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Abstract ─ The numerical study of electrocardiology 

involves prohibitive computational costs because of its 

complex and nonlinear dynamics. In this paper, a low-

dimensional model of the cardiac monodomain 

formulation has been developed by using the deep 

learning method. The restricted Boltzmann machine and 

deep autoencoder machine learning techniques have 

been used to approximate the cardiac tissue’s full order 

dynamics. The proposed reduced order modeling begins 
with the development of the low-dimensional 

representations of the original system by implementing 

the neural networks from the numerical simulations of 

the full order monodomain system. Consequently, the 

reduced order representations have been utilized to 

construct the lower-dimensional model, and finally, it 

has been reconstructed back to the original system. 

Numerical results show that, the proposed deep learning 

MOR framework gained computational efficiency by a 

factor of 85 with acceptable accuracy. This paper 

compares the accuracy of the deep learning based model 

order reduction method with the two different techniques 
of model reduction: proper orthogonal decomposition 

(POD) and dynamic mode decomposition (DMD). The 

model order reduction deploying the deep learning 

method outperforms the POD and DMD concerning the 

modeling accuracy.  

 

Index Term ─ Autoencoder, Cardiac monodomain model, 

deep learning technique, dynamic mode decomposition, 

proper orthogonal decomposition, reduced order modeling, 

semi-implicit scheme. 
 

I. INTRODUCTION 
Cardiac electrophysiology is a bioelectromagnetic 

phenomenon, where the electrical activities of the  

heart tissue are studied. Electrocardiological numerical 

simulations seek reliable and efficient mathematical 

models for cellular membrane dynamics. The 

monodomain equation used to model the cardiac 

electrical activity requires the solution of a nonlinear 

partial differential equation with appropriate boundary 

and initial conditions [1]. The monodomain equation 

leads to a complex dynamical system because of the 

involvement of the nonlinearity of different ionic 

currents and steep wavefront propagation. The solution 

of the monodomain equation can be obtained with 

various numerical techniques, e.g., finite volume method 

(FVM), finite difference method (FDM), and finite 

element method (FEM). The discretization of the 
monodomain equation with the finite difference method 

involves a large number of degrees of freedom [2]. In  

the literature, reduced order modeling has been studied 

to approximate the nonlinear dynamics of the complex 

systems. The most widely used order reduction method 

is the proper orthogonal decomposition (POD) 

technique, which captures the characteristic dynamics of 

the original discretized system [3]. POD is a projection-

based model order reduction method, where a lower 

order basis is computed first from the original system. 

Finally, the reduced order model is obtained from the full 

order model's projection onto this small dimensional 
POD basis. The approximation of the obtained reduced 

order model requires considerably less computational 

complexity, with insignificant compromise on the 

accuracy. Different model order reduction approaches 

have been successfully applied in the field of cardiac 

electrophysiology, such as POD [4] and dynamic mode 

decomposition method (DMD) [5].  

The neural network is a machine learning algorithm, 

loosely modeled from the human brain, which has been 

designed to detect a similar pattern in the data. Many 

machine learning algorithms have been successfully 
used in the field of dimensionality reduction to reduce 

overfitting, data preprocessing, and simpler data 

visualization [6]. Autoencoder, also known as auto-

associative neural network, with three delicate layers,  

is an unsupervised learning algorithm. It is a neural 

network that learns the original system with multiple 

levels of representations and can predict the nonlinear 

dynamics of the data [7]. Autoencoder is primarily 
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composed of two networks, an encoder, and a decoder. 

The encoder is an analysis network which learns to 

detect all the most significant characteristics and hidden 

representations of the input high fidelity system. The 

encoder has a representation of latent-space, which 
contains the compressed essential properties of the  

input nodes [8]. The decoder is a synthesis network  

that recomposes the exact system from the hidden 

representations with minimum reconstruction error. 

Autoencoder with single perceptron and linear activation 

in the projection and reconstruction phases works almost 

similar to the state-of-the-art dimensionality reduction 

method principal component analysis (PCA).             

