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Abstract ─ For the computation of eigenmodes in 
multimodal waveguide structures, the Jacobi-
Davidson eigenvalue solver is extended by a 
vector-based weighting function. It allows to 
generate only modes with a desired field 
distribution. The performance of this solver is 
studied by means of an eigenmode computation in 
a photonic crystal fiber which is discretized by the 
finite integration technique. The new algorithm is 
able to separate the modes in the fiber core from a 
number of non-physical modes which originate 
from a transversal PML-type boundary condition.  
  
Index Terms─ Jacobi-Davidson, Eigenvalues, 
Mode Calculation, Photonic Crystal Fiber. 
 

I. INTRODUCTION 
The computation of eigenvalues in two- and 

three-dimensional electromagnetic structures is a 
challenging task in engineering. Since dielectric 
waveguides for optical applications (fibers) can be 
highly multi-modal, the corresponding 2D-
eigenvalue problem may include a high number of 
guided modes, with only little differences in their 
propagation constants. 

For such modes, the power is confined within 
the core of the fiber, and the field strength in the 
cross section decays exponentially with increasing 
radius. With this a-priori knowledge, one may 
wish to apply an adequate transversal boundary 
condition, which allows to truncate the mesh close 
to the core of the fiber. Such an 'open boundary' 
can be modeled by a perfectly matched layer 
(PML), which absorbs the evanescent wave parts 
by real-coordinate stretching [1]. However, the 
application of the PML changes the discrete 
eigenvalue problem, and the staggered material 
layers of the PML themselves can act as a 
waveguiding structure. This leads to a spoiled 
spectrum, which consists not only of the desired 

guided modes within the core, but we observe a lot 
of additional non-physical modes, which are 
guided inside the PML. 

In order to get rid off of these spurious modes, 
we use an extended Jacobi-Davidson eigenvalue 
solver [2] [3] which allows to distinguish between 
the two classes of eigenvectors within the solution 
process and to produce only the desired core-
modes in an efficient way. 

Preliminary work has been done by [4], [5] and 
[6] for microstrip lines and lasing structures. They 
rely on smart chosen, limited areas of the spectrum 
in order not to calculate too many of the undesired 
eigenmodes. However it is unavoidable that some 
of them occur in their approach since not the 
eigenvector is analyzed during iteration but only 
the eigenvalue. Therefore, they identify the desired 
eigenmodes in an a-posteriori processing step. 
 

II. FORMULATION 
The eigenvalue problem for waveguide cross-

section is formulated using the finite integration 
technique (FIT) [7], [7]. 

The FIT is based on a spatial segmentation of 
the computational domain by a computational grid 
pair, the normal grid G  and the dual grid G~ . The 
degrees of freedom of the method are the so-called 
integral state variables, defined as integrals of the 
electric and magnetic field vectors over edges 

ii LL ~,  and facets jj AA ~,  of the normal grid G  

and the dual gridG~ , respectively:  
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Using this discrete formulation the fundamental 
physical properties of Maxwell's equations like 
energy and charge conservation and also the 
orthogonality of eigenmodes are maintained. The 
Maxwell grid equations can be written down as 
 

d
dt

 Ce b
      d

dt
 Ch d j

  
  (4)

 
with the material relations d M e

  , j M e
   and 

b M h
 

. C  and C  are the topological curl-
operators containing entries with {-1;0;1}. All the 
FIT matrices of topological operators are sparse 
and have band structure which allows an efficient 
processing on computer systems. 
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Fig. 1.  FIT discretization scheme of the 2D light 
grey shape. nx components in x -direction and 
ny  components in y -direction: Some 
components do not exist. 
 

The FIT discretization of a waveguide cross-
section is shown in Fig. 1 for the tangential 
electric grid voltages te . It has been shown in 
former work [9] that the eigenvalue problem  

 
2 2

1 2( ) 0z tk  A A I e  (5)
 

can be formulated for unknown zk  or unknown 
 . 1A  contains the 2D curl-curl-operator and the 
inverse permeability. 2A  contains again some 
material properties cf. [9]. The longitudinal 
components ze  can be obtained through 
continuous calculus considerations. The 2D 
eigenvalue problem for the tangential electric grid 

voltage te  (5) leads in the case of a given 
frequency   and a PML for evanescent tangential 
waves to a system matrix 1 2

2 1( )cc
 A A A I , 

which is in the specific case real and non-
symmetric. A symmetrization is in some cases 
theoretically possible, as long as no complex 
modes occur. The number of degrees of freedom is 

)(2 yxyx nnnn   for yx nn ,  being the number 
of discretization steps in the particular direction, 
when no special boundary treatment is applied (cf. 
Fig. 1). 

