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Abstract ─ In this paper, a new multi-beam forming 

approach is presented. First, we divide the steering 

vectors into two parts. The first part is the beam vector 

space. The second part is the side lobe vector space. 

Given that the inner product of two orthogonal vectors 

is zero, to minimize the gains of the side lobes, the 

excitation vector of the antenna array elements has to 

be placed in the orthogonal projection matrix of the side 

lobe vector space. Then, we obtain a vector by linearly 

combining the beam vectors and orthogonally projecting 

the combined vector into the orthogonal projection 

matrix of the side lobe vector space, and this projection 

vector is just the solution of the excitation vector of    

the antenna array elements. Since the combined vector      

is the linear combination of the beam vectors, we      

can control the beam gain by adjusting the linear 

combination coefficients. This new method can be 

easily used to form multi-beams and adjust each beam 

gain. The results of simulations show, that the new 

method acts effectively and efficiently.  

 

Index Terms — Antenna array, array manifold, beam 

forming, linear space, orthogonal projection. 
 

I. INTRODUCTION 
Beam forming technologies have been well studied 

in past decades. Many articles have been published      

in this domain. The well-known analytical function 

approaches, such as Taylor and Chebyshev beam 

forming, were the earliest method developed to form 

beams. These methods generally investigated radiation 

beam forming. Microwave beam forming (MBF) is 

another developing approach. Several techniques of 

MBF have been developed to accomplish adaptive 

beam forming (ABF) [1, 2]. 

In recent years, along with the development of the 

digital processing and microelectronic technologies, 

digital beam forming has become a hot topic for 

researchers. A beam forming approach used in wide 

band multiple-input multiple-output (MIMO) systems 

was discussed in reference [3]. Reference [4] adopted 

the compressed sensing method to form beams. Under 

the constraint of l1-norm minimization, article [5] 

developed a new beam forming method. In reference 

[6], to adapt to real time beam forming, real weight 

adaptive processing based on a direct data domain 

least squares approach was presented. The optimization 

of an arbitrary side lobe attenuation level was proposed 

in reference [7]. Article [8] put forward a multiple beam 

forming approach. Reference [9] developed a beam 

forming means for a phase-configurable antenna array. 

In reference [10], a differential evolution genetic 

algorithm beam forming approach was presented. In 

reference [11], many digital processing methods were 

discussed. In reference [12], beam forming was viewed 

as a space filtering issue. Phased array beam steering 

through serial control of the phase shifters was presented 

in another article [13]. Reference [14] studied the  

phase and pattern characteristics of a sub-wavelength 

broadband reflectarray unit element based on triple 

concentric circular-rings.  

In this paper, a new multi-beam forming approach 

is presented. First, we divide the steering vectors into 

two parts. The first part is the beam vector space. The 

second part is the side lobe vector space. Given that   

the inner product of two orthogonal vectors is zero, to 

minimize the gains of the side lobes, the excitation 

vector of the antenna array elements has to be settled on 

the orthogonal projection matrix of the side lobe vector 

space. Then, we obtain a vector by linearly combining 

the beam vectors and orthogonally projecting the 

combined vector into the orthogonal projection matrix 

of the side lobe vector space, and this projection vector 

is just the solution of the excitation vector of the 

antenna array elements. Since the combined vector is 

obtained from the linear combination of the beam 

vectors, we can control the beam gain by adjusting    

the linear combination coefficients. Compared with 

ACES JOURNAL, Vol. 33, No. 8, August 2018

Submitted On: March 1, 2017
Accepted On: August 11, 2018 1054-4887 © ACES 

868



conventional methods, this new method can be easily 

used to form multi-beams and adjust each beam gain. 

The results of the simulations show, that the new 

method acts effectively and efficiently.  

The remainder of this paper is organized as 

follows: Section II presents the beam forming paradigm; 

Section III presents the new projection beam forming 

approach; Section IV shows several simulations of the 

new approach; and Section V draws a conclusion.       

   

II. BEAM FORMING PARADIGM 
We aim to investigate the beam forming of a 

uniform linear antenna array. This array has N isotropic 

antenna elements, which are arranged along a line with 

spacing d. The far field is considered, and the narrow 

band signal centered at a wave length of λ is transmitted 

by each antenna element.  The element arrangement 

numbered from 1 to N is shown in figure 1. The angle 

between the transmitting signal and the axis of the array 

denoted as θ in figure 1 is the signal transmitting angle.  
 

... ...θ

       1       2        ...      i    i+1   ...      N  
 

Fig. 1. Arrangement of the elements in the uniform 

linear array. 
 

