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Abstract ─ A novel magnetic levitation principle, 

applicable for two- and four-pole high-speed permanent 

magnet synchronous motors, is presented. The drive 

consists of two half-motors, in which two asymmetric 

star-connected windings are arranged. An additional 

active magnetic bearing part is inserted to control the 

axial displacement. The two coils of the axial magnetic 

bearing are fed by the zero-sequence current components 

of the star-connected windings. The proper control of the 

positive, the negative, and the zero-sequence currents 

permits to set the torque, the radial levitation forces and 

the axial levitation force, respectively. 

 

Index Terms ─ Magnetic suspension, permanent magnet 

synchronous motor, self-bearing motor, symmetrical 

components. 
 

I. INTRODUCTION 
In the past decades, different levitation principles 

were investigated to achieve rotor suspension with forces 

of magnetic origin. This paper focuses on a solution  

with active control of the six degrees of freedom of the  

rotor, suitable for high-speed drives. Active self-bearing 

suspension is considered to be an alternative to active 

magnetic bearings, where the same iron stack is used for 

the generation of the torque and of the levitation forces 

[1]. While most self-bearing motors generate only radial 

suspension forces [1], some unconventional motor 

designs enable to generate also an axial thrust. A solution 

is presented in [2], where axial forces are generated by 

two opposing half-motors with conical air-gap. The axial 

displacement is controlled actively using a three-point  

d-current control in each half-motor. In [3], a different 

approach is proposed, with again two conical half-motors, 

but here the permanent magnet field is controlled in  

the synchronous coordinate system. Four conventional 

windings are required, two for the torque and the axial 

force, and two for the two radial forces of the two half-

motors. Axial flux motor alternatives are proposed in [4] 

and [5], where the axial thrust results from the difference 

of the main field on both sides of an axial flux motor. A 

Lorentz-force based application can be found in [6], 

where the two counteracting axial thrusts of two 

conically shaped skewed windings are used to generate 

a net axial force. A much simpler Lorentz-force based 

solution is presented in [7]. This latest prototype is 

composed of two cylindrical half-rotors. Two oppositely 

skewed windings are brought in two half motors, so that 

a q-current feeding results simultaneously in a torque and 

an axial thrust. The net torque is produced by a common 

q-current feeding, while the net axial thrust results  

from an opposite q-current feeding. In this paper, an 

alternative topology is presented, with a thrust bearing as 

a magnetic active part, fed by two zero-sequence current 

components from two double star windings. This 

topology, restricted to two- and four-pole motors, is 

extended from the motor design presented in [8]. 

Whereas the previous design [8], requires an additional 

axial magnetic bearing and the corresponding power 

electronics, the feeding of the magnetic bearing in the 

proposed design is achieved through the drive winding 

itself. As a result, all the terminals are used to generate 

the torque, the radial and the axial levitation forces 

simultaneously. In steady-state condition, these 

components correspond to the positive, the negative and 

the zero-sequence current components, respectively, in 

each of the three-phase windings. The first part of the 

paper describes the different windings in the different 

active parts, and their feeding. It describes in particular 

the thrust bearing coils to generate an axial force and 

their connection to the main windings. The second part 

focuses on the integration of the zero-sequence current 

control into the existing control, presented in [8]. It 

presents a new set of coordinate systems, relevant for the 

field orientation control. The third part presents an 

extension of the voltage modulators, which enables to 

impress a zero-sequence voltage. It is demonstrated, that 

with simple transformations the determination of the 

pulse widths to impress the positive and negative 

sequence voltages is similar to the familiar space vector 
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modulation. The determination of the zero-sequence 

voltage is explained in the fourth part. In particular, the 

problem of over-modulation is addressed. 
 

II. WINDING CONFIGURATION AND 

FEEDING 
In order to achieve the suspension and speed control 

of a free rotating body, the six degrees of freedom (DOF) 

need to be actively controlled. To do so, the torque, the 

axial force and two sets of two radial forces, on two 

parallel, but distinct planes, are produced by several 

electromagnetic actuators. The configuration of the 

proposed magnetic active parts is represented in Fig. 1.  
 

 
 

Fig. 1. Schematic representation of the proposed motor 

with two half permanent magnet synchronous motors 

(BM) and an active thrust magnetic bearing (AMB). 
 

