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Abstract − The embedded element pattern of a 
conformal dipole array of seven elements is 
calculated using integral equation algorithms in 
exact solvers such as FEKO and WIPL-D, with the 
central element excited and other elements match-
terminated in a 50Ω load. A technique is developed 
that uses the FEKO subdomain basis function 
current weights to derive the equivalent current 
weight for a single entire domain basis function for 
use in the high-frequency code NECBSC. This 
process includes effects of mutual coupling in the 
NECBSC calculations. The results for the embedded 
element pattern for cylinders with  𝑘𝑘𝑘𝑘 = 10, 20, 30, 
40, 60 and 80, computed via FEKO, WIPL-D, and 
NECBSC, reveal discrepancies in the deep shadow 
(or creeping wave) regions. Parametric simulation 
studies for dipole currents, by varying the cylinder 
radius or radial distance of the array arc from the 
cylinder curved surface, are also included.  
 

I. Introduction 
  

 Conformal arrays, flush -mounted on electrically 
large convex bodies, often cannot be analyzed by 
exact numerical techniques due to increased de-
mands for computational resources [1]. The integral 
equation (EFIE) methods [2], [3] require a 
discretization size of λ/10 for such electrically large 
structures, where λ is the wavelength. This presents a 
practical difficulty in using exact solvers such as 
WIPL-D [4] and FEKO [5] that solve the 
radiation/scattering problem by discretization of the 
EFIE. In contrast, the Uniform Theory of Diffraction 
(UTD) [3], [6] is particularly suitable for electrically 
large problems because it does not require structural 
discretization at any frequency. The subject of this 
investigation is the calculation of element patterns of 
a single ring, sectoral dipole array in presence of an 

electrically large PEC cylinder shown in Fig. 1.  
 The UTD formulations in the NECBSC code 
require antennas to be 0.25λ off the cylinder curved 
surface [7]. With reference to Fig. 1, a cylindrical 
dipole array was studied in [8] which serves as a 
motivation for the work reported here. The high-
frequency radiation from such an array in the 
shadow (𝜙𝜙 → 180°

 
in Fig. 1) regions can be 

described in terms of “creeping waves”. Past 
investigations on creeping wave radiation have 
shown discrepancies between exact and UTD results 
[9]-[11] for isolated single sources located off the 
cylinder curved surface. However, these studies did 
not consider conformal array [8] radiation, and 
hence are distinct from the present investigation. A 
methodology to accomplish this comparative 
analysis for conformal arrays, by combining ap-
propriate solutions from both exact [5] and high-
frequency code [7] solvers, is the purpose of this 
investigation.  
 The results in this paper are restricted to a 7-
element dipole array because such a model retains 
all the canonical features without unnecessarily 
complicating the problem. Validation studies of the 
exact code solvers available in [12]-[14] lent 
confidence in their application to conformal array 
problems. Finally, this paper is an extension of but 
is mostly distinct from [15].  
 The conformal array problem and its NECBSC 
solution is described in the next section.  This is 
followed by extensive results and their discussion.  
The conclusions are summarized with a list of 
relevant references. 
 

II. Problem Description and Solution 
Methodology 

 
 For an array with large number of elements the 
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total array element pattern in the radiation zone is 
generically written as: 
 

F(𝑟𝑟, 𝜃𝜃, 𝜙𝜙) =
𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗

𝑟𝑟
𝑔𝑔𝑒𝑒𝑒𝑒𝑒𝑒 (𝜃𝜃, 𝜙𝜙) � C𝑛𝑛𝑒𝑒𝑗𝑗𝜓𝜓𝑛𝑛

N

𝑛𝑛=1

       (1) 