The beam pattern formed by the array in Fig. 1 in 

the far field can be written as: 

 2π( 1) cos /

1

( ) .
N
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In equation (1), Ii is the current excitation of         

the ith antenna element. We define 
2π cos / 2π ( 1)cos / T( )=[1, ,..., ]j d j d Ne e    

a
 

as the steering 

vector and denote the antenna element excitation vector 

as W=[I1,I2,...,Ii,...,IN]T, where the superscript T denotes 

the transpose operation. Hence, equation (1) can be 

rewritten as: 

 T( ) ( ) .f   a W  (2) 

Because the pattern formed is the periodic function of 

the signal transmitting angle θ, we set θ in a cycle from 

0° to 180°. For convenience, we denote θ as discrete 

values of θ1, θ2, ..., θk, ..., θK in sequence. Let the 

expected beam vector be: 

 
T

1 2[ ( ), ( ),..., ( ),..., ( )] .k KP P P P   P  (3) 

Then, the beam forming issue is transformed to design the 

array element excitation vector W to make the following 

equation valid: 

 
T
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where abs denotes the absolution value operation.  

Let 1 2[ ( ), ( ),..., ( ),..., ( )],k K   A a a a a
 
where A is 

called the array manifold matrix. Then, equation (4) can 

be rewritten as: 

 T( ).absP A W  (5) 

The least square solution of equation (5) is: 

 T H T 1 T H

LS (( ( .W A ) A ) A ) P  (6) 

    

III. BEAM FORMING OF THE 

PROJECTION APPROACH 

If the beam points to the direction of θn, as well as 

in other directions, there is no beam. The beam forming 

process can be mathematically expressed as: 

 T( ) 0,n a W  (7) 

 
T( ) 0   ,m m n   a W  (8) 

where both m and n are integer variables. Let, 

 ( )nB a , (9) 

and 

 1 2 1 1[ ( ), ( ),..., ( ), ( )..., ( )],n n K     Z a a a a a  (10) 

where matrix B is called the beam matrix, and matrix Z 

is named as the null matrix.  

Obviously, both matrix Z and B are a division of 

matrix A and they can be combined into A.  

Then, equation (7) and (8) can be rewritten as: 

 T 0,   B W  (11) 

 T .Z W 0  (12) 

Equation (12) means that vector W* is 

perpendicular to the column vector space of matrix Z 

with the superscript * indicating the conjugate 

operation. Hence, vector W* must locate in the 

orthogonal projection space of the column vector space 

of matrix Z, which can be mathematically written as: 

 
* H 1 H( ) ) ,W (I - Z Z Z Z Y  (13) 

where I denotes the unit matrix, the superscript H 

indicates the conjugate transpose operation, and Y is an 

arbitrary vector. 

Let, 

 ,Y BX  (14) 

where X is an arbitrary vector, and its length equals the 

column vector number of matrix B. Equation (14) 

means that Y is a linear combination of the column 

vectors of matrix B. Substituting equation (14) into 

(13), we can obtain: 

 
* H 1 H( ) ) .W (I - Z Z Z Z BX  (15) 

It is easy to verify that W in equation (15) satisfies 

equation (11) and (12). 

It is necessary to point out that if the expected 

pattern has multiple beams that direct to several 

different directions, matrix B has to include the steering 

vectors of these directions, and on the other hand, 

matrix Z has to exclude the steering vectors of these 

directions.  

To further improve the flexibility, in equation (15), 

we can add a small perturbation to the diagonal 
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elements of the unit matrix I, which can be 

mathematically expressed as: 

 * H 1 H( ) ) .s W ( I - Z Z Z Z BX  (16) 

In equation (16), js ue  where u is a real number and 

φ is an arbitrary angle.  

  

IV. SIMULATIONS OF THE NEW 

APPROACH 
In this section, several examples are given to 

demonstrate the new approach and its performance. 

We aim to investigate the beam forming of a 

uniform linear antenna array. It has N isotropic antenna 

elements, which are arranged along a line with spacing 

d. Let d=λ/2.The far field is considered and the narrow 

band signal centered at the wave length of λ is 

transmitted by each antenna element. The antenna array 

element arrangement is shown in Fig. 1.  

Let the discrete values of θ, θ1, θ2, ..., θk, ..., θK, be 

equal to 0°, 1°, …, 179°, 180° respectively, which is in 

accord with the real practice and is convenient for 

digital processing. The pattern can be formed through 

following algorithm steps: i) Determine the beam 

directions and then use their steering vectors to make 

up matrix B; ii) Determine the non-beam directions and 

then use their steering vectors to make up matrix Z; iii) 

Obtain vector WLS and W respectively through equation 

(6) and (16); iv) Obtain the formed pattern using 

equation (5).     

