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Abstract ─ This study presents two novel nonlinear 

controllers for a single one-degree-of-freedom (1–DOF) 

active magnetic bearing (AMB) system operated in  

zero-bias mode with externally bounded disturbance. 

Recently developed controllers are complicated and 

inherently difficult to implement. The simple and low-

order controllers proposed in this paper are designed 

using nonlinear feedback tools, including Lyapunov-

based techniques and control Lyapunov functions 

(CLFs). The control objective is to globally stabilize the 

mass position of the nonlinear flux-controlled AMB 

system with control voltage saturation. The zero-bias 

AMB control model is derived from the voltage 

switching strategy. The developed CLF-based controllers 

are verified by numerical calculations.  

 

Index Terms ─ Active magnetic bearing, control 

Lyapunov function, nonlinear flux controller, zero-bias 

control. 

 

I. INTRODUCTION 
The active magnetic bearing (AMB) control system 

with classical large bias current is a well-known linear 

control problem, and as a result, PID controllers, ℋ∞–

based control and -synthesis methods can be applied, 

e.g., see author references: [1, 2, 3]. However, large bias-

current or a bias-flux implies power loss, where the loss 

mechanisms are generally proportional to the square of 

the electromagnetic force. Moreover, a large bias causes 

heat dissipation and further changes the electromagnets' 

parameters. In order to improve the energy efficiency of 

the AMB system, zero-bias flux control can be applied. 

In this system, the dynamics become strongly nonlinear. 

Therefore, nonlinear control methods can be applied in 

order to design a stable AMB system with zero-bias or 

low-bias [411]. All of the aforementioned approaches 

are fundamentally based on position-current or position-

flux state feedbacks. 

In particular, a nonlinear and uncertain flux-

controlled AMB system operated with zero-bias was 

considered in paper [10]. The major parametric 

uncertainties of the AMB such as: magnetic saturation 

perturbation, bias flux (premagnetization) and uncertain 

losses increase the nonlinearity of the AMB system. In 

response to this problem, paper [10] presents the robust 

stability and robustness analyses of a nonlinear closed-

loop AMB system with inherent uncertainties. The so-

called small gain theorem can be used to calculate the 

robust stability of an uncertain AMB system [10].  

Flux-based control with zero-bias increases the 

nonlinearity of an AMB system. Nonlinear control 

approaches intended for AMBs have been developed 

[12, 13]. In the last century, stability concepts pertaining 

to nonlinear systems were formulated by Lyapunov and 

were first expounded upon by Malkin in 1952 [14]. 

Later, Lyapunov functions were applied, for example, to 

the passivity theorem and to dissipative systems in 1972 

[15] as well as to solving optimal and inverse optimal 

control problems. The Lyapunov technique has been 

extended to control systems in [1619], for example. 

Since characterizing stability in terms of the smooth 

Lyapunov function is not possible in some cases, the 

stabilizing feedback design should be used. This is the 

main reason for using the so-called control Lyapunov 

function (CLF). Its concept was introduced by Artstein 

and Sontag in 1983 [20, 21]. The idea of CLF-based 

control is to select a Lyapunov function V(x) and then  

to try to find a feedback control u(x) that renders 

d𝑉(𝑥, 𝑢)/dt , defined negatively. Thus, by choosing a 

suitable V(x), and when V(x) is the CLF, we can find  

a stabilizing control law u(x) for the system feedback 

[22]. The CLF-based control concept was extended to 

dynamic systems with known disturbance [2325], 

where V(x) is the RCLF (a robust CLF), if, for a bounded 

disturbance,  ensures that 𝑉̇(𝑥, 𝑢,) < 0 [17, 26]. The 

linear ℋ∞ control method was used to solve a 

disturbance attenuation problem in a nonlinear system 

which is analogous to the RCLF [27, 28].  

The main aim of the present work is to show simple 

nonlinear controllers that contribute improvements to 

flux-controlled AMB systems operated in zero-bias 

mode in comparison with existing approaches. The 

proposed nonlinear control laws are based on the control 

Lyapunov function (CLF) and are effective in AMB 

zero-bias control systems with control voltage saturation. 

However, the control law based on Artstein-Sontag’s 

theorem includes Lie derivative terms and leads to a 

complex solution [29]. The main advantages of the 
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proposed controllers, if compared with CLF based on 

Artstein-Sontag’s theorem, are that they are simpler and 

inherently easier to implement in low-power micro-

controller AMB hardware. Performed simulations show 

that simple low-order controllers based on CLF give 

satisfactory results in comparison with complex solutions 

based on Artstein-Sontag’s theorem [29]. In comparison 

with previous solutions [29, 30], the obtained control 

laws ensure similar or even better transient responses and 

better disturbance attenuation. 