 
 The summation in (1) indicates the 
(complex) array factor of N elements with complex 
(current or voltage) excitations C𝑛𝑛 ; 𝜓𝜓𝑛𝑛  is the phase 
at 𝑛𝑛𝑡𝑡ℎ  element. The 𝑔𝑔𝑒𝑒𝑒𝑒𝑒𝑒 (𝜃𝜃, 𝜙𝜙) is the embedded 
element pattern of a single element while all other 
elements are terminated in a matched load. The 
𝑔𝑔𝑒𝑒𝑒𝑒𝑒𝑒 (𝜃𝜃, 𝜙𝜙) varies across a finite array because the 
elements close to the array edges “see” a different 
environment than the ones at the center. It is implicit 
that 𝑔𝑔𝑒𝑒𝑒𝑒𝑒𝑒 (𝜃𝜃, 𝜙𝜙) contains the effects of the mutual 
coupling from nearby elements. The exact solvers in 
[4], [5] can directly calculate the array mutual 
coupling unlike [7]. Thus, a method by which array 
mutual coupling can be included in NECBSC output 
is the main contribution of this paper. 
 
 

 
Fig. 1. Geometry of a conformal cylindrical dipole 
array of λ/2 dipole; the cylinder radius is 𝑘𝑘𝑘𝑘 and the 
dipoles have an inter-arc spacing of b/λ, and are off 
the PEC curved surface of the cylinder by a distance 
𝑠𝑠/λ.  In the present problem, only a single arc-ring, 
7-element, azimuthally located dipole array is 
considered.  Here b = 𝛼𝛼𝜌𝜌𝑜𝑜  with 𝜌𝜌𝑜𝑜 = 𝑎𝑎 + 𝑠𝑠. The 
numbering scheme for the 7-element array is also 
shown. 

 To that end, the analysis developed gainfully 
utilizes FEKO output currents which include mutual 
coupling effects in-situ. The FEKO uses overlapping 
triangular basis function on the individual dipole 
elements. If the current on the dipole element is 
𝑖𝑖(𝑧𝑧), it can be expressed in the two forms as,  
 

𝑖𝑖(𝑧𝑧) =

⎩
⎪
⎨

⎪
⎧  �Ψ∆(𝑧𝑧)I∆

𝑝𝑝
P

𝑝𝑝=1

,    for FEKO    

 Iocos �
𝜋𝜋𝜋𝜋
L
� ,        for NECBSC

              (2)� 

 
The dipole of length L is discretized into P segments 
in FEKO and over each segment the overlapping 
triangular basis functions with weights I∆

𝑝𝑝  are used. 
In the NECBSC a purely entire domain basis 
function can be used [7]. For the NECBSC, 
 −L/2 ≤ 𝑧𝑧 ≤  L/2; in the FEKO code, the triangular 
basis function in (2) is given as: 
  

Ψ∆(𝑧𝑧) =

⎩
⎨

⎧  
𝑧𝑧 − 𝑧𝑧𝑝𝑝−1

𝑧𝑧𝑝𝑝 − 𝑧𝑧𝑝𝑝−1
,      for  𝑧𝑧𝑝𝑝−1 ≤  z ≤  𝑧𝑧𝑝𝑝  

𝑧𝑧𝑝𝑝+1 − 𝑧𝑧
𝑧𝑧𝑝𝑝+1 − 𝑧𝑧𝑝𝑝

,      for  𝑧𝑧𝑝𝑝 ≤  𝑧𝑧 ≤ 𝑧𝑧𝑝𝑝+1

  (3)� 

 
The I∆

𝑝𝑝  are the complex current weights associated 
with the triangular basis functions in FEKO. These 
can be directly obtained in the output file of FEKO 
through use of appropriate input commands to store 
these segment currents, when developing the input 
geometry file. Our objective is to express Io  in terms 
of the FEKO segment currents I∆

𝑝𝑝 . From (2) and (3) 
it readily follows that  
 

Io � cos2 �
𝜋𝜋𝜋𝜋
L
�d𝑧𝑧

L/2

−L/2

 

= � I∆
𝑝𝑝 � Ψ∆(𝑧𝑧)cos �

𝜋𝜋𝜋𝜋
L
�d𝑧𝑧

L/2

−L/2

P

𝑝𝑝=1

      (4) 

