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Abstract ─ The action performance and reliability of 

electromagnetic devices is critical to the entire working 

system. In this paper, a new method for calculating the 

output characteristics of electromagnetic devices is 

proposed. This method uses the multi-kernel radial basis 

function neural network (MK-RBFNN) approximation 

modeling by the finite element calculation results at 

the key nodes. It obtains the output response of the 

electromagnetic device under different coil voltages 

and air gaps. The key of establishing a MK-RBFNN is 

to obtain the weight coefficients of each single-kernel 

radial basis function (RBF) model by using a heuristic 

weighting strategy. When the electromagnetic output 

characteristics is calculated in the optimization design of 

the electromagnetic device, this method solves the 

problem that the traditional method is difficult to balance 

the calculation accuracy and speed. The effectiveness of 

the method is verified by the calculation results of the 

electromagnetic torque of a typical electromagnetic relay. 

Index Terms ─ Electromagnetic device, finite element, 

multi-kernel radial basis function, neural network, 

optimal design. 

I. INTRODUCTION
The key to the optimal design or robust design of the 

electromagnetic device is to analyze the influence of the 

input parameters on the output characteristics, and it is 

necessary to repeatedly calculate the static characteristics 

[1]. The existing methods for solving output 

characteristics of electromagnetic devices mainly include 

magnetic equivalent circuit method (MEC), finite 

element method (FEM) and approximation model, but 

they all need to be further improved. In this paper, the 

multi-kernel RBF neural network is used to solve the 

output characteristics of the electromagnetic device, 

which can further improve the calculation speed while 

ensuring the calculation accuracy. 

The traditional MEC has high computational 

efficiency but its calculation accuracy is not good 

because of neglecting magnetic flux leakage and 

magnetic saturation. Therefore, many researchers have 

conducted research in recent years to improve the 

calculation accuracy of MEC. Amrhein and Krein [2] 

used the magnetic resistance network method to 

establish a three-dimensional magnetic circuit model of 

the electromagnetic device based on the distribution 

of the spatial magnetic field. However, this method 

complicates the analysis of the magnetic circuit and 

increases the amount of calculation for non-linear 

solutions. It still has not improved the calculation 

efficiency. 

The high accuracy and time-consuming 

characteristics of FEM make it difficult to adapt to a 

robust design or optimization process. The researchers 

tried to combine the advantages of FEM and MEC to 

establish an approximate model of the electromagnetic 

output response. Encica et al. [3] used the idea of spatial 

mapping to construct a geometric model whose matching 

result matched the finite element. However, it is difficult 

to establish a mapping relationship in a complex 

magnetic circuit with multiple design parameters. 

The wide application of intelligent algorithms 

has led researchers to try to establish an approximate 

model through mathematical methods to achieve rapid 

calculation of electromagnetic characteristics. Xia et al. 

[4] constructed the Kriging approximation model of the

electromagnetic device and optimized the parameters of

the superconducting coil. The accuracy of the Kriging

method depends on the choice of the basis function

type. However, there is currently no uniform method

to select this basis function. An approximate model of

the electromagnetic device obtained using the custom

interpolation function is presented in [5]. This method

uses a custom interpolation function, but it is difficult to

construct a suitable interpolation function according to

different electromagnetic devices.

In 1989, Jackson demonstrated the approximation 

performance of Radial basis function (RBF) neural 

networks for nonlinear continuous functions. Papers 

[6,7] showed the advantages of RBF neural networks in 

predicting compared to other neural networks through 

experiments in different fields. Benbouza [8] explored 

the effects of radial basis functions in the field of 
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electromagnetic computing. Papers [9] improved the 

existing RBF neural network to meet the needs of 

different occasions. A number of studies have shown that 

the RBF approximation model has higher predicting 

accuracy than other approximation models in the case of 

linearity, weak nonlinearity and strong nonlinearity. 

These findings provide support for the application of 

RBF neural networks in the field of electromagnetic 

device computing. 

This paper aims to propose a new method for 

calculating the output characteristics of electromagnetic 

devices quickly and accurately. The method adopts the 

idea of approximate modeling. By selecting the finite 

element calculation results at key nodes as sample 

points, a MK-RBFNN is constructed to determine the 

output characteristics (electromagnetic torque) of 

electromagnetic devices under different coil voltages 

and air gaps. As a case study of the clapper-type 

electromagnetic mechanism of a typical electromagnetic 

relay, the accuracy and rapidity of the method are 

verified significantly and effectively. 
 