 
III. JACOBI-DAVIDSON ALGORITHM 

The Jacobi-Davidson algorithm [2], [3] is 
feasible for the computation of a few interior or 
exterior eigenvalues of the spectrum. Within the 
algorithm, the original eigenvalue problem is 
projected and solved on a low-dimensional 
subspace V , which is gradually refined by solving 
a correction equation. We use a Matlab 
implementation of the JD-algorithm from its 
original authors which is available from [3]. As 
so-called target value, an end of the spectrum or an 
arbitrary value within the spectrum can be 
specified. According to this target value, the 
approximate eigenvalues are sorted in different 
sophisticated ways during the solution process. 
Moreover, the JD algorithm computes the 
eigenpairs one after another and not a block of 
eigenvalues simultaneously. 

The solution of the low-dimensional, projected 
eigenvalue problem, however, does not only yield 
approximations of the eigenvalues, but of course 
we also obtain approximations of the 
corresponding eigenvectors. If we expand them 
again to full dimension, we can interpret these 
vectors as approximations of field solutions of the 
discrete formulation.  

To establish a new criterion for the choice of 
the desired modes, we test these field distributions 
against a weighting vector f , which describes a 
scalar spatial distribution for each field component 
with its maximum at the core and a decay towards 
the boundaries. The components of these vectors 
are depicted in Fig. 2. We choose a Gaussian 
profile, since it is easy to define and it fulfills the 
requirements of a strong decay toward the 
boundaries. Moreover, the Gaussian shape is not 
equal to a solution of the problem and therefore 
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we do not plug in a pre-known solution into the 
process. 

 

 

 
 

Fig. 2.  Weighting vector f  with Gaussian profile 
for x - and y - components. 

 
 
Now, we can measure the quality of our 

approximate eigenvectors iu  within the JD-
algorithm very easily. The product 

 
; i  f u  (6)

 
with 

2
1i u  and 1


f  can be used to decide, 

whether the field strength is concentrated around 
the core ( 1 ) or whether it is concentrated 
inside the boundary ( 10  ). Taking the 
absolute value of the eigenvector's components 

iu  ensures that also core guided modes with a 
null in the center are found. The weighting 
function does not have to provide necessarily the 
profile shape of the modal field to be computed. 
The weighting function only provides information 
about the spatial distribution of the field to be 
computed. 

Within the original Jacobi-Davidson algorithm 
the eigenvalue approximations are sorted 
according to their distance to the target value. In 
our modification of the algorithm we select only 
those of the sorted eigenvalue approximations, 
which fulfill the weighting criterion (6). 
 

IV. NUMERICAL EXAMPLE 
We choose a photonic crystal fiber (PCF) [10] 

as an example, which is operated at 2μm  
wavelength (Fig. 3). It consists of a glass core 
( 45.1Gn ) with a surrounding hexagonal lattice 
of air holes. Each hole has a radius of 2.9μm  and 
the lattice constant is 9.4μm . The discrete model 
is truncated by a PML boundary condition and has 
the dimensions 74μm 84μm . 

 

      
 
Fig. 3.  PCF consisting of glass and air holes 
( 74μm 84μm ). Mesh settings ( 193155  lines). 
 
 

The cross section of the fiber is discretized by 
the finite integration technique, using CST 
MICROWAVE STUDIO [11] for all preprocessing 
steps. The resulting two-dimensional model has 

193155  grid points, and we add 4 grid lines in 
each transversal direction for the PML. The 
eigenvalue problem [9] for the squared 
propagation constants 2  is linear, of the type 

 
cc  A x x , (7)

 
and has 64438 degrees of freedom. We are 
interested in the first two guided modes of the PCF 
whose distribution of its electrical field strength is 
depicted in Fig. 4. 
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Fig. 4.  Electrical field of the first desired mode. 
 
