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Abstract ─ In this work, an optimal single-snapshot, 

time domain, group-sparse optimal Bayesian DOA 

estimation method is proposed and tested on a vector 

sensors antenna system. Exploiting the group-sparse 

property of the DOA and the Bayesian formulation of the 

estimation problem, we provide a fast and accurate DOA 

estimation algorithm. The proposed estimation method 

can be used for different steering matrix formulations 

since the optimal standardization matrix is computed 

directly from the knowledge of the steering matrix and 

noise covariance matrix. Thanks to this, the algorithm 

does not requires any kind of calibration or human 

supervision to operate correctly. In the following, we 

propose the theoretical basis and details about the 

estimation algorithm and a possible implementation 

based on FISTA followed by the results of our computer 

simulations test. 

 
Index Terms ─ Bayesian optimization, DOA estimation, 

group-sparsity norm, single snapshot signal, vector 

sensor antennas. 
 

I. INTRODUCTION 
Classic Direction of Arrival (DOA) estimation 

methods, like ESPRIT [1] and MUSIC [2], based on  

the signal and noise subspaces subdivision, ensure  

good performances in the cases of long-snapshots data 

scenarios. However, the performance of such algorithms 

degenerates into the presence of short-snapshot signals; 

as well as when the sources are correlated, or in the 

presence of low SNR.  

An interesting alternative to the subspace methods 

is the Minimum Norm or the Bayesian approaches, 

especially after the recent development of the compressive 

sensing theory [3-6]. Indeed, it is possible to explain  

the unknown parameter probability distributions as  

the parameter set that maximizes their a-posteriori 

probability. 

The application of the compressive sensing to 

electromagnetic problems is reported for example in [7-

9], where the problem of the DOA identification of a 

certain number of incoming waves is studied, and a 

possible resolution method based on single and long 

snapshot noisy electromagnetic field measurement is 

proposed. 

Most literature on DOA estimation algorithms, 

takes into account antenna array configurations for the 

ease of the steering matrix computation. Usually, the 

array antennas are sensitive only to one polarization, 

further simplifying the mathematical model.  

Despite the analytical model simplification, the 

antenna array needs a certain space for the installation. 

Thanks to the vector sensor antennas, it is possible 

to obtain an unambiguous DOA estimation through the 

simultaneous measurement of the electric and magnetic 

fields, univocally defining the Poynting vector direction. 

As it is known, the field measured by a vector sensor 

antenna depends on the polarization of the impinging 

wave. Generally, we must take into account the 

polarization angle or, at least, the horizontal and vertical 

components of the wave polarization vector. A way to 

overcome this problem is to consider the horizontal and 

the vertical polarizations as different cases, allowing the 

system to be sensitive only to one of them at a time. 

The use of a vector sensor antenna allows measuring 

simultaneously all the electromagnetic field components 

permitting a DOA estimation regardless the actual field 

polarization. 

In this work, the adoption of a time domain, single 

snapshot, optimal group-sparse Bayesian algorithm for 

the DOA estimation problem is proposed, and its 

performances are reported. 
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The choice of the group-sparse solution hypothesis, 

allows us to simplify the construction of the steering 

matrix, thanks to the superposition effect of the 

components of the polarization vector. Indeed, the group 

sparsity on the problem solution (i.e., the elevation and 

azimuth angles of the DOA impinging waves) means that 

the sparsity is imposed on the number of the impinging 

waves and not on their singular components, as in the 

case of a simply sparse solution. The main advantage of 

the group sparsity hypothesis, with respect to the simple 

sparsity hypothesis, consists in the mitigation of spurious 

elements in the estimated solution. 
 

II. METHODS 
The first step in the DOA estimation is the steering 

matrix definition. We suppose that the impinging wave 

is homogeneous and plane, without restraint about the 

polarization. 

