obstacle. 

The parameters of the Fresnel integrals are 
derived by using the image source/receiver for the 
reflected waves. The Fresnel clearance, the height 
of the knife-edge above the line-of-sight may be 
positive or negative [14]. When the direct ray 
between the transmitter and receiver intersects 
obstacle, 0h  is taken negative. The Fresnel 
integrals )(vC  and )(vS  are evaluated, where 

20hv   with 0h  equal to the ray clearance over 
the knife-edge. The pattern propagation factor 
(PF) is equal to: 

 
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RL4 ,  and 01)( kRRqqq   . Here, 
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and the complex reflection coefficients, for the 
horizontal and vertical polarizations, respectively, 
are: 
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where  gr i60 , g  is the conductivity 

and r  is the relative permittivity of ground,   is 
the angle of incidence in radians. The ray 
clearances for the four rays are: 
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IV. VALIDATION, VERIFICATION AND 

CALIBRATION (VV&C) 
VV&C starts with the model validation. The 

SSPE and FEMPE codes are based on one-way, 
forward propagation PE model which neglects 
back-scattered waves. This is not a serious 
limitation as long as one is interested in path 
losses between a transmitter and a receiver. 
Another limitation of the PE model is that, both 
narrow and wide angle PE models are valid within 
paraxial region. This should be taken into account 
for waves propagating upwards/downwards with 
some tilts and/or for propagation paths having 
longitudinally irregular terrain profiles with 
certain terrain slopes. Proper discretization (i.e., 
range and height step sizes, z and x, 
respectively) is essential in numerical simulations. 

These are important issues that should be tested 
during the VV&C procedure. 

The first VV&C example is presented in Fig. 
6. Here, 3D visualization of both analytical and 
numerical solutions is presented where the 
transmitter contains two Gaussian patterns (i.e., 
two antennas) at 200m and 400m, with -0.5 and 
0.5 tilts, respectively. In Fig. 6b, vertical field 
profiles at two different ranges obtained with all 
three (analytical, SSPE, and FEMPE) codes, are 
shown. Excellent agreement illustrates the success 
and completeness of the VV&C procedure. 

 

 
Fig. 6. (a) SSPE and analytic propagators with 
tilted waves at 200m and 400m with -0.5, 0.5 
tilts, respectively, (b) vertical field profiles at two 
different ranges ( 600/ dxdM M/km). 

 
Obviously, the PE codes can be tested and 

calibrated against the numerically generated 
reference data obtained from analytical exact 
model for tilts up to 10° at most. Beyond that, 
SSPE and FEMPE can only be tested against some 
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other methods or using some physical 
electromagnetic reality. One way of testing narrow 
angle (6) and wide angle (7) PE representations is 
to tilt up or down the antenna pattern up to 40°-
45°. The modal summation procedure for this 
example shows that, although an exact 
mathematical solution is at hand, it might be 
extremely difficult to produce numerical reference 
data for the VV&C tests. An example for this case 
is given in Fig. 7. Since the SSPE result is exactly 
the same with the FEMPE result, it is not included 
here.   

 
Fig. 7. Narrow and wide angle FEMPE 
propagators for -5°,    -15°, -30° tilted waves at 
250m, 500m, 700m, respectively. 

 

Here, a three antenna transmit system is used. 
The antennas are located at 250m, 500m, and 
750m heights with -5°, -15°, -30° tilts, 
respectively. The frequency is 300MHz. The tilt 
down waves hit the ground at 2.85km, 1.86km, 
1.29km for -5, -15, -30, respectively (the effects 
of refractivity variations at these ranges are almost 
negligible and waves propagate almost as in free 
space with straight lines). Note that vertical step 
should satisfy ))2sin(2( maxx  where max  
is the maximum tilt (or terrain slope if irregular 
terrain is present). At 300MHz (i.e., 1 m) 

1x m for -15 tilt, but 5.0x m for -45 tilt. 
The 3D plots in this figure are produced with 

x 0.25m for SSPE and FEMPE; therefore, the 
discretization satisfies the tilt requirements. It is 
clearly observed from these plots that both narrow 
and wide angle PE models can handle tilts up to 
15, but only wide angle PE can handle tilts 

beyond these values. Note that the computation 
times for this example for the selected list of 
parameters with the narrow and wide angle SSPE 
are 48s and 51s, and with the narrow and wide 
angle FEMPE are 2844s and 3350s, respectively. 