The paper is organized as follows. Section 2 

presents a simplified one-dimensional active magnetic 

bearing (AMB) system. Section 3 formulates conditions 

for zero-bias flux-feedback control and flux-switching 

strategy. Section 4 proposes Lyapunov-based controllers 

and describes control law design functions. Section 5 

provides numerical examples which prove the control 

laws proposed in Section 4. Finally, Section 6 closes the 

paper with some concluding remarks. 

 

II. THE 1-DOF AMB MODEL 
Let us consider the simplified 1–DOF (one-degree-

of-freedom) AMB model that consists of two opposite 

and presumably identical electromagnetic actuators 

(electromagnets), which generate attractive forces, F1 

and F2, on the rotor [31]. To control the position x of the 

rotor mass m to the stable state x=0, the voltage inputs of 

the electromagnets, 𝑣1 and 𝑣2, are used to design the 

control law, see Fig. 1. 
 

 
 

Fig. 1. Simplified one-dimensional AMB. 

 

The 1-DOF model of the AMB is nonlinear where 

mechanical and electrical dynamics are coupled. Consider 

Fig. 1, in which, neglecting gravity (for the horizontal 

rotor control direction), the dynamic equation is given by 

[31]: 

 𝐹𝑗 =
cos

𝜇0𝐴
𝑗
2,    for 𝑗 = 1,2, (1) 

where Fj is the total force generated by each 

electromagnet, Φ𝑗 is the total magnetic flux through 

each active coil, A is the cross-sectional area of  

each electromagnet pole,  is the angle at which 

electromagnetic force acts, and µ0 is the permeability of 

free space (=1.25  10-6 H/m). 

The total flux generated by the j-th electromagnet is 

𝑗 = 0 + 𝑗 . In the case of zero-bias operation, the 

bias flux 0 equals zero, and the total flux equals control 

flux 
𝑗
. Then, we define the generalized control flux as: 

 
 ∶= 

1
− 

2

 ∶=
1

𝑁
(∫ (𝑣1 − 𝑅𝑖1)𝑑𝑡

𝑡

0
− ∫ (𝑣2 − 𝑅𝑖2)𝑑𝑡

𝑡

0
)
, (2) 

where N denotes the number of turns of the coil of each 

electromagnet. 

If 0 = 0, then according to (1), the mass motion 

equation is given by: 

 
𝑑2

𝑑𝑡2
𝑥 =

cos

𝜇0𝑚𝐴
(
1
2 − 

2
2). (3) 

The electrical dynamics of the AMB system are 

given by the governing equation [31]: 

 𝑣𝑗 = 𝑁
𝑑𝑗

𝑑𝑡
+ 𝑅𝑖𝑗 , 𝑗 = 1, 2, (4) 

where R is the electromagnet's resistance. Then Eq. (4) 

can be rewritten in an equivalent form as: 

 𝑗̇ = 
𝑗
̇ =

1

𝑁
(𝑣𝑗 − 𝑅𝑖𝑗), 𝑗 = 1, 2. (5) 

 

III. ZERO–BIAS FLUX-FEEDBACK 

CONTROL 
In the case of zero-bias control, the nonlinear 

flux/force characteristic has a dead zone near the origin 

(low dynamic response of the AMB) [32]. This means 

that the slope of the magnetic force vs. flux curve near 

the origin is zero, and we need a large change in flux in 

order to generate a small control force. According to (5), 

the flux depends on the control voltage and current. 

Voltage commands are limited in real applications and 

voltage saturation is another problem. In short, zero-bias 

nonlinear control with voltage saturation is a challenging 

task. 

In zero-bias control, the control force Fj depends on 

control flux j which fulfils the following condition of 

the switching scheme [29, 30]:  

 
 = 

1
,      

2
= 0 when    0

   = −
2
,   

1
= 0 when   < 0

. (6) 

The  described by (6) is called a generalized flux. The 

switching scheme allows us to minimize control fluxes 


1
 and 

2
, since at least one of the control fluxes is zero 

at the starting time. This means that at least one of the 

electromagnets is inactive at any given instant of time. 

The system minimizes energy and power losses [31, 33]. 