We define the steering matrix associated with an 

ideal vector sensor antenna, with all the elements co-

located, able to measure all the six components of the 

electric and magnetic field according to [10]: 

A(θ,φ,γ,η)=[…,ak(θk,φk,γk,l,ηk,l),… ]= 

[
 
 
 
 
 
 

…,

cos(θk)cos(φk) -sin(φk)

cos(θk)sin(φk) cos(φk)

-sin(θk) 0

-sin(φk) -cos(θk)cos(φk)

cos(φk) -cos(θk)sin(φk)

0 sin(θk)

,…

]
 
 
 
 
 
 

[
sin(γk,l)e

jηk,l

cos(γk,l)
] ,  

(1) 

where: ak(θk,φk,γk,l,ηk,l) is the k–th steering vector 

representing the Green function associated to the k–th 

incoming wave with: elevation angle θk∈[0,2π]; azimuth 

angle φk∈[0,π]; auxiliary polarization angle 𝛾𝑘,𝑙 and 

polarization phase difference ηk,l. In our case, we assume 

that ηk,l is equal to zero and γk,l is alternately equal to 

zero or π/2 for each k-value: in this way we obtain a 

group of two steering vectors defining the 𝜑 - and θ – 

wave polarization components for each DOA, obtaining 

a steering matrix with a number of columns twice the 

number of DOA taken into account for its construction: 

A (θ,φ,0, [0,
π

2
])= […,ak (θk,φk,0, [0,

π

2
]) ,… ] = 

=

[
 
 
 
 
 
 

…,

cos(θk)cos(φk) -sin(φk)

cos(θk)sin(φk) cos(φk)

-sin(θk) 0

-sin(φk) -cos(θk)cos(φk)

cos(φk) -cos(θk)sin(φk)

0 sin(θk)

,…

]
 
 
 
 
 
 

.       (2) 

The steering matrix obtained from Eq. (2) is purely 

real, and each column element defines the gain of the 

system as a function of the wave polarization components 

and DOA. 

Once defined the steering matrix, we can write the 

measurement model as follows: 

S(t)=A (θk,φk,0, [0,
π

2
]) X(t)+n(t),              (3) 

where: S(t) is the signal recorded by the electromagnetic 

sensors; X(t) is the time-varying signal of the incoming 

electromagnetic wave; n(t) is a zero-mean Gaussian 

additive noise with covariance matrix Ψn: N(0,Ψn). For 

real signals, we can make use directly of Eq. 3 with the 

steering matrix defined in Eq. 2. 

 

A. Optimal Bayesian group-sparse DOA estimation 

method 

Vector sensor antennas allow unambiguous DOA 

estimation. In this work, we propose an approach for the 

DOA estimation different from the classic ones based  

on MUSIC or on the direct computation of the Poynting 

vector from the measured fields. In fact, unlike MUSIC, 

we use only a single-snapshot for the estimation and, in 

place of the direct Poynting vector, we take into account 

all the field components, mitigating the contribution of 

noise spikes on the single field components. 

As proposed in [11] it is possible to solve efficiently 

a severely ill-posed linear system (i.e., with a number  

of unknowns many order of magnitude greater than  

the number of equations) under the hypothesis of the 

existence of a sparse solution.  

As usual in the resolution of ill-posed ill-conditioned 

minimization problems, we must resolve a so-called, fat 

and short matrix. In this kind of problems, the choice of 

a proper pre-conditioner is of fundamental importance, 

since it can ensure the correct estimation of the sparse 

solution. 

In this work, we propose an optimal Bayesian 

group-sparse method, able to provide an unbiased DOA 

estimator derived from the Bayesian formulation of  

the DOA estimation problem for the group-sparse 

regularized problem. 

The unknown parameters vector X is supposed to  

be sparse, thanks to the limited number of expected DOA 

to estimate. The simple sparsity condition, however,  

can lead to a wrong solution especially if the wave does 

not presents a dominant polarization component. It is 

possible to overcome this issue through the group sparse 

hypothesis. Since the chosen model associates a group of 

parameters at each DOA, we consider all the elements of 

the group as a unique entity (e.g., through the L2
2  norm 

evaluated over the group or a similar metric) and then we 

impose that only a small amount of these entities present 

non-zero metric obtaining a group sparse condition. This 

change allows a better identification of the polarization 

components of the impinging wave and, finally of the 

DOA. 