 

Fig. 6 shows the part of the spectrum with the 
smallest real part, since the propagation constants 

i  are calculated from the eigenvalues i  

by ii   . The first 36 modes (marked by 
diamonds) are guided within the PML according 
to Fig. 5. Modes 37 and 38 are the ones we are 
looking for and which fulfill our weighting 
criterion in equation (6). 
 

 
 

Fig. 5.  Magnitude of electrical field of one of the 
undesired modes: Wave guiding within the PML. 
 

 
 
Fig. 6.  Propagation constants   of the PCF. The 
modes with indices 37 and 38 (o) are the desired 
ones, which are guided by the core. 
 

V. COMPARISON OF JD SOLVERS 
The unmodified Jacobi-Davidson solver as well 

as weighted JD solver are used to compute the first 
two guided modes of the PCF from the previous 
section. For all eigensolver computations, the 
system matrix is preconditioned through a shift of 
the spectrum before the solver starts, which 
significantly improves the condition of the 
eigenvalue problem. The target is chosen to be the 
smallest real part. The initial subspace is generated 
randomly and is fed in each of both solvers in 
order to have equal starting conditions. The 
correction equation within the JD algorithm is 
solved by a direct solver in both solvers. This is 
time-consumptive, but we can expect at least a 
second order convergence. For the ordinary JD 
solver the dimension of the search subspace is kept 
between 7 and 12, while for the weighted JD 
solver no reduction of the search subspace is done. 
The eigenvalues are accepted when the residual is 
below 1e-13. 
 

595BANDLOW, SCHUHMANN: A MODE SELECTING EIGENSOLVER FOR 2D FIT MODELS OF WAVEGUIDES



Table 1:  Results of the standard JD and the 
weighted JD. 
 

Version Modes Time Iterations 
standard 38 2678 s 108 
weighted 2 165 s 46 

 
The results are given in Table 1. We look for two 
core guided modes, which are found by both 
solvers. The weighted JD outperforms the standard 
JD by a factor of 15 in time. The number of 
iterations, which are needed to gradually refine the 
subspace, is reduced by a factor larger than two. 

The reason for the disagreement of these two 
factors can be seen in the convergence history in 
Fig. 7 and Fig. 8. A lot of iterations are needed at 
the beginning of both algorithms, in order to 
improve the quality of the subspace. Once refined, 
the subspace allows the quick computation of the 
consecutive eigenvalues. 

 
 

Fig. 7.  Convergence history of the standard JD. 
 
 

VI. SOLVER TUNING 
In further investigations we consider the choice 

of the initial subspace, the correction equation and 
the maximum dimension of the search subspace. 
Details to the selection process of the prospective 
eigenvectors are given. 

 

 
 

Fig. 8.  Convergence history of the weighted-JD. 
 
A. Initial Subspace 

Since we are interested in modes, which have a 
similar spatial field distribution like the weighting 
function from (6) we use weighting function itself 
as the start vector for the Jacobi-Davidson process. 
Fig. 9 shows the convergence history. The number 
of iterations needed to find both of the desired 
modes is reduced to 15. This is less than one third 
of the 46 iterations the weighted JD algorithm 
without special initial vector treatment needed. 
 

 
 
Fig. 9.  Convergence history of the weighted-JD 
with the weighting function applied as start vector. 
 
B. Correction Equation 

The correction equation of the Jacobi-Davidson 
process is used to generate the subsequent 
extensions for the search subspace. For this, a 
linear system of equations has to be solved. In the 
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preceding sections the correction equation has 
been solved directly, which turns out to be 
computationally quite expensive. Alternatives are 
iterative solvers which all need preconditioners in 
order to perform well. The JD process is supposed 
to converge even with an inexactly solved 
correction equation. 

We choose exemplarily the bicgstab solver [12] 
which is included in the jdqr-package from [3]. As 
a preconditioner we take the LU factorization of 

approx A I , where approx  is an approximation of 
the eigenvalue with the smallest real part. We 
choose arbitrarily 13624.3 eapprox  , which is 
not inside the spectrum as the comparison with 
Fig. 6 shows. As initial subspace we use again the 
random subspace from section V. 
 