 
Further reduction of (4) then produces the desired 
result, 
 

Io =
4
𝜋𝜋 �

sin2 �𝜋𝜋∆L
4L �

𝜋𝜋∆L
4L

�� I∆
𝑝𝑝 sin �

𝜋𝜋𝑧𝑧𝑝𝑝
L
�

P

𝑝𝑝=1

             (5) 
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In (5) ∆L = 𝑧𝑧𝑝𝑝+1 − 𝑧𝑧𝑝𝑝−1. The node at 𝑧𝑧𝑝𝑝  falls 
midway between the (𝑝𝑝 + 1)𝑡𝑡ℎ  and (𝑝𝑝 − 1)𝑡𝑡ℎ  
nodes. The complex current weight I∆

𝑝𝑝
 
is associated 

with the location of the 𝑝𝑝𝑡𝑡ℎ   node. It is reiterated 
that Io  in (5) is a complex current weight.  To 
summarize, (5) allows a very convenient way of 
incorporating the mutual coupling information in the 
NECBSC code from a-priori information of the 
same from the FEKO code. 
 

III. Results and Discussion 
 
 The results are shown in Figs. 2 to 15. The 
numerical data are shown in the figure captions 
therein.  For the FEKO calculations, dipoles of 
length L = λ/2 were discretized into P = 51 to 101 
segments, which yields the node location 𝑧𝑧𝑝𝑝 =
𝑝𝑝(L/P), with 𝑝𝑝 = 1, 2, 3, ⋯, P.  For either 51 or 
101 segments on the dipole, the corresponding 
equivalent complex current weight Io  from (5) was 
found not to be significantly different. The results 
are discussed briefly below. In Figs. 2 and 3 
magnitude and phase comparisons between Io  
obtained via (5), and the I∆

𝑝𝑝  on the central segment 
of the excited (#0) dipole is shown for increasing 
𝑠𝑠/λ. The comparison reveals the two features: 

(a) I∆
𝑝𝑝  on the central segment of the dipole, as 

available from the FEKO output file, is a very 
good approximation to Io  obtained via (5).  
This is expected because Io  is the maxima at 
the center of the support region of the 
cosinusoidal entire domain basis function. 

(b) The decaying oscillatory nature of the 
magnitude and phase with  𝑠𝑠/λ.  This is due to 
the standing wave interactions between the 
dipole and the cylinder curved surface. As the 
dipole array moves away from the cylinder 
curved surface, the degree of this interaction 
decreases and is evidenced by the decrease in 
the peaks and nulls in the variations. 

Figures 4 and 5 show the effects of the scattering 
structure, which is the electrical radius 𝑘𝑘𝑘𝑘 of the 
cylinder, on the current Io  using  (5). The Io  data in 
these figures were computed for each of the 
individual seven elements in the dipole array from 
the corresponding FEKO output file. 
 The dominant effect of the cylinder radius 𝑘𝑘𝑘𝑘 
on the current magnitudes is noticeable on the 
central (excited) element as in Fig. 4. The current 
magnitude Io  on the farthest elements (#2, −2, 3 & 

−3) in Fig. 4 is apparently insensitive to increase in 
𝑘𝑘𝑘𝑘. However the same figure shows that the 
noticeable influence of the cylinder curvature on the 
excited (or central #0) element for 𝑘𝑘𝑘𝑘 = 10 → 50. 
Beyond 𝑘𝑘𝑘𝑘 ≥ 50, the curvature effects are 
imperceptible. 
 
  

 
Fig. 2. Current amplitude variation on the excited 
dipole (#0) element located at the array center; 
𝑘𝑘𝑘𝑘 = 30,  b/λ = 0.5,  L/λ = 0.5 and the cylinder 
height is  H/λ = 10.  All other dipoles are 
terminated in a 50Ω load.  The entire domain result 
refers to (5). 
 