The proposed drive is composed of two half-motors 

(BM in Fig. 1), which generate torque and radial 

levitation forces, and one thrust magnetic bearing part 

(AMB in Fig. 1), which produces an axial levitation 

force. To prevent rotor damage in case of levitation 

control failure, an emergency bearing is present at each 

rotor end. A play between rotor and bearing inner-ring 

prevents any mechanical contact during normal operation. 

Five position sensors and a rotor angle sensor are present 

to measure the rotor position. Two parallel magnetized 

two-pole magnets are surface mounted on the rotor. In 

the stator slots of each half motor two asymmetrical 

three-phase windings are wound, as shown in Fig. 2. The 

windings are here represented with a number of slots per 

pole and phase of q = 1 for clarity. Due to coil short 

pitching (W/τp = 1/2) and an asymmetrical winding 

arrangement (Fig. 2), the two windings produce not only 

a fundamental field for the torque, but also a space 

harmonic of order two (ν = -2) for the radial forces. The 

expression of the torque (resp. of the radial forces), 

generated by a differential-mode counter-clockwise 

rotating current space vector iccw = iα,1 + j iβ,1 (resp. a 

common-mode clockwise rotating current space vector 

icw = iα,-2 + j iβ,-2), is detailed in [8]. Additionally, the star 

points NA and NB of the proposed windings (Fig. 2) are 

interconnected, so it is possible to feed a zero-sequence 

current id,0 between the two three-phase windings (Fig. 

3). This current component is used to generate an axial 

attraction force. The axial active magnetic bearing is a 

conventional thrust bearing with differential windings. It 

is composed of two ring electromagnets with two coils, 

which are fed according to the differential feeding 

principle. The outer electromagnet is removable in axial 

direction to enable the rotor insertion. The two star points 

NA and NB of the two three-phase systems from one half-

motor (Fig. 2) are connected to the terminals of one of 

the two coils (AMB Fig. 1) of the magnetic thrust 

bearing. The two other star points from the second half-

motor winding are connected to the second coil of the 

magnetic bearing. Two zero-sequence currents id,0,DE and 

id,0,NDE are flowing through the two coils of the magnetic 

bearing. The amplitudes of the currents id,0,DE and id,0,NDE 

follow the differential feeding Equation (1): 

. (1) 

 

 
 

Fig. 2. Winding disposition in one half-motor (e.g., DE 

BM), connected to a single coil of the thrust bearing 

(AMB). The thrust coil (on the right) is fed through the 

interconnected star points NA, NB. The winding disposition 

is identical for the second half-motor. 
 

Whereas the electromagnetic forces, resulting on the 

thrust disk and generated by the common mode bias 

current i0,bias, are cancelling each other, the differential 

current Δi0 produces a net axial force Δfz. This principle 

is identical to the principle of differential feeding in 

active magnetic bearings. The expressions of the phase 

currents in UA, VA, WA and UB, VB, WB in stationary 

conditions are shown in (2) and are valid for the drive 

end (DE) and the non-drive end (NDE) separately. Φ1 

and Φ2 are the phase angles of the current space vectors 

iccw and icw at the time t = 0. The current space vector iccw 

rotates with electrical frequency ω in the positive 

direction (counter-clockwise), whereas the current space 

vector icw rotates with the same electrical frequency ω in 

the negative direction (clockwise); 
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with active magnetic bearings [1]. It can be realized for 

example with simple PID controllers that take the 

displacement position signals as input and calculate the 

required radial and axial forces to suspend the rotor at 

the center of the stator. 
 

 
 

Fig. 3. Schematic representation of the six-phase 

winding in one half motor (Fig. 2) and definition of the 

currents and voltage potentials. The second winding in 

the second half motor is identical. 