For zero-bias, based on (3), according to the 

generalized complementary flux condition (8), the total 

generalized attractive force is given by: 

 𝐹() =
||

𝜇0𝑚𝐴
, (7) 

where generalized attractive force F=F1-F2. The system's 

nonlinearity in (7) is given by non-decreasing function 
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()=||. The general form of the flux-based control 

law is given by: 

 𝑢 = −𝑓(𝑟 − ), (8) 

where 
𝑟
 is the flux reference and f is a nonlinear control 

function which also ensures bounds of j such that: 

 lim
𝑡


𝑗
(𝑡) = min{

1
(0), 

2
(0)}. (9) 

Fluxes 
1
 and 

2
 remain bounded, and condition (9) 

represents convergence of 
𝑗
, which is ensured if system 

(3)–(4) is asymptotically stable. The nonlinear and fast 

dynamic flux controller generates the required fluxes in 

the AMB's structure due to nonlinear characteristics of 

controlled flux  versus generated total force F. Typically, 

when cascaded control is applied, the linearizing flux 

controller works in the inner control flux loop. The 

transfer function for the low level control feedback rule 

in the s-domain is given by: 

 𝑃(𝑠) =
(𝑠)

𝑟(𝑠)
. (10) 

The AMB closed-loop system (10) is used in the case of 

local force control in electromagnets. However, in this 

work, we present not a local, but a global nonlinear rotor 

position controller.  

From the simple analysis presented above, it follows 

that, for the dynamics of system (3) with the generalized 

control flux given by (2), under switching strategy (6), 

and with state coordinates defined as: 

 𝑥1 = 𝑥, 𝑥2 = 𝑥̇, 𝑥3 = , (11) 

then the state-space AMB dynamic model is given by: 

 

{
 
 

 
 

𝑑

𝑑𝑡
𝑥1 = 𝑥2

𝑑

𝑑𝑡
𝑥2 =

cos

𝜇0𝑚𝐴
|𝑥3|𝑥3

𝑑

𝑑𝑡
𝑥3 =

1

𝑁
(𝑣 − 𝑅𝑖)

, (12) 

where 𝑣 = 𝑣1 − 𝑣2 is the generalized control voltage 

and 𝑖 = 𝑖1 − 𝑖2 is the generalized current.  

 

IV. LYAPUNOV-BASED CONTROL 

A. Problem statement - AMB model with disturbance 

In this section we will find the CLF that will make 

the AMB system globally stable with respect to additive 

measurement disturbances. It is well known that bounded 

disturbances in a nonlinear system can cause severe 

forms of instability [24]. Moreover, a nonlinear control 

law that guarantees global stability of a nonlinear system 

under perfect state feedback will not ensure global 

robustness to state measurement disturbances. There  

are many classes of systems for which stabilizability  

is preserved in the presence of state measurement 

disturbances, e.g., strict feedback systems [34].  

In order to simplify notation, and to work with a 

system having the minimum number of parameters, let 

us introduce the following non-dimensionalized state 

and control variables along with a non-dimensionalized 

time [29, 30]: 

 

𝑥1: =
𝑥

𝑔0
, 𝑥2: =  

𝑥̇

sat√𝑔0 𝜇0𝑚𝐴⁄
, 𝑥3: =

𝜙

sat

𝑢:=  
𝑣√𝑔0𝜇0𝑚𝐴

𝑁 sat
2  , 𝜏: = 𝑡

 sat

√𝑔0𝜇0𝑚𝐴
, 𝑤 =

𝜔

𝑚𝑎𝑥

, (13) 

where g0 is the nominal air gap (clearance), u – the non-

dimensionalized control variable, sat – the saturation 

flux, 𝜏 denotes non-dimensionalized time, w is an 

external non-dimensionalized input, and 𝜔 is the bounded 

disturbance with its maximum value max.  

Importantly, the AMB system parameters in (13) are 

constant and their nominal values andabsolute boundary 

values are given in Table 1. 

Let us assume that w is a known bounded 

disturbance and impact via state x1 to the AMB system. 

Then, in accordance with (13), the model of the AMB 

system with disturbance input 𝑤 ∈ ℝ is written in the 

state-space: 

 

{
 
 

 
 
𝑑

𝑑𝜏
𝑥1 = 𝑥2 + 𝑥1𝑤

𝑑

𝑑𝜏
𝑥2 = 𝑥3|𝑥3|

𝑑

𝑑𝜏
𝑥3 = 𝑢

, (14) 

where 𝑥1, 𝑥2, 𝑥3 are defined by (13) and 𝑢 is a control 

input. In this way, variables 𝑥1, 𝑥2 and 𝑥3 indirectly 

relate to the position x [m] of the rotor mass, velocity  

𝑥̇ [m/s] and electromagnetic flux 𝜙 [Wb], respectively. 

