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Abstract ─ The design of high-precision magnetic 

levitation positioning systems requires fast 

electromagnetic models. Since three-dimensional finite 

element method (3D-FEM) is very time-consuming, in 

order to calculate magnetic forces, an interesting 

alternative is to determine the forces semi-analytically 

due to the high accuracy with a short calculation time. In 

this paper, a new compact semi-analytical equation for 

determining the magnetic propulsion forces of a new 

ironless two degrees of freedom (2-DoF) actuator for a 

high-precision magnetic levitation system is presented. 

The derived equation is based on the magnetic scalar 

potential and the Lorentz force law. An important result 

is that this new expression takes also the position 

dependence of the propulsion forces over the whole 

planar stroke into account. The calculated propulsion 

forces from the derived equations and the verification by 

3D-FEM (Maxwell 3D) are presented in this paper as 

well. 

 

Index Terms ─ Analytical calculation, ironless actuator, 

Lorentz force, magnetic levitation, magnetic scalar 

potential, Maxwell 3D. 
 

I. INTRODUCTION 
Due to the ongoing miniaturization of electronic 

components, many modern applications, such as the 

semiconductor manufacturing or nanotechnology, 

requires vacuum compatible planar positioning systems 

with long planar strokes and precisions up to the 

nanometer (nm) range [1]. One promising solution to 

achieve these requirements is the combination of multiple 

electrodynamic linear actuators with active magnetic 

guidances in a triangular or rectangular configuration 

[2].  

These high-precision 6-DoF magnetic levitation 

positioning systems can position objects precisely up to 

the nm range without any contact in multiple degrees of 

freedom with only one moving element [3]. In order to 

eliminate hysteresis effects, flux saturation and eddy-

currents, obtained from ferromagnetic materials, currently 

most of the high-precision magnetic levitation positioning 

systems known in the literature are realized with ironless 

actuators [3]. These ironless actuators consist usually  

of a stator with air-core coils and a mover with either  

a Halbach array [4] or a single permanent magnet [5]. 

The main advantage of the iron-free structure of these 

systems are the linear relationship between the currents 

and forces and the fast current changes in the air-core 

coils, which allows the realization of simple and highly 

dynamic control algorithms.  

For the purpose of designing, analyzing and 

optimizing of such systems, often 3D-FEM are required 

and used because the geometry of such positioning 

systems is a complex 3D problem [6-7]. However, the 

main problem of 3D-FEM is that it requires partly several 

hours to obtain a solution, since it needs extremely fine 

meshing within the air gap as well as the surrounding 

medium in order to obtain accurate results of the forces 

and magnetic fields. Consequently, alternative solutions 

are required in order to calculate magnetic forces and 

fields very fast [8].  

One interesting alternative is the calculation of  

the magnetic forces and fields analytically, because it 

combines high accuracy with a very low computational 

time compared to 3D-FEM [9-11]. Therefore, many 

scientists calculate forces in planar positioning systems 

and in ironless systems analytically instead using 3D-

FEM [12-14]. Mostly, they focus on the calculation of 

the repulsive levitation forces of magnetic guidances. 

However, because of the inherently unstable behavior  

of repulsive magnetic guidances, the moving magnet 

experiences, in addition to the levitation force, also a 

destabilizing force, that intends to push the permanent 

magnet laterally away from the center position. Thus,  

the determination of these undesired propulsion forces 
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are a crucial task, since they must compensate from 

propulsion actuators in order to restore the lateral 

stability and to move and position the mover 

simultaneously.  

In this paper, attention is given to the semi-

analytical calculation of the planar propulsion forces  

of a novel 2-DoF actuator presented in [3]. The main 

contributions are new expressions, which consider the 

position dependence of the desired propulsion force and 

the planar destabilizing propulsion forces over the whole 

planar stroke.  
 

II. 2-DOF ACTUATOR 
The actuator under investigation is shown in Fig. 1. 

This novel 2-DoF actuator for 6-DoF high-precision 

magnetic levitation systems is proposed in order to 

overcome the limitations of Halbach arrays and reluctance 

actuators [3]. It consists of air-core propulsion and guiding 

coils generating two perpendicular forces (levitation and 

propulsion) on a single moving magnet. This actuator 

configuration reduces the mover mass significantly and 

consequently the power consumption of the guiding  

coil. A 6-axis motion can be realized with only three  

or four of such actuators in a triangular or rectangular 

configuration [3]. As mentioned, the magnetic guiding 

coil generates not only a desired repulsive levitation 

force, but also an undesired destabilizing propulsion 

force. Figure 2 shows a more detailed illustration of this 

unstable behavior.  
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Fig. 1. Ironless 2-DoF actuator. 
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Fig. 2. Generation of the propulsion and levitation force. 