II. METHOD DESCRIPTION 
The implementation steps of the novel method 

proposed in this paper are shown in Fig. 1. It makes great 

use of the advantages of each single-kernel RBF neural 

network, which can quickly and accurately calculate the 

output characteristics of the electromagnetic device. 
 

Latin hypercube sampling

Establishing a finite element calculation model to obtain output data 

of sample points

Inputting each single-kernel RBF neural network for training

Calculating weight coefficient

Start

Error verification

End

Satisfied

EstablishIng multi-kernel RBF neural network calculation model

Unsatisfied

 
Fig. 1. Flow chart of method for output characteristics 

calculation of electromagnetic device. 
 

A. Latin hypercube sampling 

(a) Determining input variables and output variables 

The appropriate input variables and output variables 

must be selected before the test design, which is the 

premise of the approximate numerical calculation. 

Taking a rotating electromagnetic device as an example, 

the differential equation of electromagnetic output 

characteristics can be established by the voltage balance 

equation and the D'Alembert [10] equation of motion, 

the expression is: 
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In (1), 
0u   is the power supply voltage of the coil 

circuit; i is the current of the coil; R is the resistance of 

the coil;   is the flux linkage; J is the torque of inertia; 

  is the angular velocity; U is the voltage of the coil;   
is the rotation angle of armature; T is the electromagnetic 

torque; 
fT  is mechanical torque.  

The coil voltage U and the rotation angle   of 

armature of the electromagnetic device will vary over 

time during operation. In the dynamic characteristic 

calculation process, it is necessary to analyze the 

electromagnetic characteristics corresponding to different 

voltages U and different rotation angles  . U and   in 

(1) have two conditions: static (U and   are fixed), 

dynamic (U and   follow Change of time).  

Therefore, the voltage U and the rotation angle   
are input variables, and the electromagnetic torque T of 

the armature is the output variable when calculating the 

output characteristics of the rotating electromagnetic 

device. 
 

(b) Generating sample data 

The basis of constructing the approximate model is 

sample data. The appropriate number of experimental 

data with uniform distribution can better reflect the 

information of the whole space. Conversely, improper 

sample data will result in a model with poor fitting 

accuracy, and even get the wrong model, so it is especially 

important to choose the appropriate experimental design 

method. 

The Latin hypercube sampling (LHS) [11] method 

was proposed by M. D. McKay and R. J. Beckman in 

1979. The LHS is a method of approximately random 

sampling from a multivariate parameter distribution. The 

basic principle is: if N sample points need to be collected, 

then the interval with m variables is divided into N 

intervals with equal probability, take a random value for 

each variable in each interval, so each variable has N 

values. Finally, the N values of m groups are randomly 

combined into a whole sample. 

The LHS steps can be summarized as the following 

three steps: 

i) Selecting the parameters to be sampled. Such as 

the rotation angle   of armature and the voltage U of coil. 

ii) Generating random number. Each variable ix  is 

divided into K non-overlapping intervals with equal 
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probability, the probability of each interval is 1 k , then 

a representative parameter k

ix  is generated from each 

subinterval with equal probability. This parameter is 

usually the midpoint of the interval. 

iii) Generating samples. The representative samples 

of each parameter k

ix  are arranged by random number. 

Thus, N random combinations are formed, each of which 

contains a representative sample k

ix  of all variables. 

The LHS ensures that the sample points taken 

represent the entire design space, and each level of each 

design variable is considered only once. Therefore, the 

sample points obtained by this method are less repetitive, 

and the number of samples can be set flexibly, which has 

good sampling efficiency and balance performance. This 

paper uses the LHS method for initial sampling based on 

the above advantages when establishing an approximate 

calculation model for electromagnetic devices. 
 

B. Establishing finite element calculation model 
The solution of electromagnetic field is generally 

based on Maxwell’s equations, and the FEM is one  

of the most advanced and powerful methods for  

solving Maxwell’s equations [12]. FLUX is the leading 

simulation software for electromagnetic and thermal 

calculations based on finite element theory developed by 

Altair [13].  

