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Abstract — The embedded element pattern of a
conformal dipole array of seven elements is
calculated using integral equation agorithms in
exact solvers such as FEKO and WIPL-D, with the
central element excited and other elements match-
terminated in a 50Q load. A technique is developed
that uses the FEKO subdomain basis function
current weights to derive the equivalent current
weight for a single entire domain basis function for
use in the high-frequency code NECBSC. This
process includes effects of mutual coupling in the
NECBSC calculations. The results for the embedded
element pattern for cylinders with ka = 10, 20, 30,
40, 60 and 80, computed via FEKO, WIPL-D, and
NECBSC, reveal discrepancies in the deep shadow
(or creeping wave) regions. Parametric simulation
studies for dipole currents, by varying the cylinder
radius or radial distance of the array arc from the
cylinder curved surface, are also included.

I. Introduction

Conformal arrays, flush -mounted on electricaly
large convex bodies, often cannot be anayzed by
exact numerical techniques due to increased de-
mands for computational resources [1]. The integral
equation (EFIE) methods [2], [3] require a
discretization size of /10 for such electricaly large
structures, where X is the wavelength. This presents a
practical difficulty in using exact solvers such as
WIPL-D [4] and FEKO [5] that solve the
radiation/scattering problem by discretization of the
EFIE. In contrast, the Uniform Theory of Diffraction
(UTD) [3], [6] is particularly suitable for electrically
large problems because it does not require structural
discretization at any frequency. The subject of this
investigation is the calculation of element patterns of
a single ring, sectora dipole array in presence of an

electrically large PEC cylinder shown in Fig. 1.

The UTD formulations in the NECBSC code
require antennas to be 0.25A off the cylinder curved
surface [7]. With reference to Fig. 1, a cylindrica
dipole array was studied in [8] which serves as a
motivation for the work reported here. The high-
frequency radiation from such an array in the
shadow (¢ —» 180° in Fig. 1) regions can be
described in terms of “creeping waves’. Past
investigations on creeping wave radiation have
shown discrepancies between exact and UTD results
[9]-[11] for isolated single sources located off the
cylinder curved surface. However, these studies did
not consider conformal array [8] radiation, and
hence are distinct from the present investigation. A
methodology to accomplish this comparative
analysis for conformal arrays, by combining ap-
propriate solutions from both exact [5] and high-
frequency code [7] solvers, is the purpose of this
investigation.

The results in this paper are restricted to a 7-
element dipole array because such a model retains
all the canonical features without unnecessarily
complicating the problem. Validation studies of the
exact code solvers available in [12]-[14] lent
confidence in their application to conformal array
problems. Finally, this paper is an extension of but
ismostly digtinct from [15].

The conformal array problem and its NECBSC
solution is described in the next section. This is
followed by extensive results and their discussion.
The conclusions are summarized with a list of
relevant references.

I1. Problem Description and Solution
Methodology

For an array with large number of elements the
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total array element pattern in the radiation zone is
generically written as:

—jkr

F(r,0,8) = = Gon (6, ¢)chn W

The summation in (1) indicates the
(complex) array factor of N elements with complex
(current or voltage) excitations C,;; ¥, is the phase
a n'" eement. The g,, (6, ¢) is the embedded
element pattern of a single element while al other
elements are terminated in a matched load. The
Jeim (0, @) varies across a finite array because the
elements close to the array edges “see” a different
environment than the ones at the center. It isimplicit
that g.., (6,¢) contains the effects of the mutual
coupling from nearby elements. The exact solversin
[4], [5] can directly calculate the array mutual
coupling unlike [7]. Thus, a method by which array
mutual coupling can be included in NECBSC output
isthe main contribution of this paper.
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Fig. 1. Geometry of a conformal cylindrical dipole
array of A/2 dipole; the cylinder radiusis ka and the
dipoles have an inter-arc spacing of b/A, and are off
the PEC curved surface of the cylinder by a distance
s/A. Inthe present problem, only a single arc-ring,
7-element, azimuthaly located dipole array is
considered. Here b = ap, with p, =a+s. The
numbering scheme for the 7-element array is also
shown.
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To that end, the analysis developed gainfully
utilizes FEKO output currents which include mutual
coupling effects in-situ. The FEKO uses overlapping
triangular basis function on the individual dipole
elements. If the current on the dipole element is
i(z), it can be expressed in the two forms as,

P
! z Y, (2)I?, for FEKO
i(z) = =1

Llocos (%) for NECBSC

(2)