As can be seen, the magnetic field generated by the 

permanent magnet creates flux density components in 

the x- and z-direction. The x-component of the magnetic 

flux density creates the desired levitation force, i.e.,  

the motion of the mover along the z-direction is stable. 

This is because as the air gap increases, the repulsive 

levitation force decreases and thus, the gravitational 

force restores the mover in the equilibrium position. 

Nevertheless, the z-component of the magnetic flux 

density is responsible for a destabilizing propulsion force 

that intends to push the permanent magnet away from the 

equilibrium position. This instability is consistent with 

Earnshaw’s theorem, which states that a stable levitation 

based only on static magnetic forces between dc coils 

and permanent magnets is never stable in all directions 

simultaneously [15]. Consequently, a stable levitation 

can only be achieved by an additional propulsion 

actuator in combination with a control system.  

However, the total force acting on the permanent 

magnet is generated according to the electrodynamic 

principle (Lorentz force) and can be calculated using the 

Lorentz force formula: 

 

𝑭= ∫ 𝑱 × 𝑩 d𝑉𝑐𝑜𝑖𝑙 ,

𝑉𝑐𝑜𝑖𝑙

 (1) 

where J is the current density in the coil, B the magnetic 

flux density generated by the neodym-iron-boron (NdFeB) 

permanent magnet and d𝑉𝑐𝑜𝑖𝑙  represents the small volume 

element in the coils. 

 
A. Analytical calculation of the magnetic flux density 

In order to evaluate the Lorentz force according to 

(1), the first important step is the calculation of the 

magnetic flux density of the NdFeB permanent magnet 

inside the coil volume. One possible calculation approach 

known in the literature is based on the magnetic scalar 

potential, which results in a reduction of the magnet to a 

distribution of fictive magnetic charges (magnetic surface 

charge model) (Fig. 3) [13]. The magnetic surface charge 

model is derived from the magnetic scalar potential 𝜑. 

The starting point is Ampere’s law for current-free region: 

 𝜵 × 𝑯 = 0, (2) 

where 𝜵 is the Nabla-Operator and 𝑯 is the magnetic 

field strength.  

Since (2) is rotation-free, from a mathematical point 

of view, the magnetic field strength can be described by 

introducing a magnetic scalar potential 𝜑 [16]: 

 𝑯 = −𝜵 ∙ 𝜑. (3) 

Inserting the constitutive relation, 

 𝑩 = 𝜇0 ∙ (𝑯 +𝑴), (4) 

where 𝜇0 is the vacuum permeability and 𝑴 the 

magnetization of the permanent magnet into Gauss’s law 

for magnetism: 

 𝜵 ∙ 𝑩 = 0, (5) 

yields, 
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 𝜵 ∙ 𝑯 = −𝜵 ∙ 𝑴. (6) 

By introducing a fictive magnetic charge density 

𝜌 = −𝜵 ∙ 𝑴 and using the magnetic scalar potential 𝜑, 

this results in: 

 𝜵𝟐 ∙ 𝜑𝑚 = −𝜌. (7) 

Under the condition that there are no boundary 

surfaces in the whole volume, that is 𝜇 = 𝑐𝑜𝑛𝑠𝑡., and 

under the assumption of ideal magnets, which are 

characterized by a fixed and uniform magnetization in 

the volume of the magnets, the solution for the magnetic 

scalar potential 𝜑 is as follows [13]: 

 

𝜑 =
1

4𝜋
∮
𝑴(𝒓𝑸) ∙ 𝒏

|𝒓 − 𝒓𝑄|
𝑆𝑚𝑎𝑔

 d𝑆𝑚𝑎𝑔 , (8) 

where d𝑆𝑚𝑎𝑔 is the surface that bounds the volume V of 

the magnet, 𝒓 = {𝑥, 𝑦, 𝑧} describes the point of evaluation 

and 𝒓𝑄 = {𝑥𝑄 , 𝑦𝑄 , 𝑧𝑄} describes the position of the source. 