In this work, the dimension or order of the 

transmembrane potential of the cardiac monodomain 

system has been effectively reduced with the 

implementation of a deep autoencoder based deep 
learning approach. As opposed to a traditional 

autoencoder, it consists of additional deep-belief layers 

and consequently learns more complex features. The 

restricted Boltzmann machine (RBM), which is the 

elementary element of the deep-belief networks, 

constructs the deep autoencoder architecture's complex 

layers. In the first step, the high dimensional 

spatiotemporal dynamics of the monodomain model has 

been minimized to lower order representations. Next, the 

lower order representations have been approximated to  

a reduced order dynamic model, which can replicate  
the dynamics of the original system. Finally, the 

approximated solution is reconstructed from the 

prediction of the lower order model. The computational 

efficiency and modeling accuracy of the proposed order 

reduction approach are examined and compared with the 

popular proper orthogonal decomposition and dynamic 

mode decomposition methods. 

 

II. FULL ORDER CARDIAC 

MONODOMAIN GOVERNING EQUATION 
This paper considers the nonlinear partial 

differential monodomain equation describing the 

dynamics of cardiac electric transmembrane potential 

𝑉̅  =  𝑉(𝑥̅, 𝑡), which can be formulated as: 

 {

δ𝑉

δt
  =   

1

𝐶𝑚
 {
1

𝛽
[𝛻 ∙ (𝜎̿𝑖  𝛻𝑉̅) + 𝐼𝑠𝑖]  − ∑𝐼𝑖𝑜𝑛(𝑉̅,𝑤) }

𝑑𝑤

𝑑𝑡
+ 𝑔(𝑉̅, 𝑤) = 0,

 (1) 

with Neumann boundary conditions and initial condition 

𝑉(𝑥̅, 0) = 𝑉0(𝑥̅) and 𝑤(𝑥̅, 0) = 𝑤0(𝑥̅). The equation is 

considered in a spatial domain of Ω ∈ ℝ3, which is the 

considered section of the myocardium, and a temporal 

domain of 𝑡 ∈ [0, 𝑇]. Here, 𝐶𝑚 denotes the membrane 

capacitance per unit area, and 𝛽 is the ratio of the 

membrane surface area to volume. 𝜎̿𝑖 is the intracellular 

anisotropic conductivity tensor, which changes 

continuously with the fiber angle rotation, and 𝐼𝑠𝑖 
represents the intracellular source current, which initiates 

the stimulation. 

The reaction element in the governing equation  

is the ionic current term, ∑𝐼𝑖𝑜𝑛(𝑉̅,𝑤), which has a 

nonlinear relation with the transmembrane potential and 

the gating parameters 𝑤(𝑥̅, 𝑡). The Luo-Rudy model has 

been applied to obtain the ionic current, which yields the 

solution of eight coupled nonlinear ordinary differential 

equations. The finite difference method has been used to 

discretize the spatial derivatives of the Laplacian term of  

(1) [9]. The temporal discretization has been achieved by 

implementing the semi-implicit method [10], which 

leads to: 

{[𝐼] − 
θ∆𝑡

𝐶𝑚𝛽
[𝐷𝑜]}⏟          

[𝐴]

𝑉̅𝑛+1⏟
𝑥̅

=

    𝑉̅𝑛 +
(1−θ)∆𝑡

𝐶𝑚𝛽
[𝐷𝑜]𝑉̅

𝑛 + ∆𝑡[
1

𝐶𝑚𝛽
𝐼𝑠̅𝑖
 𝑛+1 −

1

𝐶𝑚
∑𝐼̅̅ ̅̅ 𝑖𝑜𝑛

𝑛
]

⏟                              
𝑏̅

,   (2) 

where θ = 0.5 represents the Crank-Nicolson semi-

implicit temporal parameter. The two major excessive 

computational components at each time step involve the 

solution of the matrix equation    (2) and evaluation of 

the ionic current, which includes the calculation of the 

gating parameters and the solution of the ODEs. 
 