The dipole of length L is discretized into P segments
in FEKO and over each segment the overlapping
triangular basis functions with weights I} are used.
In the NECBSC a purely entire domain basis
function can be used [7]. For the NECBSC,
—L/2 <z < L/2; in the FEKO code, the triangular
basisfunctionin (2) isgiven as.

zZ—Z

-1
P , for Zp 1< 2 <z,
Zp _Zp—l
lPA(Z) = Zp+1 -z (3)
k , forz,<z <z,.4
z -z
p+1 p

The I} are the complex current weights associated
with the triangular basis functions in FEKO. These
can be directly obtained in the output file of FEKO
through use of appropriate input commands to store
these segment currents, when developing the input
geometry file. Our objective isto expressi, interms
of the FEKO segment currents IZ. From (2) and (3)
it readily follows that

L/2
2 (T2
I, Jcos (L)dz
-L/2
P L
z f‘l‘ (Z)COS(E)dZ 4)
A L
p=1  —L/2

Further reduction of (4) then produces the desired
result,

T(AL p
7TZ
I, = Z 1} sin (=2) (5)

4 sin?
T nAL
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In (5) AL=12,41 —2z,_1. The node a z, fdls
midway between the (p+ 1™ and (p —1)t"
nodes. The complex current weight I% is associated
with the location of the pt* node. It is reiterated
that I, in (5) is a complex current weight. To
summarize, (5) alows a very convenient way of
incorporating the mutual coupling information in the
NECBSC code from apriori information of the
same from the FEK O code.

II1. Results and Discussion

The results are shown in Figs. 2 to 15. The
numerical data are shown in the figure captions
therein. For the FEKO calculations, dipoles of
length L = A/2 were discretized into P = 51 to 101
segments, which yields the node location z, =
p(L/P), withp =1, 2, 3, ---,P. For either 51 or
101 segments on the dipole, the corresponding
equivalent complex current weight I, from (5) was
found not to be significantly different. The results
are discussed briefly below. In Figs. 2 and 3
magnitude and phase comparisons between I,
obtained via (5), and the I} on the central segment
of the excited (#0) dipole is shown for increasing
s/\. The comparison reveals the two features:

(@ 1} on the central segment of the dipole, as
available from the FEKO output file, is a very
good approximation to I, obtained via (5).
This is expected because I, is the maxima at
the center of the support region of the
cosinusoidal entire domain basis function.

(b) The decaying oscillatory nature of the
magnitude and phase with s/A. Thisisdueto
the standing wave interactions between the
dipole and the cylinder curved surface. As the
dipole array moves away from the cylinder
curved surface, the degree of this interaction
decreases and is evidenced by the decrease in
the peaks and nullsin the variations.

Figures 4 and 5 show the effects of the scattering
structure, which is the electrica radius ka of the
cylinder, on the current I, using (5). Thel, datain
these figures were computed for each of the
individual seven elements in the dipole array from
the corresponding FEK O output file.

The dominant effect of the cylinder radius ka
on the current magnitudes is noticeable on the
central (excited) element as in Fig. 4. The current
magnitude I, on the farthest elements (#2, -2, 3 &

ACES JOURNAL, VOL. 24, NO. 6, DECEMBER 2009

—3) in Fig. 4 is apparently insensitive to increase in
ka. However the same figure shows that the
noticeable influence of the cylinder curvature on the
excited (or central #0) element for ka = 10 — 50.
Beyond ka > 50, the -curvature effects are

imperceptible.
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Fig. 2. Current amplitude variation on the excited
dipole (#0) element located at the array center;
ka =30, b/A =0.5, L/A=0.5 and the cylinder
height is H/A = 10. All other dipoles are
terminated in a 50Q load. The entire domain result
refersto (5).
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Fig. 3. Current phase variation on the excited dipole
(#0) element located at the array center; ka =
30, b/A=0.5, L/A = 0.5 and the cylinder height
is H/A = 10. All other dipoles are terminated in a
500 load. The entire domain result refersto (5).
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Fig. 4. Current magnitude variation on al the dipole

elements; b/AL = 0.5, L/A =0.5, s/A=0.25 and

the cylinder height is H/A = 10. The central dipole

element (#0) is excited, with al othersterminated in

a50Q load. The entire domain result refersto (5).
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Fig. 5. Current phase variation on all the dipole
elements; b/L = 0.5, L/A =0.5, s/A=0.25 and
the cylinder height is H/A = 10. The central dipole
element (#0) is excited, with al othersterminated in
a50Q load. The entire domain result refersto (5).