In free-space, the magnetic flux density can be expressed 

as: 

 𝑩 = 𝜇0𝑯, (9) 

and finally with (8) substitute into (3), (9) becomes: 

 

𝑩 =
𝜇0
4𝜋

∮ 𝑴(𝒓𝑸) ∙ 𝒏 ∙
(𝒓 − 𝒓𝑸)

|𝒓 − 𝒓𝑸|
3

𝑆𝑚𝑎𝑔

d𝑆𝑚𝑎𝑔 . (10) 

 

north pole

south pole
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magnetic
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Fig. 3. NdFeB permanent magnet (a) and magnetic surface 

charge model (b). 

 

B. Destabilizing force calculation of the guiding coil 

Using (10) and inserting into (1), the total Lorentz 

force can be generally written as: 

𝑭 = ∫ 𝑱 × (
𝜇0
4π

∮ 𝑴(𝒓𝑸) ∙ 𝒏

SmagVcoil

∙
(𝒓 − 𝒓𝑸)

|𝒓 − 𝒓𝑸|
3 d𝑆𝑚𝑎𝑔)  d𝑉𝑐𝑜𝑖𝑙 . 

(11) 

In order to calculate the destabilizing propulsion 

force, we split the whole guiding coil in four identical 

coil sections according to Fig. 4, where two of the coil 

sections generate a force in the x-direction (CS1 and 

CS3), and the remaining coil sections (CS2 and CS4)  

in the y-direction, respectively. For calculation of the 

propulsion force in x-direction generated by CS1 and 

CS3, we determine the z-component of the magnetic flux 

density 𝐵𝑧: 

 

𝐵𝑧 = 𝑩 ∙ 𝒆𝑧 =
𝜇0
4𝜋

∮ 𝑴(𝒓𝑸) ∙ 𝒏

Smag

∙
(𝒓 − 𝒓𝑸)

|𝒓 − 𝒓𝑸|
3 ∙ 𝒆𝑧 d𝑆𝑚𝑎𝑔 , 

(12) 

and assume also a constant and uniform volume current 

density in the y-direction (see Fig. 4 (b)): 

 
𝑱 =

𝑁 ∙ 𝐼

𝑏𝑎𝑖 ∙ ℎ
∙ 𝐞𝑦 , (13) 

where N is the number of coil turns, I the current through 

the coil, 𝑏𝑎𝑖 ∙ ℎ the cross sectional area and 𝐞𝑦 is the  

unit vector in the y-direction. Under consideration of  

the parameters, shown also in Fig. 4, the destabilizing 

propulsion force in x-direction as a function of the 

current mover position over the whole planar stroke can 

be calculated according to (14), shown at the bottom of 

the next page.  
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Fig. 4. Geometry of the magnetic guiding coil. 

 

This derived equation is semi-analytical, because 

this equation requires besides an analytical integration, 

also a numerical integration. 

In the exact manner, we derive (15) in order to 

calculate the destabilizing propulsion force along the y- 

direction. Since the undesired destabilizing propulsion 

forces along the x- and y-direction acts simultaneously 

on the permanent magnet, the superposition of both 

forces must be applied in order to determine the total 

destabilizing force: 

 
𝐹𝑥𝑦 = √𝐹𝑥

2 + 𝐹𝑦
2. (16) 

 

C. Force calculation of the propulsion coil 

The propulsion coil in the 2-DOF actuator 

contributes towards the desired motion in the planar 

plane. The magnitude of the propulsion force component 

must be bigger than the magnitude of the destabilizing 

propulsion force components generated by the guiding 

coil, in order to counteract these destabilizing forces and 

to move and position the mover precisely within the 

planar stroke. Similar to the guiding coil, we divide the 

propulsion coil into four sections as shown in Fig. 5. 

Only CS2 generates the propulsion force in the desired 
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direction, whereas the other coil sections generate a force 

in the opposite direction. To determine the desired 

propulsion force acting in the x-direction as a function  

of the current mover position, we calculate the force 

components of the coil sections using (17–19) with the 

parameters also shown in Fig. 5. The actual propulsion 

force on the magnet can be calculated using (20): 

 𝐹𝑥,𝑝𝑟𝑜𝑝 = 𝐹𝐶𝑆2 − 𝐹𝐶𝑆4 − 𝐹𝐶𝑆13 . (20) 

The results based on our proposed equations can be 

used to design the control system. One possible approach 

is to store the Lorentz force values acting on the 

permanent magnet as a function of the current mover 

position in a look up table. Another approach is to use  

a polynomial function to fit the forces versus x and y. 