 

III. CONTROL STRUCTURE EXTENSION 
For independent control of the torque and levitations 

forces, the six phase currents are transformed into two 

sets (DE & NDE) of three orthogonal sub-spaces KS,0, 

Kdq,1, Kdq,-2. The decomposition is done as follows: The 

six phase currents are projected on a first stator-based 

subspace KS,1 via (3) to get the differential counter-

clockwise components iα,1 and iβ,1. It is demonstrated in 

[8] that these components generate a two-pole magnetic 

air-gap field. These components are transformed into the 

synchronous coordinate system Kdq,1 to control the field 

weakening and the torque independently. The projection 

of the phase currents on a second sub-space KS,-2 via (3) 

gives the common-mode clockwise components iα,-2 and 

iβ,-2, which are necessary to produce radial forces. These 

components are exciting a four-pole air-gap field 

(harmonic order ν = -2), which interacts with the two-

pole rotor permanent magnet field to generate the radial 

forces [8]. To obtain an independent control of the 

horizontal and vertical radial forces, these components 

are transformed into a clockwise rotating coordinate 

system Kdq,-2, rotating with the electrical frequency ω. 

Since the number of pole-pairs of the levitation field 

(p2 = 2) is different from the one of the rotor field 

(p1 = 1), the levitation field harmonic ν = -2 rotates in 

stationary condition at a slip s = 0.5 (4). Finally, the 

projection of the six phase currents on KS,0 via (3) gives 

a single differential zero-sequence current component 

id,0. Whereas the radial suspension forces and the torque 

in each half motor are independent from each other, the 

net axial force results from the difference of the axial 

forces, generated by the two currents id,0,DE and id,0,NDE. 

When these two components are controlled according to 

(1), the resulting net force Δfz is directly proportional to 

Δi0. The described current projections are factorized 

according to (3). The control of each current component 

is done in the sub-spaces KS,0, Kdq,1, Kdq,-2, for each half 

motor (DE and NDE in Fig. 1) with simple PI controllers. 

The voltage outputs are then transformed back to the  

set of stator coordinate systems {KS,0, KS,1, KS,-2} before 

being sent to the modulators. The speed and position 

control scheme as well as the linearized model of the 

proposed drive is identical to the one with active 

magnetic bearing suspension and is therefore not 

explained here. An overview of the considered sub-

spaces is given in Table 1, with the corresponding space 

dimension: 

 , (3) 

  . (4) 

 

Table 1: List of the defined sub-spaces 

Name Description Dim. 

KS,0 Stator zero-sequence sub-space 1 

Kdq,1 
Counter-clockwise synchronous 

differential component sub-space 
2 

Kdq,-2 
Clockwise synchronous common-

mode component sub-space 
2 

KS,1 
Stator counter-clockwise differential 

component sub-space 
2 

KS,-2 
Stator clockwise common-mode 

component sub-space 
2 

KS,A (αβγ) stator sub-space of winding A 3 

KS,B (αβγ) stator sub-space of winding B 3 

 

IV. SPACE VECTOR MODULATION 

EXTENSION 
The proposed winding has six phases and five 

degrees of freedom (DOF). The six phase terminal 

potentials φU,A, φV,A, φW,A, φU,B, φV,B, φW,B are impressed 

by a six phase inverter. It is shown in Fig. 3 that the star-

point potentials φN,A and φN,B are not impressed by the 

inverter, so the 3D SVM is not suitable for this problem. 

Indeed, the two modulators, necessary to calculate  

the proper firing instants of the power switches, require 

a novel pulse width modulation to impress a zero-

sequence voltage ud,0. Here, a solution is proposed, based 

on the space vector modulation principle. The pulse 

pattern of a single six-phase system (Fig. 4) is described 

by six pulse widths (t0,A, t1,A, t2,A, t0,B, t1,B and t2,B).  

The voltage space, covered by this 5D SVM, forms a  

5D polytope. In contrast to the common 2D SVM, 

projections of the reference voltage vectors in 5D voltage 

spaces are difficult to apprehend. In Fig. 3, the phase 

voltages uU,A, uV,A, uW,A, can be determined as a function 

of the phase potentials φU,A, φV,A, φW,A and the star point 
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potential φN,A. Obviously, the two star point potentials 

