
The 2D Type-3 Non-Uniform FFT in CUDA

Amedeo Capozzoli, Claudio Curcio, Angelo Liseno, and Jonas Piccinotti

Università di Napoli Federico II

Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione

Via Claudio 21, I 80125 Napoli (Italy)

a.capozzoli@unina.it

Abstract ─ We present the parallel implementation on

Graphics Processing Units (GPUs) of a type-3 Non-

Uniform FFT (NUFFT) approach, namely, of a NUFFT

for which data and results are located at irregular points.

The performance of the algorithm is assessed against that

of a parallel implementation of the same algorithm on

multi-core CPUs using OpenMP directives.

Index Terms ─ CUDA, Non-Uniform FFT, OpenMP.

I. INTRODUCTION
In many areas of electromagnetics, the need arises

of evaluating Non-Uniform Discrete Fourier Transforms

(NUDFTs), namely DFTs with data and/or results on

irregular grids. Imaging [1], solutions to differential and

integral equations [2], fast array antenna analysis [3]

and synthesis [4] and antenna diagnosis [5] are just few

examples.

Unfortunately, the calculation of a NUDFT does

not promptly benefit of the use of standard Fast Fourier

Transforms (FFTs) (𝑂(𝑁𝑙𝑜𝑔𝑁) complexity) which on

the contrary require Cartesian input and output grids.

This solicited the development of Non-Uniform FFT

(NUFFT) algorithms capable to perform accurate

computations essentially with the same 𝑂(𝑁𝑙𝑜𝑔𝑁)

complexity. NUFFTs achieve such a complexity by

exploiting fast and accurate pre- and/or post-interpolation

stages, properly tailored to the problem at hand, from/to

regular to/from irregular grids.

Apart from fast approaches, efficiency and

effectiveness in the calculation of a NUDFT can be

pursued also by adopting high performance, massively

parallel computing (HPC) platforms as Graphics

Processing Units (GPUs). The use of HPC is of course

not disjoined from the numerical aspect since the

appropriate exploitation of parallel hardware requires the

choice of conveniently parallelizable algorithms.

The purpose of this paper is to present and discuss

the parallel implementation on GPUs of a type-3 NUFFT

approach (henceforth, NUFFT-3), namely, of a NUFFT

for which data and results are located at irregular points.

NUFFT-3 finds important applications from the

electromagnetic point of view. Indeed, it has been

applied in [6] to effectively compute the aggregation and

disaggregation stages of the Fast Multipole Method.

Furthermore, it is of interest in aperiodic antenna

analysis and synthesis when the far-field pattern is

required into a non-uniform grid of the spectral plane [7].

NUFFT-3 has been originally dealt with using

Gaussian interpolation windows [1, 8] or as a combination

of type-1 and type-2 transforms [9, 10]. Most recently,

we have improved [6] the choice of the Gaussian window

parameters over that detailed [1, 8]. Despite type-1 and

type-2 NUFFTs have been extensively researched also

from the point of view of GPU approaches, it should

be also noticed that only standard sequential CPU

implementations for the NUFFT-3 have appeared

throughout the literature, with neither parallel CPU nor

GPU cases ever dealt with. Accordingly, in this paper, a

NUFFT-3 GPU implementation is described for the first

time.

Our approach is based on the recent scheme in [6].

Its timing performance is assessed against that of a

parallel implementation of the same algorithm on multi-

core CPUs, while its accuracy performance is pointed

out thanks to a case of electromagnetic interest.

II. TYPE-3 NUFFT
Let {(𝑥𝑖 , 𝑦𝑖)}𝑖=0

𝑁−1 be a set of N 2D non equispaced

points, {𝑓}𝑖=0
𝑁−1 a set of corresponding coefficients and

{(𝑠𝑘 , 𝑡𝑘)}𝑘=0
𝐾−1 a set of K 2D non-equispaced spectral

points. The transformation:

 𝐹𝑘 = ∑ 𝑓𝑖
𝑁−1
𝑖=0 𝑒−𝑗𝑥𝑖𝑠𝑘𝑒−𝑗𝑦𝑖𝑡𝑘, (1)

is referred to as a 2D NUDFT-3 [1].