Anyway, both approaches can greatly help in the design 

of the control system. 
 

𝐹𝑥

=
𝜇0𝑀

4𝜋 

𝑁 ∙ 𝐼

𝑏𝑎𝑖ℎ

(

 
 
∑∑ ∫ ∫ ∫ ∫ ∫

−(−1)𝛽(𝑧 − 𝑧𝛽)

(√(𝑥 − 𝑥𝑄)
2
+ (𝑦 − 𝑦𝑄)

2
+ (𝑧 − 𝑧𝛽)

2
)

3

𝑥

−𝑥

(1−𝛼)∙𝑏𝑎−𝛼∙𝑏𝑖

(1−𝛼)∙𝑏𝑖−𝛼∙𝑏𝑎

−
ℎ
2

−
ℎ
2

𝑎
2
+𝑥𝑝

−
𝑎
2
+𝑥𝑝

𝑎
2
+𝑦𝑝

−
𝑎
2
+𝑦𝑝

2

𝛽=1

1

𝛼=0

)

 
 
𝑑𝑦𝑑𝑥𝑑𝑧𝑑𝑥𝑄𝑑𝑦𝑄 , 

(14) 
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𝜇0𝑀

4𝜋 
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(
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(√(𝑥 − 𝑥𝑄)
2
+ (𝑦 − 𝑦𝑄)

2
+ (𝑧 − 𝑧𝛽)

2
)

3

𝑦

−𝑦
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(1−𝛼)∙𝑏𝑖−𝛼∙𝑏𝑎

−
ℎ
2

−
ℎ
2

𝑎
2
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−
𝑎
2
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𝑎
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−
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2
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2

𝛽=1

1

𝛼=0
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(15) 

𝐹𝐶𝑆2 =
𝜇0𝑀

4𝜋 

𝑁𝑝 ∙ 𝐼𝑝

𝑏𝑐ℎ𝑐1

(

 
 

∫ ∫ ∫ ∫ ∫ ∑
−(−1)𝛽(𝑧 − 𝑧𝛽𝑝)

(√(𝑥 − 𝑥𝑄)
2
+ (𝑦 − 𝑦𝑄)

2
+ (𝑧 − 𝑧𝛽𝑝)

2
)

3

2

𝛽=1

𝑏𝑑
2

−
𝑏𝑑
2

𝑏𝑐
2

−
𝑏𝑐
2

ℎ𝑐
2
+ℎ𝑐1

ℎ𝑐
2

𝑎
2
+𝑥𝑝  

−
𝑎
2
+𝑥𝑝

𝑎
2
+𝑦𝑝

−
𝑎
2
+𝑦𝑝 

)

 
 
𝑑𝑦𝑑𝑥𝑑𝑧𝑑𝑥𝑄𝑑𝑦𝑄, (17) 

𝐹𝐶𝑆4

=
𝜇0𝑀

4𝜋 

𝑁𝑝 ∙ 𝐼𝑝

𝑏𝑐ℎ𝑐1

(

 
 

∫ ∫ ∫ ∫ ∫ ∑
−(−1)𝛽(𝑧 − 𝑧𝛽𝑝)

(√(𝑥 − 𝑥𝑄)
2
+ (𝑦 − 𝑦𝑄)

2
+ (𝑧 − 𝑧𝛽𝑝)

2
)

3

2

𝛽=1

𝑏𝑑
2

 −
𝑏𝑑
2

𝑏𝑐
2

−
𝑏𝑐
2

−
ℎ𝑐
2

−(
ℎ𝑐
2
+ℎ𝑐1)

𝑎
2
+𝑥𝑝

−
𝑎
2
+𝑥𝑝 

𝑎
2
+𝑦𝑝

−
𝑎
2
+𝑦𝑝

)

 
 
𝑑𝑦𝑑𝑥𝑑𝑧𝑑𝑥𝑄𝑑𝑦𝑄 , 

(18) 

𝐹𝐶𝑆13 =
𝜇0𝑀

4𝜋 

𝑁𝑝 ∙ 𝐼𝑝

𝑏𝑐ℎ𝑐1

(

 
 
∑∑ ∫ ∫ ∫ ∫ ∫

−(−1)𝛽(𝑦 − 𝑦𝑄)