  

 
Fig. 3. Current phase variation on the excited dipole 
(#0) element located at the array center; 𝑘𝑘𝑘𝑘 =
30,  b/λ = 0.5,  L/λ = 0.5 and the cylinder height 
is  H/λ = 10.  All other dipoles are terminated in a 
50Ω load.  The entire domain result refers to (5). 
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Fig. 4. Current magnitude variation on all the dipole 
elements;  b/λ = 0.5,  L/λ = 0.5,  𝑠𝑠/λ = 0.25 and 
the cylinder height is  H/λ = 10.  The central dipole 
element (#0) is excited, with all others terminated in 
a 50Ω load. The entire domain result refers to (5). 
 

 
Fig. 5. Current phase variation on all the dipole 
elements;  b/λ = 0.5,  L/λ = 0.5,  𝑠𝑠/λ = 0.25 and 
the cylinder height is  H/λ = 10.  The central dipole 
element (#0) is excited, with all others terminated in 
a 50Ω load. The entire domain result refers to (5). 
 
 A similar conclusion can be arrived by examin-
ing the sensitivity of the phase of the currents on the 
individual dipole elements in Fig. 5. (The single 
point at 𝑘𝑘𝑘𝑘 = 10 for element #2 and −2, appears to 
be an exception, and is apparently intractable at this 
stage.) While there is a marked difference in the 
levels, the increase of cylinder radius apparently 
causes little change in the element phases. 

The results in Figs. 4 and 5 present some inter-
esting and useful insights into computation involv-
ing electrically large conformal arrays. The infor-
mation gleaned suggests that because the current Io  
is relatively insensitive to increase in cylinder radius 
𝑘𝑘𝑘𝑘, it may be reasonable to obtain these currents for 
an electrically small cylinder using exact code 
solvers (FEKO or WIPL-D) and then subsequently 
use them to calculate scattering by an electrically 
large cylinder using high-frequency solvers like the 
NECBSC code. This process would result in 
substantial savings in computational resources. 
Based on the results presented here, it appears that 
the embedded element pattern, 𝑔𝑔𝑒𝑒𝑒𝑒𝑒𝑒 (𝜃𝜃, 𝜙𝜙), would 
not be substantially different obtained by this pro-
posed approach.  

Figures 6 to 15 show the azimuth (𝜃𝜃 = 90°) 
plane embedded element pattern for the central 
dipole (#0) with others terminated in a matched 
load, and, for a wide range of cylinder radius 
(𝑘𝑘𝑘𝑘 = 10 to 80). All other data is included in the 
figures and is omitted here. For the NECBSC 
results, the excitation currents for every individual 
element in the dipole array were computed via 
equation (5). This implies that the NECBSC results 
include mutual coupling effects when the center 
dipole is excited. 

The results in Figs. 6 to 9 generally exhibit 
similar nature. For 𝑘𝑘𝑘𝑘 = 10 and 20 the differences 
between FEKO, WIPL-D and NECBSC in the 
shadow (creeping wave) region is not significant. 
However the same is not generally true for the 
results in Figs. 10 to 12. 
 The results in Figs. 8 and 9 are explained in 
some detail here. The NECBSC result in Fig. 9 was 
obtained by using the FEKO current weight on the 
central segment of each dipole element in the array. 
In contrast in Fig. 8, the currents for NECBSC data 
was obtained via (5). The comparison of the 
NECBSC embedded element pattern, 𝑔𝑔𝑒𝑒𝑒𝑒𝑒𝑒 (𝜃𝜃, 𝜙𝜙), 
suggests that there is only minimal variation in the 
embedded element pattern and it is noticeable in the 
deep shadow regions only. 
 The comparative analysis of the embedded 
element patterns for electrically large cylinders is 
shown in Figs. 10 to12. The results indicate good 
agreement in the ‘lit’ region – where the geometric 
optics ray fields exist – for cylinders of electrical 
radius 𝑘𝑘𝑘𝑘 = 40 (Fig. 10). All the three cases show 
marked disagreements in the creeping wave or deep 
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shadow regions. Interestingly, in Figs. 11 (𝑘𝑘𝑘𝑘 = 60) 
and 12 (𝑘𝑘𝑘𝑘 = 80), the differences in the results 
from the exact and high-frequency code solvers are 
also noticeable in the lit regions. 