The simulation calculation process includes 

geometry, meshing and physical description, these 

preparations make the established model as close as 

possible to the real model. The basic steps of establishing 

the finite element model of electromagnetic equipment 

with the FLUX are shown in Fig. 2. 

 

Establishing a three-

dimensional parametric 

model of 

electromagnetic 

mechanism in FLUX

Creating a 

geometric model 

and divide the 

finite element 

mesh

Setting physical 

properties, 

simulate static 

properties

Obtaining 

electromagnetic 

torque and flux at 

different currents 

and angles

 
 

Fig. 2. Basic steps of constructing a finite element 

calculation model. 

 

According to the finite element model established 

by FLUX software, the output response value of each 

input variable sample is calculated to form the sample set 

of corresponding output variables. 

 

C. Inputting each single-kernel RBF neural network 

for training 

In recent years, RBF have been widely studied in the 

field of neural networks. Their excellent interpolation 

quality has led to their application in computational  

electromagnetics [14]. The expression of the RBF is: 

   0

1

N

i i

i

ŷ x || x x ||  


   .                  (2) 

In (2), 
0  is a polynomial function (determined 

form), N is the size of the hidden layer, and its value 

generally does not exceed the number of sample points, 

i   is the weight value between the i-th input layer  

neuron and the p-th hidden layer neuron,   is the kernel 

function, also known as the transfer function of the 

hidden layer, ix
 
is the center of hidden layer node of 

neural network, .  is Euclidean distance.  

It is worth noting that the determination method of 

center ix . After testing, the commonly used k-means 

clustering algorithm is not ideal, and its global accuracy 

is poor. In this paper, the center ix  is determined based on 

the orthogonal least square (OLS) method. Because OLS 

finds the best function of matching data by minimizing 

the sum of squares of errors, it is possible to control the 

fitting accuracy by setting errors during the training 

process, and adaptively determine the number of hidden 

nodes according to the error requirements. On the contrary, 

in the process of using the k-means clustering algorithm, 

the number of hidden nodes needs to be determined first. 

Different values have a great influence on the results of 

the fitting calculation, which is inconvenient for the 

application of the method in this paper. 

The kernel functions commonly used in the RBF 

model are shown in Table 1 [15]. r represents the 

Euclidean distance between x and center ix . The shape 

parameter c can be specified by experience. 
 

Table 1: Commonly used kernel functions in the RBF 

model 

Name Expression Abbreviation 

Linear Function  r r   LN 

Cubic Function    
3

r r c    CB 

Thin Plate 

Spline 
     2 2r r c ln r c     TPS 

Multi-quadric 

Function 
  2 2r r c    MQ 

Inverse Multi- 

quadric Function 
 

2 2

1
r

r c
 


 IMQ 

Gaussian 

Function  

2

22

r

cr e


  GA 

 

According to the test, the application effect of the 

last four kernel functions in Table 1 is better. The single-

kernel RBF neural network with them as kernel functions 

has a good fitting effect on the output characteristics of 

electromagnetic equipment. 
 

D. Establishing MK-RBFNN calculation model 

(a) Introduction of MK-RBFNN model 

The RBF model has strong nonlinear mapping ability 

and optimal function approximation performance, and has 

fast calculation speed. However, further research shows 
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that its robustness is poor, so it is necessary to choose 

different kernel functions to build RBF model according 

to different problem types. In view of the above 

shortcomings, this paper proposes a MK-RBF model 

constructed by multiple kernel functions based on the 

merits of each kernel function. This model has higher 

fitting precision and stronger robustness than the general 

RBF model constructed by a single kernel function. 

According to the four kernel functions mentioned in 

Section IIC, the MK-RBFNN model is established. The 

expression are: 

   
1

1

1

M

MK RBF i i
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M
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ˆ ˆy x y x














 






.                    (3) 

In (3), M is the number of single-kernel RBF models 

needed to construct the final MK-RBF neural network 

model, MK RBFŷ    is the predicted value of the MK-RBF 

neural network model,  iŷ x   is the predicted value of 

the i single-kernel RBF neural network model, and 
i  is 

the weight coefficient corresponding to the i single-

kernel RBF neural network model. 

The establishing structure of the multi-kernel RBF 

neural network model are shown in Fig. 3. 
 