The VV&C of the PE tools out of the paraxial 
region is conducted on the single knife-edge 
model given in Sec. III. B. The last three figures 
belong to this VV&C procedure. In Fig. 8, 3D 
field maps generated via the SSPE tool and the 
4Ray model. The scenario belongs to one-way 
propagation for horizontal polarization over PEC 
ground with 75m height-wall at 15km range. The 
line source is at 15m height at z=0. The FEMPE 
result is exactly the same with the SSPE map, 
therefore it is not included in this figure.  

 
Fig. 8. One-way propagation for horizontal 
polarization over PEC ground with 75m height-
wall at 15km range. The propagation factor vs. 
range/height for a given source (at 20m height, 
0km range): f=3GHz, Δx=0.1m, Δz=50m. 

 

The PFs vs. height in front of and beyond the 
wedge-type obstacle are plotted in Fig. 9. Here, 
four vertical field profiles obtained with both 
SSPE and four ray model are plotted. The first plot 
on the left belongs to the interference region 
(before the obstacle); the other three are in the 
diffraction region (beyond the obstacle). As 
observed, excellent agreement is obtained in all of 
the plots. Note that the height of the edge of the 
obstacle is 75m and the distances of these three 
profiles from the obstacle are 100m, 1km, and 
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3km, respectively. The maximum diffraction 
angles of these three are around 36.9, 4.3, and 
1.5, respectively. It is expected that the PE 
models are not effective and accurate for the 
angles beyond 30-35. As observed, the PE 
models are insufficient in modeling the diffracted 
fields in the deep shadow regions. 

 

 
Fig. 9. The PF vs. height at four ranges; 12km, 
15.1km, 16km, and 18km (f=3GHz, solid: 4Ray, 
dashed: SSPE, Δx=0.1m, Δz=50m). 
 

V. CONCLUSIONS 
Model validation, data verification, and code 

calibration (VV&C) is an important engineering 
task. Engineers deal with real-life problems; they 
design, test, measure, simulate, etc. The first step 
is the definition of the problem; the solution 
cannot be found without clear definition of the 
problem. In electromagnetics, Maxwell’s 
equations plus BCs well-define the problem at 
hand. Mathematically speaking, the existence and 
uniqueness of the solution is already there once 
Maxwell’s equations are stated with the right BCs. 
Therefore, the conceptual (mathematical) model is 
already at hand in electromagnetics. The challenge 
is the numerical computation. Unfortunately, only 
a few problems with idealized conditions have 
mathematical exact solutions; therefore one needs 
to introduce approximations, assumptions, 
simplifications, etc., which yield a variety of 
different conceptual models. The VV&C 
procedure starts with the choice of the right model 
and necessitates the validation procedure. Then, 
the computer coding and verification procedure 
come. The final stage is the calibration. 

The VV&C procedure is discussed 
systematically over a 2D groundwave propagation 
problem. The flat-Earth above PEC surface with 
vertically decreasing refractivity profile (without 
and with a single knife-edge obstacle) is taken into 

account for this purpose. The well-known PWE 
model is chosen as the conceptual model. Both 
split-step and finite-element based PWE codes are 
developed. Numerical data generated via these 
models are compared against analytical exact 
results. Difficulties in producing numerical data 
for the analytical exact solutions and in calibration 
are presented.  

Note that the VV&C procedure discussed in 
Sec. IV automatically answers the crucial 
questions asked at the beginning of Sec. III. The 
terrain profiles used in Figs. 3 and 4 are 
synthetically generated; measurements along these 
paths are not possible. Furthermore, a 
mathematical/ analytical model is not available 
because of the complexity of the boundary 
conditions there. Therefore, reference data (which 
can only be obtained either from a reliable 
analytical model or measurements) cannot be 
generated. All that can be done is to do 
comparisons among different numerical 
models/packages. For these kinds of problems 
(where no reference data could be generated) 
results should be presented with caution. The 
results of different numerical models/packages 
might show a perfect agreement but still be totally 
erroneous [11-13].  
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