A similar conclusion can be arrived by examin-
ing the sensitivity of the phase of the currents on the
individual dipole elements in Fig. 5. (The single
point at ka = 10 for element #2 and —2, appears to
be an exception, and is apparently intractable at this
stage.) While there is a marked difference in the
levels, the increase of cylinder radius apparently
causes little change in the el ement phases.
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Theresultsin Figs. 4 and 5 present some inter-
esting and useful insights into computation involv-
ing electrically large conformal arrays. The infor-
mation gleaned suggests that because the current I,
isrelatively insensitive to increase in cylinder radius
ka, it may be reasonable to obtain these currents for
an electrically small cylinder using exact code
solvers (FEKO or WIPL-D) and then subsequently
use them to calculate scattering by an electrically
large cylinder using high-frequency solvers like the
NECBSC code. This process would result in
substantial savings in computational resources.
Based on the results presented here, it appears that
the embedded element pattern, g.., (6,¢), would
not be substantially different obtained by this pro-
posed approach.

Figures 6 to 15 show the azimuth (8 = 90°)
plane embedded element pattern for the centra
dipole (#0) with others terminated in a matched
load, and, for a wide range of cylinder radius
(ka = 10 to 80). All other data is included in the
figures and is omitted here. For the NECBSC
results, the excitation currents for every individua
element in the dipole array were computed via
equation (5). Thisimplies that the NECBSC results
include mutual coupling effects when the center
dipoleisexcited.

The results in Figs. 6 to 9 generally exhibit
similar nature. For ka = 10 and 20 the differences
between FEKO, WIPL-D and NECBSC in the
shadow (creeping wave) region is not significant.
However the same is not generaly true for the
resultsin Figs. 10 to 12.

The results in Figs. 8 and 9 are explained in
some detail here. The NECBSC result in Fig. 9 was
obtained by using the FEKO current weight on the
central segment of each dipole e ement in the array.
In contrast in Fig. 8, the currents for NECBSC data
was obtained via (5). The comparison of the
NECBSC embedded element pattern, g.;, (0, ¢),
suggests that there is only minimal variation in the
embedded element pattern and it is noticeable in the
deep shadow regions only.

The comparative analysis of the embedded
element patterns for eectrically large cylinders is
shown in Figs. 10 tol2. The results indicate good
agreement in the ‘lit’ region — where the geometric
optics ray fields exist — for cylinders of electrica
radius ka = 40 (Fig. 10). All the three cases show
marked disagreements in the creeping wave or deep
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shadow regions. Interestingly, in Figs. 11 (ka = 60)
and 12 (ka = 80), the differences in the results
from the exact and high-frequency code solvers are
also noticeable in the lit regions.

The effects of varying s/A on the embedded ele-
ment pattern is shown in Figs. 13 to 15. Including
theresult in Fig. 8, imparts a broader overview. The
results indicate that the increase of s/A is somewhat
unpredictable. For example, the result in Fig. 13
shows the worst agreement between the three codes.
However this trend is not predictive as the distance
s/A isincreased to 0.75 (Fig. 14) and 1.0 (Fig. 15).
In the latter twofigures the leve | of disagreement is
less pronounced in the deep-shadow or creeping
wave regions as compared to the corresponding one
in Fig. 13. Note that in Fig. 8 the disagreement is
less compared to Fig. 13.

The results indicate that NECBSC scattering
formulations in the creeping wave region of PEC
convex surfaces need more  theoretica
investigations. This was also observed in earlier
investigations [9] and [10]. In both these cases the
high-frequency fields in the creeping wave region of
a PEC dlliptic and circular cylinders were found to
disagree with the exact analysis for the same
problem. The numerical results for the embedded
element pattern for investigation presented here
appears to confirm the earlier conclusionsin [9] and
[10] for asimilar (but not identical) problem.

Finally, our results are at variance with the
earlier investigations in [11]. The analysis in [11]
was specificaly for aline source. In particular, this
present study did not investigate in detail the effects
decreasing s/A height as was done in [11]. The
minimum height chosen was s/4 = 0.25 for the
results in this paper, while in [11] the UTD curved
surface scattering formulations were studied for
very smal heights s/A = 0.05. The choice of the
minimum height in this paper specifically focused
on examining the limits of applicability of the
NECBSC code, and not necessarily the generd
UTD formulations.