Get the initial sample sets S

Establish TPS-RBF 

neural network

Establish MQ-RBF 

neural network

Establish IMQ-RBF 

neural network

Establish G-RBF 

neural network

Use heuristic weighting strategy to 

determine the weight value of each 

submodel

Establish initial MK-RBF neural network

Whether the accuracy 

requirements are met

Output the final MK-RBF neural network

Increase sample 

point

yes

no

 

Fig. 3. Establishing structure of MK-RBFNN model. 

 

(b) Calculating weight coefficient 

The weight coefficient is very important in 

constructing the final approximation model. The 

heuristic weighting strategy can better balance the 

weight values of each single-kernel RBF model, and can 

make the final MK-RBF model get better fitting effect. 

The basic expressions are: 
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In (4), 1, 0,        and    respectively 

represent parameters that have a large influence on the 

degree of emphasis on the constituent model. A smaller 

  values and a larger | |  values indicate higher weights 

for single-kernel RBF models with higher prediction 

accuracy. A larger    value and a smaller | |   value 

indicate a higher average confidence for each single-

kernel RBF model. According to experience, this paper 

takes 0 05 1. ,     , so that each single-kernel RBF 

model has the optimal weight coefficient. In this paper, 
iE  

is generally obtained by Generalized Mean Square Cross-

validation Error (GMSE). The expression is: 

  
2

1

1 k
j

i i j j

j

ˆE GMSE f f
k





   .              (5) 

In (5), k represents the total number of sample points 

taken by the i-th single-kernel RBF model, and 
 j
jf̂


 

represents the predicted value of the i-th single-kernel 

RBF model at point  j
x , which is constructed by the 

remaining 1k   points (excluding point   ,
j

jx f ). 
 

E. Error verification 

In the case of a fixed number of sample points, the 

researchers usually use some error indicators to evaluate 

the fitting accuracy of the approximate model. The error 

is further divided into relative error and absolute error. 

When the value of a certain type of data is originally 

small, the relative error can well characterize the fitting 

accuracy. Therefore, this paper chooses the relative error 

with strong applicability. 

In this paper, two global error indicators and one 

local error indicator are used to evaluate the performance 

of the model, as follows: 

a) Coefficient of multiple correlation (R2): 
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b) Relative root mean square error (RRMSE): 
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c) Relative maximum absolute error (RMAE): 

1 2
i i

i , ,...,m
ˆmax | y y |

RMAE
STD




 .                     (8) 

Where m represents the number of points sampled 

when validating the model, 
iy  represents the true value, 

iŷ   represents the predicted value obtained by the 

established model, and y  represents the average of all 

true values. MSE, Var, and STD represent the mean 

square error, the variance of the true value, and the 
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standard deviation, the calculation expressions are: 
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STD Var .                            (11) 

The global error indicators R2 and RRMSE are  

all related to the MSE. As can be seen from the above 

formulas, a larger R2 and a smaller RRMSE indicate  

a smaller MSE. The approximate model established at  

this time has a small global error and a high prediction 

accuracy. The local error indicator RMAE characterizes 

the local fitting accuracy of the approximate model. The 

smaller RMAE indicates that the approximate model  

has higher fitting accuracy. Otherwise, it indicates that 

the approximation model has poor fitting accuracy in a 

certain region.  
 

III. APPLICATION EXAMPLE: OUTPUT 

CHARACTERISTIC CALCULATION OF 

ELECTROMAGNETIC RELAY 

A. Introduction to application example 

Aiming at the above mentioned calculation method 

of multi-core radial basis function neural network 

applied in the field of electromagnetic calculation,  

this paper takes ARM2F relay as the research object, 

establishes a fast calculation model of armature 

electromagnetic torque of its electromagnetic system, in 

order to verify the effectiveness of this method. As 

shown in Fig. 4, the electromagnetic system of ARM2F 

relay belongs to a typical clapper-type electromagnetic 

structure, which is composed of yoke iron, armature, iron 

core and coil. 
 

 
 

Fig. 4. Structure of the ARM2F electromagnetic system. 
 

B. Method application 

The geometry of the coil is established in flux,  

and the input parameters of the coil are automatically 

generated by the software. Then, through generating  

grid, applying voltage (current), adding material B-H 

characteristics and other parameters, the software gets 

the flux density based on the finite element method, and 

gets the electromagnetic torque of the armature in the 

post-processing module. 