III. REDUCED ORDER MODELLING WITH 

DEEP LEARNING APPROACH 
Considering only spatial approximation, the 

governing nonlinear cardiac monodomain equation 

transforms into a system of ordinary differential equation 

in the time domain as: 

                                      
𝑑𝑉

𝑑𝑡
= 𝑓̅(𝑉̅, 𝑡)                           (3)       

where 𝑓̅ is a set of nonlinear functions. The snapshots of 

the original spatiotemporal dynamic system have been 

obtained from its numerical simulations using    (2). The 

snapshots are obtained from the finite difference solution 

of the full order monodomain system at the 𝑁 spatial 

locations 𝑥1, … , 𝑥𝑁, and 𝑀 temporal instances 𝑡1, … , 𝑡𝑀 

∈ [0, 𝑇]. The ultimate goal of this work is to derive  

a lower order solution 𝑉𝑟 from the high fidelity  

snapshot matrix of the transmembrane potential solution 

{𝑉(𝑥𝑖 , 𝑡)𝑖=1,𝑡=1
𝑁,𝑀 }.  

First, a lower order representation 𝑉1 can be derived 

from the nonlinear projection 𝑓1: ℝ
𝑁 → ℝ𝑁𝑟  as: 

          𝑉1 = 𝑓1(𝑉) ,                             (4) 

where 𝑁𝑟 is the reduced dimension with 𝑁𝑟 ≪ 𝑁. Next, 

the reduced order dynamic modeling of the lower 

dimensional representations is completed. As the 

dimension has been reduced, the reduced order modeling 

involves fewer computational resources than the original 

full order model. After applying the lower dimensional 

dynamic modeling, the reduced order form of (3) will be 
𝑑𝑉𝑟̅̅ ̅

𝑑𝑡
= 𝑓𝑟̅(𝑉1̅, 𝑡), where 𝑉𝑟 is the predicted solution of the 

cardiac transmembrane potential. Finally, the reduced 
order solution is reconstructed back to the approximated 
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solution by implementation the nonlinear reconstruction 

function 𝑓2: ℝ
𝑁𝑟 → ℝ𝑁 as: 

           𝑉̃ =  𝑓2(𝑉𝑟).                                (5) 

   

 
 

Fig. 1. Neural network based model order reduction 

architecture. 

 
The modeling accuracy of the proposed order 

reduction method will be evaluated by minimizing  

the RMS error between the original solution 𝑉 and 

approximated solution 𝑉̃ of the cardiac transmembrane 

potential. During the training stages of the deep 

autoencoder architecture, the RMS error of the following 

cost function is minimized:   

            𝑓(𝑉, 𝑉̃) = √
∑ (𝑉−𝑉 )2𝑀
1

𝑀
 .                           (6) 

Here 𝑀 denotes the total number of the training dataset. 

The projection and reconstruction should be performed 

simultaneously for a good approximation of the original 

spatiotemporal dynamics.  

Figure 1 shows the architecture of the proposed 

neural network based model order reduction method. In 

Fig. 1, the hidden layers of the autoencoder are composed 

of the projection layer 𝑓1, intermediate bottleneck layer 

for reduced order modeling, and the reconstruction layer 

𝑓2 . Nonlinear sigmoid activation functions have been 
used for the nodes of the projection and reconstruction 

layers, as: 

       
𝑓1(𝑉)=𝜎𝑛(𝑊𝑛(𝜎1(𝑊1𝑉+𝑏1)+⋯+𝑏𝑛))

𝑓2(𝑉𝑟)=𝜎1(𝑊1
′(𝜎𝑛(𝑊𝑛

′𝑉𝑟+𝑏𝑛)+⋯+𝑏1))
,       (7) 

where 𝜎𝑖 is the sigmoid function of 𝑖𝑡ℎ layer, 𝑊𝑖 and 𝑏𝑖 
denote the weights and bias between the layers 𝑖 and 𝑖 + 1. 

 

III. RESULTS AND DISCUSSION 
In this section, numerical performances of the 

proposed deep learning based order reduction approach 

on the cardiac monodomain equation will be presented. 