Recalling Eq. (3), we can state that after the elision 

of the dependencies: 

S-AX=n → S-AX~N(0,Ψn).                    (4) 
Then we can formulate the following likelihood 

function for the signal revealed by the sensors from the 
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generic impinging EM field as a function of its DOA 

components: 

p(S|X)∝exp(-0.5[AX-S]T[ΨN]-1[AX-S]),          (5) 
we assume that the impinging field can be decomposed 

into a finite and restrained number of elementary plane 

waves (i.e., the actual DOA number is of the order of  

few unities, eventually just equal to one), each one 

characterized by their polarization components. Then  

we can define the following likelihood function for the 

polarization component magnitudes: 

𝑝(X|λ)∝exp(- ∑ λXk
[Xk

TΨXkXk]
0.5

k=1:N

)= 

= exp(-λX[X
TΨXX]0.5),                         (6) 

where we denote with Xk the k-th steering vector 

associated to the k-th DOA; the matrix ΨX is, for 

construction, a block diagonal matrix with the task to 

select, and eventually weight, only the steering vectors 

associated to the k-th DOA; and λ is a diagonal matrix 

with entries described by the exponential probability 

distribution: 

p(λX)=exp(-β ∑ λXk

k=1:N

) ,                      (7) 

where the parameter β is such that the mean value is near 

zero and then the realization of p(X|λ) can be considered 

sparse. 

Finally, we define the probability that an impinging 

plane wave from a certain DOA can produce the measured 

signal combining Eqs. 5-7 thanks to the Bayesian chain 

rule: 

p(X|S)∝p(S|X)p(X|λ)p(λ)= 

exp(-0.5[AX-S]T[ΨN]-1[AX-S]-λX(X
TΨXX)0.5-βλX).  (8) 

We impose the change of variable: Z = [ΨX]0.5X, 

and then Eq. 8 becomes: 

p(Z|S)∝exp(-0.5[A[ΨX]-0.5Z-S]
T
[ΨN]-1[A[ΨX]-0.5Z-S]-

- λX(Z
TZ)0.5-βλX).                                                               (9) 

Since the exponent argument is composed by the 

sum of positive defined matrices, we can assert that the 

optimal DOA weights array Ẑ is such to maximize the a 

posteriori probability density expressed in Eq. 8; in other 

words: 

Ẑ = min
Z

F(Z) = min
Z

(0.5[A[ΨX]−0.5Z − S]T ∗.    

∗ [ΨN]−1[A[ΨX]−0.5Z − S] + λX(Z
TZ)0.5 + 𝛽𝜆X)    (10) 

The minimum point 𝑍̂, thanks to the convexity of 

𝐹(𝑍), must satisfy the nullification of the first-derivative 

of the argument of Eq. 10: 

∂F(Z)

∂Z
|
Z=Ẑ

=0.5 [A[ΨX]
-0.5

Ẑ-S]
T

[ΨN]
-1
A[ΨX]

-0.5
+ 

+0.5λX(Ẑ
TẐ)

-0.5
ẐT=0.                  (11) 

Rearranging the Eq. 11 terms we obtain the 

following expression for Ẑ value: 

Ẑ= [[ΨX]-0.5AT[ΨN]-1A[ΨX]-0.5+λX(Ẑ
TẐ)

-0.5
I]

-1

∗ 

*AT[ΨN]-1[ΨX]-0.5S.                         (12) 

Now we can derive the expression of the matrix  

ΨX. Note that, although Eq. 12 is implicit, the quantity 

λX(Ẑ
TẐ)

-0.5
 is the inverse of the L2 norm of the unknown 

solution multiplied by the unknown parameter λX; since 

both multiplicands are unknowns, we can take into 

account them as a single unknown parameter. 

The optimal definition of the standardization matrix 

ΨX is an active branch of the inverse-problems research, 

and the formulation is related to the form of the minimum 

problem to be solved. The role of the standardization 

matrix consists in the minimization of the correlation 

between the steering matrix columns in order to mitigate 

the DOA estimation error. The structure of the optimal 

standardization matrix is strictly related to the steering 

matrix singular values spectrum and to the restrains 

terms imposed to the minimum problem solution. Since 

the steering matrix is related to the actual antenna system, 

it is important to provide an optimal standardization 

matrix for any given steering matrix, ensuring the 

optimality of the computed solution independently of the 

particular form of the steering matrix. 