Taking the magnetic flux density of the 

electromagnetic mechanism with the 6V voltage and the 

rotation angle of armature at 2.1  as an example, the 

calculated flux density is shown in Fig. 5. 

In the range  0 24V 0 2 1U , .      of input 

parameters of electromagnetic system, 44 groups of 

sample points of input parameters are obtained by Latin 

hypercube sampling, and the output response of input 

samples is calculated by FLUX software to form the 

initial sample set S. 
 

 
(a) Isovalues 

 
(b) Arrows 

 

Fig. 5. Magnetic flux density (Isovalues and Arrows). 

 

 
  (a) Kernel function – IMQ 
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   (b) Kernel function – MQ 

 
  (c) Kernel function – TPS 

 
  (d) Kernel function – GA 

 

Fig. 6. Comparison of four single-kernel RBF neural 

network results and the FEM calculation results of test 

sample points. 
 

The sample set S is input into the single-kernel RBF 

neural networks with four different kernel functions for 

training, and four kinds of single-kernel RBF neural 

networks are obtained. 168 test sample points are taken 

at equal intervals within the range of input parameters of  

electromagnetic system, and the output response of test 

sample points is calculated by using the software of 

FLUX. The comparison between the calculation results  

of different single-kernel RBF neural network and the 

test sample results calculated based on the FEM is shown 

in Fig. 6. The total 8 curves in Fig. 6 represent the 

relationship between the rotation angle of armature and 

the output electromagnetic torque when the voltage is 24V, 

21V, 18V, 15V, 12V, 9V, 6V and 3V respectively. The 

RBF neural network models established with different 

kernel functions are shown in (a), (b), (c), and (d) of Fig. 

6. The kernel functions are IMQ, MQ, TPS, and GA. 

It can be seen from Fig. 6 that the calculated results 

of the RBF neural network trained by four different 

kernel functions are roughly the same as those of the 

finite element calculation of the test point in the range of 

6V-24V. But in the case of voltage below 6V, there is a 

large deviation. Low voltage will lead to a sharp decrease 

in the main flux of the coil, and the nonlinearity of 

electromagnetic torque with the change of rotation angle 

of armature is much higher than that of high voltage. 

Therefore, a small number of sample points make the 

prediction accuracy of RBF neural network sharply 

reduced in this range.  

In order to solve the problem of excessive local 

deviation, this paper constructs different neural networks 

in different intervals. For the part below 6V, increasing 

the sample points for neural network training. Specifically, 

in the voltage range of 0V-6V, 11 sampling points are 

obtained through LHS again. In this interval, an RBF neural 

network is additionally constructed with a similar kernel 

function to reflect the response of the electromagnetic 

torque to the armature rotation angle in this range. 
Ultimately, two RBF neural networks are constructed by 

using 55 samples in two intervals to calculate the output 

response in the whole range of input parameters. The final 

calculation results of this scheme are shown in Fig. 7. 
 

 
 (a) Kernel function – IMQ (two parts of RBFNN) 
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 (b) Kernel function – MQ (two parts of RBFNN) 

 
 (c) Kernel function – TPS (two parts of RBFNN) 

 
 (d) Kernel function – GA (two parts of RBFNN) 

 

Fig. 7. Comparison of two parts of four single-kernel 

RBF neural network results and the FEM calculation 

results of test sample points. 

 

It can be seen from Fig. 8 that the accuracy of  

the results calculated by the two-part neural network 

constructed by using the separated interval is significantly 

improved within the voltage of 6V. In order to balance 

the calculation accuracy in the global range of parameters, 

the MK-RBF neural network model constructed by 

multiple kernel functions is established by the method 

described in Section II. The weight coefficients of each 

single-kernel RBF neural network are calculated as 

shown in Table 2. The final calculation results of MK-

RBF neural network and the FEM calculation results of 

test sample points are shown in Fig. 8. 

 

Table 2: The weight coefficient of each single-kernel 

RBF neural network 

Type of Single-kernel RBF 

Neural Network 

Weight Coefficient 

  

IMQ-RBF 0.21608 

MQ-RBF 0.24299 

TPS-RBF 0.24292 

GA-RBF 0.29801 

 

 
 

Fig. 8. Comparison of MK-RBF neural network results 

and the FEM calculation results of test sample points. 