A three-dimensional myocardial tissue of 0.5 cm × 0.1667 

cm × 0.1667 cm has been considered as the computational 

domain. The longitudinal (𝑥) and transverse (𝑦 and 𝑧) 

conductivities to the fiber have been assigned as: 𝜎𝑖𝑙 = 

0.174 S/m and 𝜎𝑖𝑡 = 0.0193 S/m [9]. The tissue was 

stimulated by a point current source at one corner of 𝐼𝑠𝑖 

= 500𝛽 with a duration of 1 ms and 𝛽 = 2000 𝑐𝑚−1. The 

first order semi-implicit method (𝜃 = 0.50) and the 

second order central finite difference technique have 

been utilized for the temporal and spatial discretizations, 

respectively. 
 

 
 

Fig. 2. RMS error (mV) vs the number of epochs during 

the backpropagation process. 

 

The proposed model order reduction method 

initiates with the construction of the snapshots from the 

above-mentioned full order monodomain simulations 

with a time step size of ∆𝑡 = 0.01 ms and for a time 

domain of 𝑡 ∈ [0, 20 ms]. The deep autoencoder 

architecture comprises two symmetrical deep-belief 

networks for encoding and decoding functions, with 8 

RBM layers and 40 neurons in each of the hidden layers. 

75% of the full order simulation data at time domain 𝑡 ∈ 

[0, 15 ms] was used for training, and the remaining data 

(𝑡 ∈ [15, 20 ms]) was utilized for the testing of the 

proposed algorithm, and the training of the model has 
been performed on the Google Collaboratory. The 

backpropagation training error in Fig. 2 confirms the 

convergence of the deep learning process. Next, the 

number of reduced order modes is varied to study the 

efficiency of the MOR method. The RMS error decreases 

by almost 50% with the increase of the reduced order 

modes from 100 to 180. Figure 3 demonstrates that the 

modeling accuracy does not improve significantly if the 

modes number is increased after that, and hence the 

reduced order modes number is set to 180. 
 

 
 

Fig. 3. RMS error (mV) for different number of reduced 

order modes. 
 

Finally, the predicted solution is reconstructed back 

to the full order system to obtain the error between the 

original and reduced order solutions. The waveforms  
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of the original and approximated solutions of the 

transmembrane potential have been shown in Fig. 4 at a 

specific spatial point in the computational domain (𝑥 = 

0.25 cm and 𝑦 = 𝑧 = 0.083 cm). The close agreement of 
the full order and reduced order solutions confirms the 

proposed method is capable of offering an accurate 

reconstruction of the transmembrane potential most of 

the time, and subsequently, the accuracy of the neural 

network based order reduction method. Next, the RMS 

error has been calculated the solutions, and it has been 

compared with the error obtained from the POD and 

DMD methods. According to Table 1, the proposed deep 

learning MOR technique offers approximately 4.65 and 

2.41 times better modeling accuracy in terms of RMS 

error than the POD and DMD methods, respectively. 
  

 
 

Fig. 4. Cardiac transmembrane potential waveforms  

of the original solution (𝑉 in red solid line) and 

approximated solution (𝑉̃ in black dashed line). 
 

Table 1: RMS error of the transmembrane potential 

between the full order and reduced order solutions for 

different MOR methods 

Order Reduction Techniques RMS Error (mV) 

DMD 0.762 

POD 0.396 

Proposed deep learning 0.164 

 
Finally, the acquired CPU time reduction factor of 

the proposed deep learning based MOR method has been 

investigated. All the simulations have been performed on 

a 2.4-GHz Intel Xeon E5645 processor. The required 

CPU time to obtain the full order and reduced order 

solutions are 5,399 s and 65 s, respectively. The CPU 

time for the proposed neural network method has a 

reduction factor of almost 85. The CPU time includes the 

required time for the online modeling and decoding 

steps, i.e., the prediction stage and the reconstruction 

phase of the original solution. It is interesting to note 
that, the mentioned CPU time does not include the 

training time, as well as, the required time to obtain the 

reduced order basis as this step is performed only once.  
 