The effects of varying 𝑠𝑠/𝜆𝜆
 
on the embedded ele-

ment pattern is shown in Figs. 13 to 15. Including 
the result in Fig. 8, imparts a broader overview. The 
results indicate that the increase of 𝑠𝑠/𝜆𝜆

  
is somewhat 

unpredictable. For example, the result in Fig. 13 
shows the worst agreement between the three codes. 
However this trend is not predictive as the distance 
𝑠𝑠/𝜆𝜆

  
is increased to 0.75 (Fig. 14) and 1.0 (Fig. 15). 

In the latter two figures the leve l of disagreement is 
less pronounced in the deep-shadow or creeping 
wave regions as compared to the corresponding one 
in Fig. 13. Note that in Fig. 8 the disagreement is 
less compared to Fig. 13.  

The results indicate that NECBSC scattering 
formulations in the creeping wave region of PEC 
convex surfaces need more theoretical 
investigations. This was also observed in earlier 
investigations [9] and [10]. In both these cases the 
high-frequency fields in the creeping wave region of 
a PEC elliptic and circular cylinders were found to 
disagree with the exact analysis for the same 
problem. The numerical results for the embedded 
element pattern for investigation presented here 
appears to confirm the earlier conclusions in [9] and 
[10] for a similar (but not identical) problem.  
 Finally, our results are at variance with the 
earlier investigations in [11]. The analysis in [11] 
was specifically for a line source. In particular, this 
present study did not investigate in detail the effects 
decreasing 𝑠𝑠/𝜆𝜆

 
 height as was done in [11]. The 

minimum height chosen was 𝑠𝑠/𝜆𝜆
 

= 0.25
 
for the 

results in this paper, while in [11] the UTD curved 
surface scattering formulations were studied for 
very small heights 𝑠𝑠/𝜆𝜆

 
= 0.05. The choice of the 

minimum height in this paper specifically focused 
on examining the limits of applicability of the 
NECBSC code, and not necessarily the general 
UTD formulations.  
 To that end, it appears instructive following the 
results and conclusions in [11] to examine the 
effects of the height factor in view of the more 
recent work in [6]. The various high-frequency 
formulations and their regions of validity has been 
studied there, and its application to conformal dipole 
arrays such as in [8] needs to be more carefully 
investigated.  

Fig. 6. Comparison of radiation patterns vs. azimuth 
angle 𝜙𝜙, in the 𝜃𝜃 = 90° plane for a 7-element λ/2 
dipole array with central element excited and all 
others terminated in a 50Ω load 𝑘𝑘𝑘𝑘 = 10,  𝑠𝑠/λ =
0.25,  b/λ = 0.5,  L/λ = 0.5,  α = 18.013°, and 
cylinder height is  H/λ = 10.  
 
 

Fig. 7. Comparison of radiation patterns vs. azimuth 
angle 𝜙𝜙, in the 𝜃𝜃 = 90° plane for a 7-element λ/2 
dipole array with central element excited and all 
others terminated in a 50Ω load 𝑘𝑘𝑘𝑘 = 20,  𝑠𝑠/λ =
0.25,  b/λ = 0.5,  L/λ = 0.5,  α = 9.006°, and 
cylinder height is  H/λ = 10. 
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Fig. 8. Comparison of radiation patterns vs. azimuth 
angle 𝜙𝜙, in the 𝜃𝜃 = 90° plane for a 7-element λ/2 
dipole array with central element excited and all 
others terminated in a 50Ω load 𝑘𝑘𝑘𝑘 = 30,  𝑠𝑠/λ =
0.25,  b/λ = 0.5,  L/λ = 0.5,  α = 6.005°, and 
cylinder height is  H/λ = 10. 
 
 
 

 
Fig. 9. All of the data is the same as in Fig. 8 above. 
For NECBSC results, the currents on the dipoles 
were approximated as that on the central segment of 
each dipole.  The data here is taken from [15].  
  