The problem of computing the 𝐹𝑘’s amounts to the

fact that Eq. (2) is not in the form of a standard Discrete

Fourier Transform (DFT) since spatial and spectral

points are irregularly located. Fortunately, reformulating

the problem by interpolating non-uniformly sampled

exponentials by uniformly sampled ones is in order. This

can be achieved by the Poisson formula [11]:

 𝑒−𝑗𝜉𝑥 = √2𝜋
∑ ℱ[Φ(𝜉)𝑒−𝑗𝜉𝑥;𝑚]𝑒𝑗𝑚𝜉

𝑚𝜖ℤ

∑ Φ(𝜉+2𝑚𝜋)𝑒−𝑗2𝑚𝜋𝑥
𝑚𝜖ℤ

, (2)

where Φ is an appropriate interpolation window and

ACES JOURNAL, Vol. 33, No. 8, August 2018

Submitted On: June 4, 2017
Accepted On: March 26, 2018 1054-4887 © ACES

931

ℱ denotes Fourier transformation. Accordingly, a

computational scheme analogous to a Non-Uniform

FFT (NUFFT) procedure of Type-3 [1, 6] can be set up.

We briefly illustrate such a procedure by assuming the

window functions Φ to be Gaussian [1, 6].

A. Step #1

The contributions from non-uniformly spaced input

sampling points corresponding to 𝐞𝐱𝐩 [−𝒋(𝒔𝒌𝒙𝒊 + 𝒕𝒌𝒕𝒊)]

are “spread” by Gaussian windows 𝐞𝐱𝐩 [−
𝒙𝟐

𝟒𝝉𝒙
−

𝒚𝟐

(𝟒𝝉𝒚)
]

with parameters 𝝉𝒙 and 𝝉𝒚, to a regular grid (𝒏𝚫𝒙, 𝒎𝚫𝒚).

Step #1 thus produces [6]:

 𝑓𝜏
−𝜎(𝑛Δ𝑥, 𝑚Δ𝑦) =

𝑒[𝜎𝑥(𝑛Δ𝑥)2+𝜎𝑦(𝑛Δ𝑦)2]

√4𝜎𝑥𝜎𝑦

 ∑ 𝑓𝑖𝑒
−[

(𝑛Δ𝑥−𝑥𝑖)
2

4𝜏𝑥
+

(𝑚Δ𝑦−𝑦𝑖)2

4𝜏𝑦
]

,𝑁−1
𝑖=0 (3)

where the presence of the exponential function

𝐞𝐱𝐩 [𝝈𝒙𝒙𝟐 + 𝝈𝒚𝒚𝟐] is related to the pre-compensation of

the Gaussian window used in Step #3. Due to the

rapid decay of the exponential functions, 𝒇𝒊 significantly

contributes to only few samples of 𝒇𝝉
−𝝈(𝒏𝚫𝒙, 𝒎𝚫𝒚). On

defining 𝑰𝒏𝒕[𝜶] as the nearest integer to 𝜶, by letting

𝝃𝒊 = 𝑰𝒏𝒕[
𝒙𝒊

𝚫𝒙
] and 𝜼𝒊 = 𝑰𝒏𝒕[

𝒚𝒊

𝚫𝒚
], 𝒊 = 𝟎, … , (𝑵 − 𝟏),

denote the nearest regular grid points to
𝒙𝒊

𝚫𝒙
 and

𝒚𝒊

𝚫𝒚
,

respectively, and assigning 𝒏′ = 𝒏 − 𝝃𝒊 and 𝒎′ = 𝒎 −
𝜼𝒊, the contributions of each 𝒇𝒊 to 𝒇𝝉

−𝝈(𝒏𝚫𝒙, 𝒎𝚫𝒚) can

be ignored when |𝒏′| > 𝒎𝒔𝒑 or |𝒎′| > 𝒎𝒔𝒑, where 𝒎𝒔𝒑

is a parameter properly selected according to the required

accuracy. In other words, the summation in (3) provides

a non-negligible contribution to only (𝟐𝒎𝒔𝒑 + 𝟏) ×

(𝟐𝒎𝒔𝒑 + 𝟏) terms.