In this work, we provide the optimal formulation of 

ΨX, ensuring the maximal independence between the 

DOAs (i.e., the covariance matrix must be proportional 

to the identity matrix). In particular, we impose that the 

estimated solution covariance matrix must be diagonal: 

E{ẐẐT}= ([Ψ̂X]
-0.5

AT[ΨN]-1A[Ψ̂X]
-0.5

+λX(Ẑ
TẐ)

-0.5
I)

-1

∗ 

*[Ψ̂X]
-0.5

AT[ΨN]-1E{SST}[ΨN]-1A[Ψ̂X]
-0.5

* 

∗ ([Ψ̂X]
-0.5

AT[ΨN]-1A[Ψ̂X]
-0.5

+λX(Ẑ
TẐ)

-0.5
I)

-1

∝I.   (13) 

Since: E{SST}=ΨN, from Eq. 13, with some algebra, 

we obtain: 

(1-2λX(Ẑ
TẐ)

-0.5
) I∝ AT[ΨN]-1A[Ψ̂X]

-1
+ 

+𝜆𝑥
2(ẐTẐ)

-1
(AT[ΨN]-1A)-1[Ψ̂X].                          (14) 

Since, for invertible matrices, the relation: AB−1 =
BA−1 holds, from Eq. 14 we obtain: 

1-2λX(Ẑ
TẐ)

-0.5

1+λx
2(ẐTẐ)

-1
I∝AT[ΨN]-1A[Ψ̂X]

-1
.            (15) 

The left-hand side term of Eq. 15 is a diagonal 

matrix, then, since Ψ̂X is a diagonal block matrix, we can 

assert that: 

[Ψ̂k
X]=diag(ak

T[ΨN]-1*ak).                  (16) 

The estimated solution covariance matrix Ψ̂X, in  

the form presented in Eq. 16, ensures the maximal 

independence between the estimated elements. 

 

B. Numerical results 

The simplest way to obtain a group-sparse solution 

is a proper numerical code able to solve the problem  

in Eq. 9. Indeed, the minimization problem in Eq. (9) is 

solved by FISTA [11], with a modified shrinkage 

MUZI, TEDESCHI, SCORRANO, FERRARA, FREZZA: SINGLE-SNAPSHOT TIME-DOMAIN DIRECTION OF ARRIVAL ESTIMATION 824



operator implementation for the group-sparse property 

imposition. 

We use a hard threshold shrinkage instead of the soft 

one proposed in the original work in order to obtain a 

gain in terms of computation time. In our experience, this 

choice does not affect the algorithm performances in 

terms of estimation precision. 

The group-sparse shrinkage operator is obtained by 

the suppression of all the solution elements that present 

a group L2 norm lower than the user-defined threshold 

value. 

The estimation performances, in term of RMS 

estimation error, are evaluated for different SNR levels: 

30 dB, 20 dB, 10 dB, 5 dB and 0 dB. For each SNR value, 

the algorithm is tested for different steering matrices, 

with the spatial resolution equal to 1, 2 and 4 degrees, in 

order to evaluate the influence of the resolution on the 

final estimation result. The same simulations are been 

executed with and without the optimal standardization.  

The effects of the optimal standardization are 

evaluated by the introduction of a uniformly distributed 

scalar gain (defined in the interval 0.5-1) in the steering 

vectors, in order to simulate a generic anisotropic 

antenna system gain pattern, and then evaluate the 

capability of the algorithm to recover the antenna system 

isotropy. 

The algorithm is implemented in MATLAB on a  

PC with a CPU Intel i7 @ 3.07GHz, RAM 24 GB, and 

Windows 10 OS. 

The synthetic data are generated making use of Eq. 

3; varying the DOA angles (θ,φ) in the interval [0, 𝜋] ×
[0,2𝜋] in order to cover the field of view of the sensor 

antenna. The different polarization angles are obtained 

by the weighted sum of the group steering vectors 

correspondent to the k-th DOA couple angle: i.e., for 

each DOA, the algorithm is tested for eight different 

polarization angles.  

The average execution time, estimated over two and 

half million algorithm runs (i.e., five SNR values, for 

eight different polarization angles, and 180 for 360 

different DOA directions), is reported in Table 1 as a 

function of the steering matrix spatial resolution. 

The run-time do not takes into account the 

computation of the standardization matrix and of the 

steering matrix, since they depend only on a priori known 

parameters like the noise covariance matrix and the sensor 

antenna configuration and gain pattern, and then they can 

be pre-computed and stored once the antenna system is  

defined. 
 