φN,A and φN,B are functions of all the six phase potentials 

φU,A, …, φW,B. After projection of the phase voltage 

vector uA = (uU,A, uV,A, uW,A)T into the coordinate system 

KS,A with the Clarke transformation (5), it can be noticed 

that the components uα,A and uβ,A of uA, in KS,A, are 

independent of φU,B, φV,B and φW,B. Doing the same 

transformation in KS,B with uB = (uU,B, uV,B, uW,B)T, it  

is possible to split the 5 DOF problem into smaller 

problems by projection of the stator voltage vector 

uS = (uα,1, uβ,1, uα,-2, uβ,-2, ud,0)T in KS,A and KS,B. The zero-

voltage components u0,A and u0,B depend however on  

all the phase potentials φU,A, …, φW,B. While the actual 

values of u0,A and u0,B are not of interest, the zero-

sequence voltage ud,0, which drives the zero-sequence 

current component id,0 in KS,0, is given by 

ud,0 = φN,A - φN,B. To take advantage of the orthogonality 

mentioned above, a two-step calculation of the pulse 

pattern is introduced. First the four pulse widths t1,A, t2,A, 

t1,B and t2,B of the active voltage switching states V1,A, 

V2,A, V1,B and V2,B are determined to generate solely  

the counter-clockwise differential voltage space vector 

components (uα,1, uβ,1) and the clockwise common-mode 

voltage space vector components (uα,-2, uβ,-2). To do so, 

relation (6) is used, followed by two inverse Clarke 

transformations in A and B. In a second step, the pulse 

widths t0,A, t0,B, t7,A and t7,B of the zero-voltage switching 

states V0,A, V0,B, V7,A and V7,B are determined to get the 

required zero-sequence differential voltage component 

ud,0. The general determination of the zero-voltage pulse 

widths is an underdetermined problem, so that symmetry 

considerations and polytope boundaries are exploited  

to find a unique solution. Despite its simplicity, this 

algorithm is only suited to this particular problem and is 

not a general solution of the 5D SVM: 

 , (5) 

. 

(6) 

 

V. CONTROL OF THE ZERO-SEQUENCE 

CURRENT 

In the proposed scheme, the zero-sequence voltage 

ud,0 is modulated with the difference of pulse width of 

the zero-voltage switching states V0,A, V0,B, V7,A and V7,B. 

In order to produce a positive zero-voltage component 

ud,0, the pulse width t7,A, of the positive zero-voltage 

switching state V7,A (“ppp”, where all three phase 

terminals are switched to Udc) in the three-phase system 

A is increased, while the pulse width t7,B of the positive 

zero-voltage switching state V7,B in the three-phase 

system B is reduced (Fig. 4). The variation of the zero-   

of ud,0 over a switching period Tsw, becomes positive. An 

illustration of asymmetrical pulse patterns is given in 

Fig. 4. The determination of the four zero-voltage pulse 

widths t0,A, t0,B, t7,A and t7,B is formulated as (7), (8) and 

(9): 

 , (7) 

, (8) 

 . (9) 

Whereas the two first conditions (7) and (8) are very 

simple to compute, the third condition (9) requires those 

machine parameters, which are relevant for the zero-

sequence components. A simplified equivalent circuit of 

the zero-sequence system is proposed in Fig. 5, which 

considers due to the high switching frequency only the 

inductances, which are limiting the zero-sequence 

current id,0. The zero-sequence current id,0 magnetizes the 

air-gap of the two half-motors BM (Fig. 1) with a field 

space harmonic of order three (ν = 3). It magnetizes 

additional regions in the slots and winding overhangs as 

well. The equivalent leakage inductance is named Lσ,0,BM 

for A and B. It also magnetizes the leakage inductance 

of the magnetic bearing AMB (Fig. 1) itself, which is 

called Lσ,AMB. Finally it magnetizes the magnet bearing 

air-gap region of interest with a magnetizing inductance 

Lh,AMB. Integrating the left side of (9), it can be shown 

that the third condition is equivalent to (10), where  

the coefficient keq characterizes the equivalent voltage 

divider of the circuit (Fig. 5) according to (11): 

  , (10) 

 . 

(11) 

 

In order to obtain a single formulation of the 

solution, the pulse width t1 is defined so that t1 

corresponds to the first active voltage state “pnn”, where 

one of the three phases is at the DC link voltage Udc, 

while the two others are switched to ground potential. 