B. Step #2

The “spread” contributions are transformed to the

spatial frequency domain via a standard FFT. In other

words, the second step produces

 𝐹𝜏
−𝜎(𝑝Δ𝑠, 𝑞Δ𝑡) ≅

∆𝑥∆𝑦

4𝜋

∑ ∑ 𝑓𝜏
−𝜎(𝑛Δ𝑥, 𝑚Δ𝑦)

𝑀𝑟𝑦

2

𝑚=−
𝑀𝑟𝑦

2

𝑀𝑟𝑥
2

𝑛=−
𝑀𝑟𝑥

2

𝑒−𝑗𝑝𝑛∆𝑥∆𝑠𝑒−𝑗𝑞𝑚∆𝑦∆𝑡.

 (4)

C. Step #3

The “transformed” data are interpolated from the FFT

output uniform grid to the non-uniform grid {(𝒔𝒌, 𝒕𝒌)}𝒌=𝟎
𝑲−𝟏,

again by Gaussian windows, 𝐞𝐱𝐩 [−
𝒔𝟐

𝟒𝝈𝒙
−

𝒕𝟐

(𝟒𝝈𝒚)
]. The

final output is thus:

 𝐹𝑘 =
∆𝑠∆𝑡

4𝜋√𝜏𝑥𝜏𝑦
𝑒𝜏𝑥𝑠𝑘

2
𝑒𝜏𝑦𝑡𝑘

2

 ∑ ∑ 𝐹𝜏
−𝜎(𝑛Δ𝑠, 𝑚Δ𝑡)

𝑀𝑟𝑦

2

𝑚=−
𝑀𝑟𝑦

2

𝑀𝑟𝑥
2

𝑛=−
𝑀𝑟𝑥

2

𝑒
−

(𝑛Δ𝑠−𝑠𝑘)2

4𝜎𝑥 𝑒
−

(𝑚Δ𝑡−𝑡𝑘)
2

4𝑦
.

 (5)

Similarly to Step #1, the presence of the Gaussian

functions 𝐞𝐱𝐩 [𝝉𝒙𝒔𝟐 + 𝝉𝒚𝒕𝟐] is related to the post-

compensation of the Gaussian windows used in Step #1.

Again due to the rapid decay of the involved exponential

functions, 𝑭𝝉
−𝝈(𝒏𝚫𝒔, 𝒎𝚫𝒕) significantly contributes

to only few samples of 𝑭𝒌. In particular, on letting

𝝃̃𝒌 = 𝑰𝒏𝒕[
𝒔𝒌

𝚫𝒔
] and 𝜼̃𝒌 = 𝑰𝒏𝒕[

𝒕𝒌

𝚫𝒕
], 𝒌 = 𝟎, … , 𝑲 − 𝟏, and

𝒑′ = 𝒑 − 𝝃̃𝒌 and 𝒒′ = 𝒒 − 𝜼̃𝒌, the contributions of

𝑭𝝉
−𝝈(𝒏𝚫𝒔, 𝒎𝚫𝒕) can be ignored when |𝒑′| > 𝒎𝒔𝒑 and

|𝒒′| > 𝒎𝒔𝒑. In other words, the summation in (5) can be

truncated to (𝟐𝒎𝒔𝒑 + 𝟏) × (𝟐𝒎𝒔𝒑 + 𝟏) terms.

D. “Centering” and choice of the relevant parameters

Before applying the above procedure, a “centering”

of the input and output sampling points is required, see

[6]. Similarly, for the choices of 𝚫𝒙, 𝚫𝒚, 𝝉𝒙, 𝝉𝒚, 𝝈𝒙, 𝝈𝒚

and 𝒎𝒔𝒑, see [6] and Table 1. In such a table, 𝑹 is

chosen strictly larger than 2, 𝑿 = 𝒎𝒂𝒙{|𝒙𝒊
′|}𝒏=𝟎

𝑵−𝟏, 𝒀 =
𝒎𝒂𝒙{|𝒚𝒊

′|}𝒏=𝟎
𝑵−𝟏, 𝑺 = 𝒎𝒂𝒙{|𝒔𝒌

′ |}𝒌=𝟎
𝑲−𝟏, 𝑻 = 𝒎𝒂𝒙{|𝒕𝒌

′ |}𝒌=𝟎
𝑲−𝟏

following the “centering” step, 𝒎𝒔𝒑 = 𝟐𝝅𝒃, b is chosen

according to successive approximations of the following

equation:

𝒃 =
𝟏

𝜸
𝒍𝒐𝒈 (

𝟒𝜶

𝒆
𝒃 +

𝟗𝜶

𝒆
), (6)

with

𝜶 = 𝟐 +
𝟏

√𝟐𝝅
, 𝜸 = 𝝅𝟐 (𝟏 −

𝟐

𝑹𝟐), (7)

and e is the requested accuracy [6].