(√(𝑥 − 𝑥𝑄)
2
+ (𝑦 − 𝑦𝑄)

2
+ (𝑧 − 𝑧𝛽𝑝)

2
)

3

 𝑏𝑐
2

−
 𝑏𝑐
2

(1−𝛼)∙
𝑏𝑑
2
−𝛼(

𝑏𝑑
2
−𝑘)
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𝑏𝑑
2
−𝑘)−𝛼

𝑏𝑑
2

ℎ𝑐
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−
ℎ𝑐
2
 

−
𝑎
2
+𝑥𝑝

−
𝑎
2
+𝑥𝑝

−
𝑎
2
+𝑦𝑝

−
𝑎
2
+𝑦𝑝

2

𝛽=1

1

𝛼=0
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Fig. 5. Geometry of the magnetic propulsion coil. 

 

III. RESULTS AND DISCUSSION 
As already mentioned, the quintuple equations are 

semi-analytical, i.e., after two consecutive analytical 

integrations with the Symbolic Math Toolbox of 

MATLAB, it is difficult to express the remaining  

expression in an analytical form. Thus, after the analytical 

integration, we convert the remaining expression in  

a function handle using matlabFunction and used the 

intern numerical integration function integral3 to 

evaluate the remaining triple integral. The function of the 

numerical integration is used with the default settings. In 

order to simplify the calculation procedure, a MATLAB 

program is written which contains the analytical and 

numerical integration. Based on our MATLAB program, 

the destabilizing propulsion forces are calculated in 

millimeters in the horizontal plane from −20 mm to  

+20 mm (Fig. 6). 

In order to validate the semi-analytical equations, 

the Lorentz forces acting on the coils were also predicted 

using 3D-FEM (Fig. 7). The parameters and dimensions 

required for the numerical and semi-analytical calculation 

are given in Table 1. 

 

LAHDO, STRÖHLA, KOVALEV: MAGNETIC PROPULSION FORCE CALCULATION OF A 2-DOF LARGE STROKE ACTUATOR 666



 

 
 

Fig. 6. Calculated destabilizing force. 

 

 
 

Fig. 7. 3D-FEM model (Maxwell 3D). 

 

Table 1: Parameters for the force calculation 

Parameter Symbol Value Unit 

Number of turns N / Np 250 / 200  

Current I / I p 1 / 1 A 

Remanence of PM µ0M 1.44 Vs/m2 

Coil thickness bai / bc 10 / 80 mm 

Coil height h / hc / k / hc 30 / 30 / 5 / 3 mm 

Coil length bd 110 mm 

Magnet length a 20 mm 

Coil inner side bi 40 mm 

Coil outer side ba 50 mm 

Neg. magnetic 

charges height 
z1 / z1p 34 / 19 mm 

Pos. magnetic 

charges height 
z2 / z2p 54 / 39 mm 

 

The comparison of the destabilizing force-

displacement curves using the derived equations and 3D-

FEM is shown in Fig. 8, and the comparison of the 

propulsion force generated by the propulsion coil can  

be seen in Fig. 9, respectively. It can be observed in  

both figures, that the numerical and semi-analytical 

computation shows a very good agreement. The max. 

error between the solutions of our equation and the 

numerical ones in all investigated curves is below 1%. In 

order to determine the forces over the whole planar stroke, 

the calculation time of the 3D-FEM takes several hours, 

whereas the semi-analytical approach with MATLAB 

takes only a few seconds. Consequently, our proposed 

method is a very fast alternative to the time-consuming 

3D-FEM and can be used for designing and optimizing 

the 2-DoF actuator. Moreover, the presented theory in 

this paper can be easily adopted for other ironless PM-

actuators. 

 

 
 

Fig. 8. Force-displacement curve of the guiding coil. 

 

 
 

Fig. 9. Force-displacement curve of the propulsion coil. 

 

IV. CONCLUSION 
The new equation in this paper for determining the 

propulsion forces can help to evaluate the performance 

of our proposed 2-DoF actuator. It allows a very short 

calculation time compared to 3D-FEM and can be 

implemented very easy in MATLAB.  

The results obtained by our new equation have been 

compared with 3D-FEM results. Both show a very good 

agreement with a maximum error of 1%. 

The presented theory in this paper can also be used 

to derive similar semi-analytical equations for analysis, 

optimization and design issues of other ironless PM-

actuators. 
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