Fig. 10. Comparison of radiation patterns vs. 
azimuth angle 𝜙𝜙, in the 𝜃𝜃 = 90° plane for a 7-
element λ/2 dipole array with central element 
excited and all others terminated in a 50Ω load 
𝑘𝑘𝑘𝑘 = 40,  𝑠𝑠/λ = 0.25,  b/λ = 0.5,  L/λ = 0.5,  α =
4.497°, and cylinder height is  H/λ = 10. 
 
 
 

Fig. 11. Comparison of radiation patterns vs. 
azimuth angle 𝜙𝜙, in the 𝜃𝜃 = 90° plane for a 7-
element λ/2 dipole array with central element 
excited and all others terminated in a 50Ω load 
𝑘𝑘𝑘𝑘 = 60,  𝑠𝑠/λ = 0.25,  b/λ = 0.5,  L/λ = 0.5,  α =
2.923°, and cylinder height is  H/λ = 10. 
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Fig. 12. Comparison of radiation patterns vs. 
azimuth angle 𝜙𝜙, in the 𝜃𝜃 = 90° plane for a 7-
element λ/2 dipole array with central element 
excited and all others terminated in a 50Ω load 
𝑘𝑘𝑘𝑘 = 80,  𝑠𝑠/λ = 0.25,  b/λ = 0.5,  L/λ = 0.5,  α =
2.207°, and cylinder height is  H/λ = 10. 
 
 
 

Fig. 13. Comparison of radiation patterns vs. 
azimuth angle 𝜙𝜙, in the 𝜃𝜃 = 90° plane for a 7-
element λ/2 dipole array with central element 
excited and all others terminated in a 50Ω load 
𝑘𝑘𝑘𝑘 = 30,  𝑠𝑠/λ = 0.5,  b/λ = 0.5,  L/λ = 0.5, and 
cylinder height is  H/λ = 10. 
 

Fig. 14. Comparison of radiation patterns vs. 
azimuth angle 𝜙𝜙, in the 𝜃𝜃 = 90° plane for a 7-
element λ/2 dipole array with central element 
excited and all others terminated in a 50Ω load 
𝑘𝑘𝑘𝑘 = 30,  𝑠𝑠/λ = 0.75,  b/λ = 0.5,  L/λ = 0.5 and 
cylinder height is  H/λ = 10. 
 
 
 

Fig. 15. Comparison of radiation patterns vs. 
azimuth angle 𝜙𝜙, in the 𝜃𝜃 = 90° plane for a 7-
element λ/2 dipole array with central element 
excited and all others terminated in a 50Ω load 
𝑘𝑘𝑘𝑘 = 30,  𝑠𝑠/λ = 1.0,  b/λ = 0.5,  L/λ = 0.5 and 
cylinder height is  H/λ = 10. 
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IV. Summary and Conclusion  
 

In this investigation a technique by which 
mutual coupling effects can be included while 
modeling a conformal dipole array via the high-
frequency NECBSC code, has been developed by 
utilizing the output from the exact integral equation 
solver as contained in the commercially available 
FEKO code. The embedded element patterns for a 
seven element array were compared via FEKO, 
WIPL-D and NECBSC codes. The results showed 
that in the deep shadow region the disagreements 
were more pronounced for cylinders with 
electrically large radius of curvature. This is an 
interesting observation because NECBSC is 
expected to be more accurate as the cylinder size 
increased. Furthermore, it was found that the effect 
of the curvature on the element currents in the 
dipole array was insignificant beyond 𝑘𝑘𝑘𝑘 ≥ 50. 
Thus, it was concluded that for electrically large 
conformal dipole arrays the solution to the dipole 
currents can be obtained to a reasonable degree of 
accuracy by solving an electrically smaller problem 
via the exact solvers such as FEKO or WIPL-D. The 
results of this investigation thus provide a 
computationally efficient strategy for determining 
radiation behavior of electrically large conformal 
arrays.  
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