Table 1: Summary of the parameters choice

Δ𝑥 =
𝜋

𝑅𝑆
 Δ𝑦 =

𝜋

𝑅𝑇

Δ𝑠 =
2𝜋

∆𝑥𝑀𝑟𝑥

 Δ𝑡 =
2𝜋

∆𝑦𝑀𝑟𝑦



𝑀𝑟𝑥 ≥ 2 (
𝑋𝑆𝑅2

𝜋
+ 2𝜋𝑅𝑏) 𝑀𝑟𝑦 ≥ 2 (

𝑌𝑇𝑅2

𝜋
+ 2𝜋𝑅𝑏)

τ𝑥 = 𝑏Δ𝑥2 τ𝑦 = 𝑏Δ𝑦2

σ𝑥 = 𝑏Δ𝑠2 σ𝑦 = 𝑏Δ𝑡2

III. IMPLEMENTATIONS
The illustrated NUFFT-3 algorithm has been

implemented in both GPU and CPU multithreaded

codes. The latter has been developed in C++ parallelized

by OpenMP directives. Such a choice matches with the

use of the CUDA environment to develop the GPU

counterpart. Both the codes are structured according

to the above Steps and have been highly optimized. To

perform a fair comparison, the CPU implementation has

benefitted of most of the optimizations applied to the

CUDA code. In the following, some implementation

details are presented.

A. GPU multithreaded implementation

Step #1. The computation of 𝑓𝜏
−𝜎(𝑛Δ𝑥, 𝑚Δ𝑦) is the

CAPOZZOLI, CURCIO, LISENO, PICCINOTTI: THE 2D TYPE-3 NON-UNIFORM FFT IN CUDA 932

most critical step of the three and requires some care

since different approaches could be envisaged. The

difficulty is due to the need of “pseudo-randomly”

accessing the elements of 𝑓𝜏
−𝜎(𝑛Δ𝑥, 𝑚Δ𝑦) when selecting

the (2𝑚𝑠𝑝 + 1) × (2𝑚𝑠𝑝 + 1) indices (𝑛, 𝑚) to which

each coefficient 𝑓𝑖 contributes.

A first parallelization strategy would be to commit

a thread to compute a single matrix element

𝑓𝜏
−𝜎(𝑛Δ𝑥, 𝑚Δ𝑦) using a 2D thread grid with each thread

associated to a different (𝑛, 𝑚) couple. However, in

this way, the generic thread should perform, due to the

“pseudo-random” filling, a time-consuming browsing

of the input elements to establish whether they contribute

to the committed element of 𝑓𝜏
−𝜎(𝑛Δ𝑥, 𝑚Δ𝑦) or not.

As an alternative, our code employs a 1D thread grid

with each thread associated to a different input index 𝑖.
In this, way, the browsing is avoided since each thread is

assigned to a different 𝑓𝑖 and updates the (2𝑚𝑠𝑝 + 1) ×

(2𝑚𝑠𝑝 + 1) corresponding elements of 𝑓𝜏
−𝜎(𝑛Δ𝑥, 𝑚Δ𝑦).

However, notice that, by this solution, more than one

thread may need to simultaneously update (namely,

read, compute and store a new value) the same

𝑓𝜏
−𝜎(𝑛Δ𝑥, 𝑚Δ𝑦). When this happens, a “race condition”

occurs. To preserve data integrity, atomic operations

have been exploited ensuring the semantic correctness

of the algorithm. Although serializing the updating

operations, they have become very fast in the recent

CUDA architectures.

Step #2. This step is implemented using cuFFT and

a customized CUDA kernel executing the FFT shift

operation.

Step #3. Parallelizing the calculation of Eq. (5) is

easier than that of eq. (3), as it does not suffer from race

condition hazards. The implemented code employs a 1D

thread grid where each thread is associated to a different

output index 𝑘.