To that end, it appears instructive following the
results and conclusions in [11] to examine the
effects of the height factor in view of the more
recent work in [6]. The various high-frequency
formulations and their regions of validity has been
studied there, and its application to conformal dipole
arrays such as in [8] needs to be more carefully
investigated.
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Fig. 6. Comparison of radiation patterns vs. azimuth
angle ¢, in the 8 = 90° plane for a 7-element A/2
dipole array with centra element excited and all
others terminated in a 50Q load ka = 10, s/A =
0.25, b/A=0.5, L/A=0.5, a =18.013°, and
cylinder height is H/A = 10.
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Fig. 7. Comparison of radiation patterns vs. azimuth
angle ¢, in the 8 = 90° plane for a 7-element A/2
dipole array with centra element excited and all
others terminated in a 50Q load ka = 20, s/A =
0.25, b/A=0.5, L/A=0.5, a=9.006°, and
cylinder height is H/A = 10.
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Fig. 8. Comparison of radiation patterns vs. azimuth
angle ¢, in the 8 = 90° plane for a 7-element A/2
dipole array with centra element excited and all
others terminated in a 50Q load ka = 30, s/A =
0.25, b/A=0.5, L/A=0.5 a=6.005°, and
cylinder height is H/A = 10.

Fig. 9. All of the datais the same asin Fig. 8 above.
For NECBSC results, the currents on the dipoles
were approximated as that on the central segment of
each dipole. The data hereistaken from[15].
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Fig. 10. Comparison of radiation patterns vs.
azimuth angle ¢, in the 8 = 90° plane for a 7-
element A/2 dipole array with central element
excited and all others terminated in a 50Q load
ka =40, s/ = 0.25, b/A=0.5, L/A=05, a=
4.497°, and cylinder heightis H/A = 10.
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Fig. 11. Comparison of radiation patterns vs.
azimuth angle ¢, in the 8 = 90° plane for a 7-
element A/2 dipole array with central element
excited and all others terminated in a 50Q load
ka =60, s/, =0.25, b/A=0.5, L/A=0.5, a=
2.923°, and cylinder height is H/A = 10.
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Fig. 12. Comparison of radiation patterns vs.
azimuth angle ¢, in the 8 = 90° plane for a 7-
element A/2 dipole array with central element
excited and all others terminated in a 50Q load
ka =80, s/A =0.25, b/A=0.5, L/A=0.5, a =
2.207°, and cylinder height is H/A = 10.
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Fig. 13. Comparison of radiation patterns vs.
azimuth angle ¢, in the 8 = 90° plane for a 7-
element A/2 dipole array with central element
excited and al others terminated in a 50Q load

ka =30, s/A = 0.5, b/A = 0.5,
cylinder height is H/A = 10.

L/A = 0.5, and
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NEC-BSC|
o FEKO
WIPL-D

+1g0- ~165°

Fig. 14. Comparison of radiation patterns vs.
azimuth angle ¢, in the 8 = 90° plane for a 7-
element A2 dipole array with central element
excited and al others terminated in a 50Q load
ka =30, s/» =0.75, b/A=0.5, L/A=0.5 and
cylinder height is H/A = 10.

. NEC—BSC_
FEKO |-

Fig. 15. Comparison of radiation patterns vs.
azimuth angle ¢, in the 8 = 90° plane for a 7-
element A/2 dipole array with central element
excited and al others terminated in a 50Q load
ka =30, s/A=1.0, b/A=0.5, L/A=0.5 and
cylinder height is H/A = 10.



IV. Summary and Conclusion

In this investigation a technique by which
mutual coupling effects can be included while
modeling a conformal dipole array via the high-
frequency NECBSC code, has been developed by
utilizing the output from the exact integral equation
solver as contained in the commercialy available
FEKO code. The embedded element patterns for a
seven element array were compared via FEKO,
WIPL-D and NECBSC codes. The results showed
that in the deep shadow region the disagreements
were more pronounced for cylinders with
electrically large radius of curvature. This is an
interesting observation because NECBSC is
expected to be more accurate as the cylinder size
increased. Furthermore, it was found that the effect
of the curvature on the element currents in the
dipole array was insignificant beyond ka = 50.
Thus, it was concluded that for electricaly large
conformal dipole arrays the solution to the dipole
currents can be obtained to a reasonable degree of
accuracy by solving an electricaly smaller problem
viathe exact solvers such as FEKO or WIPL-D. The
results of this investigation thus provide a
computationally efficient strategy for determining
radiation behavior of electrically large conformal
arrays.
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