Table 1: Algorithm run-time as a function of the steering 

matrix resolution 

Steering Matrix Resolution Average Run-Time 

1 degree 0.050 s  

2 degrees 0.028 s 

4 degrees 0.015 s 
 

III. DISCUSSION 
As shown in Table 2, the RMS estimation errors 

degrade, as expected, with the SNR, and the estimation 

can be considered poor for SNR values lower than 5 dB 

SNR. It is important to note that the SNR, here, is defined 

on the single time snapshot, and then without any 

information about the time course of the signal; then the 

SNR is to be intended as the residual SNR from the 

filtering step. 

It is interesting to note that the steering matrix 

spatial resolution does not affect the estimation error 

when greater than 10 dB; this result can be used to 

choose the steering matrix resolution in function of the 

expected SNR level, with a significant computation time 

saving. 

As expected, the adoption of the optimal 

standardization matrix (Table 2, normal entries) ensures 

an improvement of the estimation accuracy. In fact, 

when the standardized steering matrix is adopted, the 

RMS estimation error is significantly lower; this is 

evident in the higher SNR level cases, where the 

estimation error is equal, in the worst cases, to half of  

the steering vectors spatial resolution. In general, the 

estimation accuracy is considered “good” until the 

threshold of 10 dB SNR, where the RMS estimation error 

is less than five degrees in elevation and azimuth angles, 

regardless the spatial resolution. 

 

IV. CONCLUSIONS 
In this work, an optimal single snapshot, time 

domain, group-sparse Bayesian DOA estimation method 

is proposed and tested on a vector sensor antenna system. 

As reported in the discussion section, it is possible to 

obtain an accurate DOA estimation also in the presences 

of imperfections in the steering matrix definition and 

with a single, noisy, time signal snapshot. The algorithm 

can be extended to sensors array configuration, or more 

complex sensor antennas elements [12-14], just with a 

proper definition of the steering matrix. 
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Table 2: RMS error percentile distributions (in degree) for optimally (bold) and non-optimally (plain) standardized 

steering matrix for 1, 2 and 4 degrees steering matrix resolution 

SNR (Res.) 

Low 

Limit 

25-

Perc. 

Median 75-

Perc. 

Up 

Limit 

Low 

Limit 

25-

Perc. 

Median 75-

Perc. 

Up 

Limit 

Elevation RMSE Azimuth RMSE 

30 dB (1°) 0/0 0.1/2.2 0.2/3.5 0.2/4.7 0.5/8.5 0/0 0.1/3.5 0.2/5.7 0.2/10 0.5/21 

30 dB (2°) 0/0 0/3 0.5/4.5 1/6.5 1/11 0/0 0/5 0/8 1/16 1/32 

30 dB (4°) 0/0 0/4 1/6 1/8 2/14 0/0 1/7 1/11 2/24 3/49 

20 dB (1°) 0/0 0.1/2.2 0.2/3.5 0.2/4.7 0.5/8.5 0/0 0.1/4 0.2/6 0.2/9 0.5/20 

20 dB (2°) 0/0 0/3 0.2/4 0.5/7 1/10 0/0 0/5 0/7 1/17 2.2/32 

20 dB (4°) 0/0 0/4 1/6 1.2/8 2/14 0/0 1/7 1/11 2/25 3.5/49 

10 dB (1°) 0/0 1.1/2.7 1.8/4 2.5/5.3 4.5/9 0/0 1.8/4 2.3/5.5 3.5/10 4.8/22 

10 dB (2°) 0/0 1.2/3 1.7/5 2.5/8 4/11 0/0 2/6 2.7/8 3.5/20 5/35 

10 dB (4°) 0/0 1.5/6 2/8 2.7/12 4.5/18 0/0 2/7 2.8/11 4.5/25 5/49 

5 dB (1°) 0/0 3.8/5 6.2/7 8.5/9 15/16 0/0 6.3/6 9/8 11/11 20/23 

5 dB (2°) 0/0 4/5.5 6.2/8 8.5/10 15/18 0/0 6/9 9/14 12/24 20/47 

5 dB (4°) 0/0 4/6 6/9 8/12 15/19 0/0 6/11 9/17 12/37 21/77 

0 dB (1°) 0/0 19/19 27/28 38/37 68/69 0/0 43/41 61/63 87/30 154/157 

0 dB (2°) 0/0 18/19 27/28 38/39 68/70 0/0 43/44 62/60 88/90 155/158 

0 dB (4°) 0/0 17/18 27/28 38/38 68/70 0/0 42/43 63/64 88/90 154/155 
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