The pulse width t2 corresponds to the second active 

voltage state “ppn”, where two of the three phases are 

switched to Udc, while the remaining one is switched to 

ground potential. Following this convention, the third 

condition is reformulated as (12). Finally the solution 

(t0,A, t0,B, t7,A, t7,B) of the problem is given by the 

intersection of three hyper-surfaces in 4

0 , defined by 

(8) and (12). As a consequence, the solution can be 

underdetermined, or a single point, or there can be  
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no solution at all. The underdetermined case occurs, 

when the reference zero-sequence voltage ud,0 is small 

enough, and the inverter has enough voltage reserve, 

(i.e., when the modulated active voltage vectors (uα,A, 

uβ,A)T and (uα,B, uβ,B)T in windings A and B are below the 

maximal admissible voltage vector amplitude). In the 

underdetermined case, the additional constraint (13) is 

proposed where the pulse widths tZ,A and tZ,B are defined 

in (8) and the pulse width tZ,MB is defined in (12): 
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(15) 

This condition (13) is chosen to get a continuous 

transition of the solutions (t0,A, t0,B, t7,A, t7,B) when tZ,A = 0 

or tZ,B = 0 in (8) (i.e., when one modulated active vector 

(uα,A, uβ,A)T or (uα,B, uβ,B)T reaches the maximal admissible 

voltage vector amplitude). The Equations (8), (12) and 

(13) are reformulated in a matrix form and the explicit 

solution (15) is obtained by inversion of the matrix. 

When no solution is possible (i.e., when tZ,A < 0 or tZ,B < 0 

or tZ,A+ tZ,B = 0), the reference voltage amplitude is too 

high, and/or the inverter has not enough voltage reserve. 

In this case, the modulator algorithm provides the 

maximum voltage amplitude available by following  

the over-modulation (14). For proper operation of the 

levitated drive however, field weakening operation 

should be considered. The expression of keq (11) shows 

that the magnetizing inductance of the magnetic bearing 

Lh,AMB should be intentionally designed to be big, and the 

other leakage inductances should be low, to prevent an 

inverter over-sizing. The two-step calculation is done as 

follows: During a control period Tsw, after all the current 

control calculations are completed, the reference voltage 

vector u = (ud,1, uq,1, ud,-2, uq,-2, ud,0)T in {KS,0, Kdq,1, Kdq,-2} 

is transformed into the stator sub-spaces {KS,0, KS,1, KS,-2} 

to obtain uS = (uα,1, uβ,1, uα,-2, uβ,-2, ud,0)T. The vector 

components uα,1, uβ,1, uα,-2 and uβ,-2 are then projected  

on the α-β planes A and B with (6). Thanks to the 

orthogonality properties explained above, the calculation 

of the pulse widths t1,A and t2,A (resp. t1,B and t2,B, Fig. 4) 

to modulate solely the voltage components uα,A, uβ,A 

(resp. uα,B, uβ,B) is the same as for the conventional 2 

DOF SVM. In a second step, the pulse widths t0,A and t7,A 

(resp. t0,B and t7,B, Fig. 4) of the two zero-voltage 

switching states V0,A and V7,A (resp. V0,B and V7,B) are 

determined with (15). When there is no solution, (14) is 

used instead to insure maximum amplitude of the zero-

sequence voltage ud,0. 
 

 
 

Fig. 4. Example of an asymmetrical pulse pattern for a 

six-phase system UA, VA, WA, UB, VB, WB (e.g., DE BM) 

to produce a positive zero-voltage component and two 

equal active voltage space vectors (uα,A, uβ,A)T = (uα,B, 

uβ,B)T. The pulse width of the positive zero-voltage 

switching state V7 is larger in the winding A than in the 

winding B. Hence, the resulting zero-sequence current 

id,0 increases. 
 

 
 

Fig. 5. Simplified inductive equivalent circuit of the 

zero-sequence component. The two half motors (BM: 

DE & NDE) are described by the two zero-sequence 

winding leakage inductances Lσ,0,BM. The axial magnetic 

bearing is described by a winding leakage inductance 

Lσ,AMB and a magnetizing inductance Lh,AMB. 
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VI. CONCLUSION 
A new six degree of freedom magnetic suspension 

system is presented. It consists of sets of antisymmetric 

three phase windings interconnected at the star points. 

The control of such windings requires an extension of the 

field orientation control to transform the phase currents 

into three independent sub-spaces KS,0, Kdq,1, Kdq,-2. A 

two-step calculation is presented to determine the SVM 

pulse pattern, which is necessary for the control of the 

zero-sequence current component id,0. 
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