 

C. Analysis of calculation results of application 

example 

The calculation accuracy of MK-RBF neural 

network can be reflected by the error evaluation 

indicator. If the model has a large R2 and a smaller 

RRMSE and RMAE, which means that the model has 

higher prediction accuracy and fitting accuracy. 224 

error test sample points are randomly selected in the 

range of input parameters, and the output response 

(electromagnetic torque) of test sample points is 

calculated by finite element method. Finally, the error 

results of RBF neural network with different kernel 

functions are shown in Table 3. 

Whether it is to observe the comparison with the 

finite element results, or to compare the error evaluation 

indicators, it is found that the accuracy of each single-

kernel RBF neural network within the different variation 

range of the input variables is different. For example, the 

IMQ-RBF and MQ-RBF neural networks have higher 

calculation accuracy than the TPS-RBF and GA-RBF 

neural networks under the conditions of an armature 

rotation angle of 0.1° or below it. In the working 

condition about the rotation angle of armature of 0.1° or 

over it, it is obvious that the GA-RBF neural network has 
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higher calculation accuracy than the other three single-

kernel neural networks. 

 

Table 3: Error results of RBF neural network with 

different kernel functions 

Evaluation 

Indicator 

IMQ-

RBF 

MQ-

RBF 

TPS-

RBF 

GA- 

RBF 

MK-

RBF 

R2 0.99629 0.99567 0.99574 0.99529 0.99704 

RRMSE 0.06086 0.06582 0.06525 0.06857 0.05442 

RMAE 0.34876 0.36196 0.36784 0.29412 0.32147 
 

After the coil of the electromagnetic relay is excited 

by the rated voltage, with the increase of time, the 

rotation angle of the armature gradually approaches to  

0°, the voltage gradually rises to its rated voltage, and  

the electromagnetic torque of the armature gradually 

tends to the maximum value. So it is very important to 

accurately calculate the electromagnetic torque at high 

voltage and small angle. In this case, the calculation 

accuracy of MK-RBF neural network model is better 

than GA-RBF when the rotation angle of armature is 

within 0.1°. In 0.1°-2.1°, the calculation accuracy of 

MK-RBF neural network model is better than that of the 

other three RBF neural networks because of the addition 

of GA kernel function, which has reached a satisfactory 

level as a whole. 

It can be seen from Table 3 that the global error 

performance of the MK-RBF neural network is much 

better than any single-kernel neural network, and the 

local error can be controlled within a certain range. It 

combines the advantages of each single-kernel neural 

network and enhances the robustness of the calculation. 

 

IV. CONCLUSIONS 
Aiming at the need of rapidity and accuracy of  

the calculation process, this paper proposes a new 

method for calculating the output characteristics of 

electromagnetic devices. The following conclusions are 

obtained: 

a) In terms of computational efficiency, in the case 

of a coil voltage and an rotation angle of armature of the 

above mentioned clapper-type electromagnetic relay, it 

takes about 3.2 minutes to calculate the electromagnetic 

torque by the finite element method. The calculation 

takes only 0.412 seconds to use the multi-kernel radial 

basis neural network proposed in this paper. (Note: The 

computer performance used in this example calculation 

process is dual-kernel CPU frequency 2.6GHz, memory 

8GB). The superiority of the proposed method is 

reflected in the extremely high computational efficiency 

of such calculations. 

b) In terms of computational accuracy, it is greatly 

improved by the multi-kernel RBF neural network. This 

is because the method uses the result of finite element 

calculation as the sample input, and the global accuracy 

of electromagnetic torque calculation based on multi-

kernel radial basis neural network is obviously better 

than any single-kernel radial basis neural network. This 

is mainly due to the advantages of each single-kernel 

RBF neural network being synthesized by the MK-RBF 

neural network through different weight coefficients. 

c) In terms of the scope of application of the model, 

the calculation method proposed in this paper can also be 

used in other fields of nonlinear engineering calculation. 

The method of multi-kernel RBF neural networks is 

obviously more applicable than single-kernel RBF 

neural networks. The method solves the weight value of 

each single-kernel RBF model by heuristic weighting 

strategy, which reduces the requirements of the modeler's 

own level in the modeling process. 
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