B. CPU multithreaded implementation

Step #1 has been implemented in an analogous

to what done for the CUDA case. More in detail, the

parallelization has been applied according to the input

index 𝑖. Accordingly, the #pragma omp atomic has

been used to prevent race conditions.

Concerning Step #2, the FFT step required by Eq.

(4) has been achieved by the multithreaded version of

the FFTW routine contained in the Intel Math Kernel

Library (MKL).

Finally, Step #3 has been implemented analogously

to that done for the CUDA case, by applying the

parallelization strategy to the output index 𝑘.

IV. NUMERICAL RESULTS
The performance of GPU and CPU implementations

has been assessed with random spatial and spectral

location vectors (𝑥𝑖 , 𝑦𝑖) and (𝑠𝑘, 𝑡𝑘) and random complex

coefficients 𝑓𝑖. Two cases have been considered: the case

when 𝑁 = 𝐾, 𝐾 = 2𝑝, 𝑝 = 8, … ,20 and the case when

𝑁 = 𝐾2, 𝐾 = 2𝑝, 𝑝 = 8,9,10. The former case is of

interest for scattering by impenetrable objects, i.e., when

only the scatterer’s surface must be discretized, where

discretization is essentially 1D and 𝑁 = 𝐾. The latter

case, instead, is of interest for the scattering by

penetrable objects [12], i.e., when the scatterer’s interior

must be discretized, where discretization is essentially

2D and 𝑁 = 𝐾2. The computational speeds have been

measured by averaging a number of 10 realizations for

each individual test. The codes have been run on an Intel

Core i7-6700K, 4GHz, 4 cores (8 logical processors),

equipped with an NVIDIA GTX 960 card, compute

capability 5.2.

Figure 1 (upper panel) displays, for the case 𝑁 = 𝐾,

the partial timings of the three mentioned calculation

steps for the CUDA implementation. As it can be seen,

the most computationally demanding operations are the

spatial and spectral interpolations, namely, Step #1 and

Step #3. Despite employing atomic operations, the spatial

interpolation step is only slightly more demanding than

the spectral implementation. This is due to two reasons.

First, the implementation of Step #1 has been highly

optimized. Second, atomic operations are extremely fast

for the Maxwell architecture.

Table 2: Partial timings (in [ms]) for the CUDA

implementation and for the case 𝑁 = 𝐾2

𝐾 Step #1 Step #2 Step #3

   

   

   

The partial timings of the three steps for the case

𝑁 = 𝐾2 and for the CUDA implementation are reported

in Table 2. Due to the larger number of input points as

compared to the output ones, now Step #1 is the most

time consuming part of the computation.

Figure 1 (lower panel) displays the speedup obtained

by the parallel GPU implementation, against the OpenMP

one, for the two cases of 𝑁 = 𝐾 and 𝑁 = 𝐾2. The GPU

timings do not comprise CPU-GPU memory movements,

as the use of the NUFFT-3 CUDA code is understood to

be exploited within a fully GPU-based computation. As

it can be seen, speedups of up to 8 are obtained for the

case 𝑁 = 𝐾. Larger speedups are achieved for the case

𝑁 = 𝐾2 since, in this case, Step #1 is the most time

consuming one and more significantly benefits of the

GPU acceleration. Notably, according to Amdahl’s law

[13], the amount of achievable speedup depends on the

portion of the code that can be parallelized. A speedup of

5/6 can be already considered a satisfactory result.

ACES JOURNAL, Vol. 33, No. 8, August 2018933

Fig. 1. Upper panel: Partial timings of the CUDA

implementation: case 𝑁 = 𝐾. Lower panel: Speedup of

the CUDA implementation against the OpenMP one.

Red line: case 𝑁 = 𝐾. Blue line: case 𝑁 = 𝐾2.

We now show a test case of electromagnetic interest.

As already mentioned, aggregation and disaggregation

in the FMM [14, 15] can be effectively performed by a

NUFFT-3 [6]. We consider a 2D Electric Field Integral

Equation (EFIE) applied to the scattering of a perfectly

conducting circular cylinder of radius a=2.5 under TM

(Transverse Magnetic) plane wave illumination. The

cylinder’s surface has been discretized in 1536 segments,

grouped in 32 clusters [6]. More in detail, we compare

the cases when aggregation and disaggregation are

evaluated in an exact way and by a NUFFT-3. The good

accuracy of the NUFFT-based version is witnessed by

the very low relative root mean square error between the

two compared cases and equal to 8.78 · 10−11.

