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Abstract ─ Nonlinear electrical and mechanical systems 

have been widely used in the industry electronics and 

consumer devices. Many numerical algorithms can be 

employed to obtain the numerical solutions of the 

nonlinear dynamics or electromagnetic equations. 

However, it takes a lot of time and decreases the solution 

accuracy. In this paper, a novel method, called Semi-

Inverse Method, is proposed to seek solitary solutions  

of nonlinear differential equations. The Klein-Gordon 

equation with quadratic nonlinearity is selected to 

illustrate the effectiveness and simplicity of the suggested 

method. 

 

Index Terms ─ Dynamics equation, electromagnetic 

transmission, nonlinear equation, semi-inverse method, 

solitary solution. 
 

I. INTRODUCTION 
With the development of electrical, mechanical and 

control engineering, lots of nonlinear and chaotic 

problems and equations need to be solved [1-5]. The 

present numerical algorithm can obtain the numerical 

solutions with much time and low accuracy [6-9]. The 

growing recognition that the way to solving exact soliton 

solutions of nonlinear equations is a crucial factor in 

progress of nonlinear dynamics and a key access to 

understanding the nonlinear equations to a large extent 

has fueled much research on the determination of soliton 

solutions. In recent years, new exact solutions may help 

to find new phenomena. A variety of powerful methods, 

such as the Exp-function method [10-11], Tanh-function 

method [12], algebraic method [13], F-expansion method 

[14], auxiliary equation method [15], decomposition 

method [16], extended Jacobi elliptic function expansion 

method and others were used to develop nonlinear 

dispersive and dissipative problems. 

The present paper is motivated by the desire to the 

Semi-inverse method to the Klein-Gordon equation with 

quadratic nonlinearity, which reads: 

 2 2 0tt xxu u u u , (1) 

where α, β and γ are known constants. Jacobi elliptic 

function solutions. 

 

II. SEMI-INVERSE METHOD 
As shown in Eq. (1), there are two variables, partial 

differential equation and strong nonlinearity. However, 

it should be mentioned that the solution of Eq. (1) 

satisfies the electromagnetic field wave equation. In 

order to seek its travelling wave solution, we use the 

following transformation: 

 ,u u x t , (2) 

 x t , (3) 

where λ is a constant to be determined later. It describes 

the relationship between variable x and t. 

Substituting Eq. (2) and Eq. (3) into Eq. (1), we have: 

 2 2 2 0u u u , (4) 

where the prime expresses the derivative with respect to 

η. As shown in Eq. (4), the partial differential equation 

becomes ordinary differential equation. 

According to the method and Eq. (4), we can obtain 

the following variation formulation: 

 
2 2

2 2 3

0 2 2 3
J u u u u du . (5) 

 

III. THE KLEIN-GORDON EQUATION 

WITH QUADRATIC NONLINEARITY 
Any function can be represented by a Fourier series 

or exponential expansion. According to the semi-inverse 

method, we assume the solution can be expressed in the 
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following form: 

 2u p sech q , (6) 

where p and q are unknown constants to be further 

determined. 

Substituting Eq. (6) into Eq. (5), and by simple 

calculation, we can obtain: 

 

2 2 2 215 8 12

45

p p q
u

q
J . (7) 

Making J(u) stationary with respect to p and q 

results in: 

 

2 2 2
2 2 15 8 128

45 45

p pJ

p

qp

q q
, (8) 

 

2 2 2 22 2 2

2

15 8 128
+

15 45

p p qJ

q

p

q
. (9) 

From Eq. (8) and Eq. (9), the differential equations 

can be established to solve p and q: 
2 2 2

2

2 2 2 22 2 2

2

2 15 8 128
0

45 45

15 8 128
+ 0

15 45

p p qp

q q

p p qp

q

. (10) 

From Eq. (10), we obtain: 

 
2 2

3
,

2 2
p q . (11) 

Substituting Eq. (11) into Eq. (2), Eq. (3) and Eq. 

(6), we have: 

 2

2 2

( )3
se, ch

2 2
u x t

x t
. (12) 

It is the solitary solution of the Klein-Gordon 

equation with quadratic nonlinearity. By substituting Eq. 

(12) into Eq. (1), it can verify the method is effectiveness.  
 

IV. THEORETICAL ANALYSYS 
Concerned different parameters of the Klein-

Gordon equation with quadratic nonlinearity, three cases 

have been analyzed. 
 

CASE 1. The Solution of Equation (α=1, β=2, λ=3) 

Based on the formula (11), when α=1, β=2, λ=3, the 

solution of equation was shown in Fig. 1, which can 

validate the solitary solution the Klein-Gordon equation 

with quadratic nonlinearity. 
 

CASE 2. The Solution of Equation (α=1, β=5, λ=3) 

Based on the formula (11), when α=1, β=5, λ=3, the 

solution of equation was shown in Fig. 2, which can 

validate the solitary solution the Klein-Gordon equation 

with quadratic nonlinearity. 
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(a) The solution of equation with different position (t=0) 
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 (b) The solution of equation (x=0) 
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 (c) The solution of equation (x=1) 
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 (d) The solution of equation (x=2) 
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 (e) The solution of equation (x=3) 

 
Fig. 1. The solution of equation (α=1, β=2, λ=3). 
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(a) The solution of equation with different position (t=0) 
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  (b) The solution of equation (x=0) 
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  (d) The solution of equation (x=2) 
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  (e) The solution of equation (x=3) 

 

Fig. 2. The solution of equation (α=1, β=5, λ=3). 

 

CASE 3. The Solution of Equation (α=2, β=2, λ=3) 

Based on the formula (11), when α=2, β=2, λ=3, the 

solution of equation was shown in Fig. 3, which can 

validate the solitary solution the Klein-Gordon equation 

with quadratic nonlinearity. 
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(a) The solution of equation with different position (t=0) 
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Fig. 3. The solution of equation (α=2, β=2, λ=3). 

YAN, LIU, ZHU, ZHAO, SHI: SEMI-INVERSE METHOD TO THE KLEIN-GORDON EQUATION 844



V. CONCLUSION 
In summary, the Semi-inverse method with a 

computerized symbolic computation has been proposed 

to obtain the generalized solitary solutions to nonlinear 

evolution equations arising in mathematical physics. As 

a result, some new solutions for the physically important 

NLEEs have easily been found too. It is worthwhile to 

mention that the proposed Semi-inverse method is of 

utter straightforward and concise. 
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