In the first example, let N=12, the expected    

beams direct to θ40=40° and θ90=90°, let X=[1+j157/4π, 

1+j157/4π]T, s=1+j1000π, and the pattern generated by 

equation (16) is shown in Fig. 2. It can be seen in Fig. 2 

that two beams pointing to the directions of θ40=40° and 

θ90=90° have the same gain. Then, we let the pattern 

generated by equation (16) be the vector P in equation 

(6). Thus, the weight vector WLS can be obtained from 

equation (6). The pattern created by WLS is also shown 

in Fig. 2. In the legend of Fig. 2, the new method 

indicates the pattern generated by equation (16), and LS 

refers to the pattern created by WLS. Figure 2 shows 

that the new method has a better performance than the 

least square method. 

In the second example, still let N=12, the    

expected beams direct to θ40=40° and θ90=90°, let 

X=[1000+j157/4π, 500+j157/4π]T, s=1+j1000π, and the 

pattern generated by equation (16) is shown in Fig. 3. It 

can be learned easily from Fig. 3 that the beam pointing 

to the direction of θ90=90° has an approximately 6 dB 

attenuation compared with the beam directing to 

θ40=40°. Then, we let the pattern generated by equation 

(16) be the vector P in equation (6). Thus, the weight 

vector WLS can be obtained from equation (6). The 

pattern created by WLS is also shown in Fig. 3. In the 

legend of Fig. 3, the new method indicates the pattern 

generated by equation (16), and LS refers to the pattern 

created by WLS. Figure 3 shows that the new method 

has a better performance than the least square method. 

 

 
 

Fig. 2. The outcome of the first example (N=12). 

 

 
 

Fig. 3. The outcome of the second example (N=12). 

 

In the third example, let N=24, the expected   

beams direct to θ40=40°, θ90=90° and θ120=120°, let 

X=[1+j157/4π, 1+j157/4π, 1+j157/4π]T, s=1+j1000π, 

and the pattern generated by equation (16) is shown in 

Fig. 4. It can be learned from Fig. 4 that three beams 

pointing to the directions of θ40=40°, θ90=90° and 

θ120=120° have the same gain. Then, we let the pattern 

generated by equation (16) be the vector P in equation 

(6). Thus, the weight vector WLS can be obtained from 

equation (6). The pattern created by WLS is also shown 

in Fig. 4. In the legend of Fig. 4, the new method 

indicates the pattern generated by equation (16), and LS 

refers to the pattern created by WLS. Figure 4 shows 

that the new method has a better performance than the 

least square method. 

In the fourth example, still let N=24, the expected 

beams direct to θ40=40°, θ90=90° and θ120=120°,          

let X=[500+j157/4π, 1000+j157/4π, 500+j157/4π]T, 

s=1+j1000π, and the pattern generated by equation (16) 
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is shown in Fig. 5. It can be seen easily from Fig. 5   

that the beams pointing to the directions of θ40=40°   

and θ120=120° have an approximately 6 dB attenuation 

compared with the beam directing to θ90=90°. Then, we 

let the pattern generated by equation (16) be the vector 

P in equation (6). Thus, the weight vector WLS can be 

obtained from equation (6). The pattern created by WLS 

is also shown in Fig. 5. In the legend of Fig. 5, the new 

method indicates the pattern generated by equation 

(16), and LS refers to the pattern created by WLS. 

Figure 5 shows that the new method has a better 

performance than the least square method. 
 

 
 

Fig. 4. The outcome of the third example (N=24). 
 

 
 

Fig. 5. The outcome of the fourth example (N=24). 

 

According to our simulations, the beam gain is 

mainly determined by the image part of s and the real 

part ratio of the elements of X. To easily adjust the 

beam gain, the real parts of the elements of X should be 

a number of several hundreds, and the image parts of 

the elements of X have little effect on the beam gain. 

Additionally, the image part of s is no less than 3π, 

while the real part of s is equal to 1. To estimate the 

computational complexity of the new method, we 

compare equation (16) with equation (6). Since both    

B and Z are a part of matrix A, the computational 

complexity of equation (16) is similar to that using 

equation (6) to form the pattern. We simulate the new 

approach using the MATLAB software platform on    

an HP notebook PC with a core i5-5200U CPU and           

a 4G memory. All simulations in this paper take 

approximately less than one second to obtain the final 

outcomes.  
 

V. CONCLUSION 
For an antenna array whose manifold matrix has 

been determined, we divide the matrix into two parts. 

The first part is the beam vector space. The second part 

is the side lobe vector space. We obtain a vector by 

linearly combining the beam vectors and orthogonally 

projecting the combined vector into the orthogonal 

projection matrix of the side lobe vector space, and this 

projection vector is just the solution of the excitation 

vector of the antenna array elements. Since the combined 

vector is obtained from the linear combination of the 

beam vectors, we can control the beam gain by 

adjusting the linear combination coefficients. This new 

method can be easily used to form multi-beams and 

adjust each beam gain. The results of the simulations 

show, that the new method acts effectively and 

efficiently. 
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