V. CONCLUSIONS AND FUTURE

DEVELOPMENTS
We have discussed the parallel implementation

on GPUs of a NUFFT-3. State-of-art implementation

of NUFFT-3 are only sequential CPU ones. Here, the

performance of the GPU approach has been compared

to that of a purposely developed parallel CPU one using

OpenMP directives. The provided parallelizations amount

at a proper organization of the computations, but they

do not alter the accuracy of the parallelized NUFFT-3

algorithm.

We now plan to extend the approach to the use of

more efficient interpolating window functions.

REFERENCES
[1] J.-Y. Lee and L. Greengard, “The type 3 non-

uniform FFT and its applications,” J. Comput.

Phys., vol. 206, no. 1, pp. 1-5, June 2005.

[2] C. Liu, et al., “Focusing translational variant bistatic

forward-looking SAR data based on two-dimen-

sional non-uniform FFT,” Progr. Electromagn.

Res. M, vol. 37, pp. 1-10, 2014.

[3] A. Capozzoli, et al., “Fast CPU/GPU pattern

evaluation of irregular arrays,” ACES J., vol. 25,

no. 4, pp. 355-372, Apr. 2010.

[4] A. Capozzoli, C. Curcio, A. Liseno, and G. Toso,

“Fast, phase-only synthesis of aperiodic reflect-

arrays using NUFFTs and CUDA,” Progr. Electro-

magn. Res., vol. 156, pp. 83-103, 2016.

[5] A. Capozzoli, C. Curcio, and A. Liseno, “NUFFT-

accelerated plane-polar (also phaseless) near-field/

far-field transformation,” Progr. Electromagn. Res.

M, vol. 27, pp. 59-73, 2012.

[6] A. Capozzoli, C. Curcio, A. Liseno, and A. Riccardi,

“Parameter selection and accuracy in type-3 non-

uniform FFTs based on Gaussian gridding,” Progr.

Electromagn. Res., vol. 142, pp. 743-770, 2013.

[7] A. Capozzoli, C. Curcio, A. Liseno, and G. Toso,

“Fast, phase-only synthesis of aperiodic reflect-

arrays using NUFFTs and CUDA,” Progr. Electro-

magn. Res., vol. 156, pp. 83-103, 2016.

[8] A. Dutt and V. Rokhlin, “Fast fourier transforms

for nonequispaced data,” SIAM J. Sci. Comp., vol.

14, no. 6, pp. 1368-1393, 1993.

[9] F. Knoll, et al., “Reconstruction of undersampled

radial PatLoc imaging using total generalized

variation,” Magn. Reson. Med., vol. 70, no. 1, pp.

40-52, July 2013.

[10] S. Tao, et al., “NonCartesian MR image recon-

struction with integrated gradient nonlinearity

correction,” Med. Phys., vol. 42, no. 12, pp. 7190-

7201, 2015.

[11] R. M. Trigub and E. S. Belinsky, Fourier Analysis

and Approximation of Functions. Springer Science+

Business Media, Dordrecht, NL, 2004.

[12] A. Capozzoli, et al., “Efficient computing of far-

field radiation in two dimension,” IEEE Antennas

Wireless Prop. Lett., vol. 16, pp. 2034-2037, 2017.

[13] G. M. Amdahl, “Validity of the single processor

approach to achieving large scale computing

capabilities,” Proc. of the AFIPS '67 Conf., Atlantic

City, NJ, pp. 483-485, Apr. 18-20, 1967.

[14] M. Vikram and B. Shanker, “An incomplete review

of fast multipole methods–from static to wideband–

as applied to problems in computational electro-

magnetics,” ACES J., vol. 24, no. 2, pp. 79-108,

Apr. 2009.

[15] C. Craeye, et al., “Efficient numerical analysis of

arrays of identical elements with complex shapes,”

ACES J., vol. 24, no. 2, pp. 224-232, Apr. 2009.

CAPOZZOLI, CURCIO, LISENO, PICCINOTTI: THE 2D TYPE-3 NON-UNIFORM FFT IN CUDA 934