Table 2:  Results of the weighted JD solver for 
different residuals in the solution of the correction 
equation. 
 

bicgstab Tol 5e-1 1e-1 1e-2 
bicgstab MaxIt 200 200 400 
JD Iterations 100 48 42 
Time / sec 679 773 1566 

 
 

In Table 2 some results are given and it turns 
out that indeed the correction equation may be 
solved with a certain amount of error and the JD 
process finds the 2 guided modes anyway. Not 
always is the desired accuracy reached by the 
bicgstab and the maximum number of iterations 
aborts the iteration. The number of JD iterations 
needed is around the same as the result of Table 1. 
The reason for the increased time, although the 
number of JD iterations is comparable, is the well-
parallel performing direct solver while the iterative 
bicgstab is more or less single-threaded. An 
interesting case occurs in the last column where 
the number of JD iterations is less than in the case 
where the correction equation is solved exactly. 
The only reason for that is the rather good 
preconditioner which is a complete LU 
factorization at an eigenvalue estimation. 
 
C. Search Subspace Dimension 

The reduction of the search subspace after it has 
reached a specific dimension, limits the maximal 

dimension of the low-dimensional eigenvalue 
problem to be solved. We make a study in which 
we vary the maximum search space dimension. 
The correction equation is solved exactly. The 
minimum dimension should not be too small, 
otherwise it may happen that none of the 
eigenvector approximations fulfills the weighting 
criterion. 
 
Table 3:  Results of the weighted JD solver for 
different residuals in the solution of the correction 
equation. 
 

mindim  7 7 13 

maxdim  12 21 21 
JD Iterations 81 59 82 

 
 

In Table 3 there are the results for different 
maximum dimensions of the search subspace. It 
turns out that there is a choice of the maximum 
dimension, which leads to accelerated 
convergence. 
 
D. Selection Process 
    In our first implementation of this algorithm, the 
eigenvalues of the low-dimensional problem are 
simply sorted according to their distance to the 
target. In the second step, only those eigenvalues 
are retained, whose full-dimension eigenvectors 
fulfill the weighting criterion (6) with 1 . It is 
important to note, that these approximate 
eigenpairs do not fulfill the eigenvalue problem 
very well. That means that the residual 
 

2 2i i i  r Au u  (8)
 
for a specific approximate eigenpair ),( ii u  is not 
negligible small in general. Especially in the case 
when the selection process leads to an oscillation 
between two eigenvalues during the iteration, one 
of them could be fixed for some iterations, in order 
to get a better residual and decide afterwards, 
whether it fulfills the weighting criterion or not. If 
high-accuracy eigenvectors occur within the 
process, which do not fulfill the weighting 
criterion, they can be added to the subspace to 
prevent the process to regenerate them again. 
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These circumstances could be considered in an 
improved implementation. 
 

VII. CONCLUSION AND OUTLOOK 
We have shown that a simple extension of the 

selection process of the approximate eigenpairs 
within a Jacobi-Davidson algorithm leads to a 
superior convergence behavior for waveguide 
models which are surrounded by a PML boundary 
condition. The number of eigenvalues which have 
to be computed until we arrive at the desired ones 
is drastically reduced. The occurrence of 
degenerated (or nearly degenerated) modes are not 
unusual in unbounded waveguides. They have also 
shown up in our examples, and the modified 
solver obviously has no problems with them. The 
weighting function should be chosen carefully 
enough that criterion (6) yields 1   for the 
external mode (guided within the PML) and 

1  for the core guided mode. Then the 
undesired mode is eliminated by the selection 
process. 

Of course, there are a couple of possible 
improvements concerning the performance, the 
computational efficiency, and the range of 
application of the modified eigensolver: 

At first, other weighting functions may be used, 
e.g. it should be possible to find only modes with a 
specific polarization, modes with energy transport 
in specific regions of the cross section, etc. In the 
current implementation only the values of the 
electrical grid voltage are taken into account by 
the weighting function. However, it may also be 
applied to Poynting's vector or other secondary 
quantities. Furthermore, the fact that we identify 
an undesired eigenvector without doing anything 
against its reoccurrence is not yet satisfactory. 
Since we also know the corresponding eigenvalue, 
it should be possible to apply some kind of filter, 
which is able to suppress the undesired modes. 
Another idea would be to implement the weighting 
into other eigensolvers such as the implicitly 
restarted Arnoldi algorithm, where it should also 
be possible to eliminate the undesired eigenvectors 
from the approximate subspace. 

Finally, this kind of solver can also be applied 
to other types of waveguides such as microstrip 
lines or even three dimensional structures. 
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