V. CONCLUSION 
In this paper, a neural network method has been 

used for the first time to reduce the order of the cardiac 

complex monodomain system. An unsupervised machine 

learning approach, deep autoencoder, has been used  

for this purpose of dimensionality reduction. The 

autoencoder maps the full order system into a lower 

feature representation, as well as reconstructs the 

original solution from the compressed latent-space 
representations. Numerical results demonstrate that,  

the proposed MOR method achieved remarkable 

computational savings with a factor of almost 85. A 

significant contribution of this work is to compare the 

modeling accuracy of the proposed deep learning based 

technique with the conventional order reduction methods, 

POD, and DMD. The proposed MOR method has a 

better accuracy of dimension reduction than the POD and 

DMD. In the future, the proposed deep learning MOR 

strategy can be applied to the cardiac bidomain system. 

 

REFERENCES 
[1] P. C. Franzone, L. F. Pavarino, and B. Taccardi, 

“Simulating patterns of excitation, repolarization 

and action potential duration with cardiac bidomain 

and monodomain models,” Mathematic Biosciences, 

vol. 197, pp. 35-66, 2005. 

[2] S. Gandhi and B. J. Roth, “A numerical solution of 

the mechanical bidomain model,” Computer Methods 

in Biomechanics and Biomedical Engineering, vol. 

19, pp. 1099-1106, 2016. 
[3] C. F. Wang, “Efficient proper orthogonal decom-

position for backscatter pattern reconstruction,” 

Progress in Electromagnetics Research, vol. 118, 

pp. 243-251, 2011. 

[4] C. Corrado, J. Lassoued, M. Mahjoub, and N. 

Zemzemi, “Stability analysis of the POD reduced 

order method for solving the bidomain model  

in cardiac electrophysiology,” Mathematical Bio-

sciences, vol. 272, pp. 81-91, 2016. 

[5] R. Khan and K. T. Ng, “DMD-Galerkin model 

order reduction for cardiac propagation modeling,” 
Applied Computational Electromagnetics Society 

Journal, vol. 33, pp. 1096-1099, 2018. 

[6] X Geng, D. C. Zhan, and Z. H. Zhou, “Supervised 

nonlinear dimensionality reduction for visualization 

and classification,” IEEE Transactions on Systems, 

Man, and Cybernetics, Part B (Cybernetics), vol. 

35, pp. 1098-1107, 2005. 

[7] M. K. Lee and D. S. Han, “A numerical solution  

of the mechanical bidomain model,” Electronics 

Letters, vol. 11, pp. 655–657, 2012.  

[8] Y. Wang, H. Yao, and S. Zhao, “Auto-encoder 

based dimensionality reduction,” Neurocomputing, 
vol. 184, pp. 232-242, 2016. 

[9] R. Khan and K. T. Ng, “Higher order finite 

difference modeling of cardiac propagation,” IEEE 

International Conference on Bioinformatics and 

Biomedicine (BIBM), Kansas City, MO, pp. 1945-

1951, 2017. 

[10] M. Ethier and Y. Bourgault, “Semi-implicit time- 

ACES JOURNAL, Vol. 36, No. 8, August 20211123



discretization schemes for the bidomain model,” 

SIAM Journal on Numerical Analysis, vol. 46, pp. 

2443-2468, 2008. 

 

 
 

 

Riasat Khan is an Assistant Prof-

essor of the Electrical and Computer 

Engineering Department at North 

South University, Bangladesh. He 

obtained his M.S. and Ph.D. degrees 

in Electrical Engineering from New 

Mexico State University, Las Cruces, 

NM. His research interests include 

cardiac electrophysiology, bioelectromagnetics, compu-

tational electromagnetics, model order reduction, and 
power electronics.  

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Kwong T. Ng is a Professor of the 

Electrical and Computer Engineering 

department at New Mexico State 

University, Las Cruces, NM. He 

received the M.S. and Ph.D. degrees 
from The Ohio State University, 

Columbus, in 1981 and 1985, 

respectively. His current research 

interests include bioelectromagnetics, computational 

electromagnetics, and biomedical instrumentation. 

KHAN, NG: MODEL ORDER REDUCTION OF CARDIAC MONODOMAIN MODEL 1124