However, the disturbance w and the control voltage 

are always limited in the AMB system. Moreover, in 

AMB applications, since the electromagnet coils are 

typically driven by power amplifiers, these amplifiers 

must be configured to operate in voltage mode or current 

mode with saturation. In a real AMB system, the voltage 

input is bounded as 𝑢(𝑡) = sat(𝑣(𝑡)), where sat(𝑣(𝑡)) 

is the saturation function of voltage 𝑣(t) defined here as: 

 sat(𝑣(𝑡)) = {

−𝑣lim if 𝑣(𝑡) < −𝑣lim
𝑣(𝑡) if − 𝑣lim ≤ 𝑣(𝑡) ≤ 𝑣lim

𝑣lim if 𝑣(𝑡) > 𝑣lim

, 

where 𝑣lim is the voltage input limit and refers to 𝑣sat 

(saturation voltage value) given in Table 1.  

 

B. CLF for AMB with disturbance 

Note that system (14) is the control affine system of 

the form: 

 𝑥̇ = 𝑓(𝑥) + 𝑔(𝑥)𝑢 + ℎ(𝑥)𝑤, (15) 

where 𝑢 ∈ ℝ – control input, w – bounded independent 

disturbance input, and vector fields f: ℝ3ℝ3 and  

g: ℝ3ℝ3, h: ℝ3ℝ3 are given by 𝑓(𝑥) = [𝑥2 𝑥3
[2] 0]

𝑇
, 

𝑔(𝑥) = [0 0 1]𝑇 , ℎ(𝑥) = [𝑥1 0 0]𝑇 with 𝑥3
[2]
≔

𝑥3
2sgn(𝑥3) = 𝑥3|𝑥3|.  

Recall that system, 

 𝑥̇ = 𝑓(𝑥) + 𝑔(𝑥)𝑢, (16) 

is asymptotically stabilizable with respect to the 

equilibrium pair (𝑥0, 𝑢0), where x0=x(0), if there exists  

a feedback law 𝑢 = 𝛼(𝑥), 𝛼(𝑥0) = 𝑢0, defined on a 
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neighbourhood 𝑈𝑥0  of 𝑥0 such that 𝛼 is continuously 

differentiable on 𝑈𝑥0 ∖ {𝑥0}, for which the closed-loop 

system, 

 𝑥̇(𝑡) = (𝑓 + 𝛼𝑔)(𝑥(𝑡)), (17) 

is locally asymptotically stable (with respect to x0). 

Recall also that (see [16, 21]) a real continuous function 

defined on open set 𝑋 ⊂ 𝑅𝑛 is a local control Lyapunov 

function for system (17) (relative to the equilibrium state 

𝑥0), if it satisfies the following properties: 

(i) V is proper at 𝑥0, i.e., {𝑥 ∈ 𝑋: 𝑉(𝑥) ≤ 𝜀} is a 

compact subset of some neighborhood 𝑈𝑥0 of 𝑥0 

for each sufficiently small 𝜀 > 0. 

(ii) V is positive defined on 𝑈𝑥0: 𝑉(𝑥0) = 0 and 

𝑉(𝑥) > 0 for each 𝑥 ∈ 𝑈𝑥0 , 𝑥 ≠ 𝑥0. 

(iii) 𝐿𝑓𝑉(𝑥) < 0 for each 𝑥 ≠ 𝑥0,   𝑥 ∈ 𝑈𝑥0 , such that 

𝐿𝑔𝑉(𝑥) = 0, where 𝐿𝑔𝑉(𝑥) ≔ 𝛻𝑉(𝑥) ⋅ 𝑔(𝑥) 

denotes the Lie derivative of 𝑉 with respect to  

𝑔, and 𝐿𝑓𝑉(𝑥) is the Lie derivative of 𝑉 with 

respect to 𝑓. 

The pair (𝑓, 𝑔)  of vector fields 𝑓 and 𝑔 given by (16) 

that satisfies conditions (i)-(iii) is called a control 

Lyapunov pair. If the origin of (15) has CLF, then there 

exists a control law that renders the system asymptotically 

stable.  

 

Proposition 1 [10]:  

If the system (15) is stabilized by a feedback 𝑢 =
𝛼(𝑥) + 𝑘𝑇𝑥, where 𝑘 = (𝑘1, … , 𝑘𝑚), 𝑘𝑖, 𝑖 = 1, … ,𝑚, 

 are roots of a Hurwitz polynomial 𝑝, and 𝛼 is 

continuously differentiable on 𝑈0 ∖ {0}, then the pair 

(𝑓, 𝑔) satisfies the Lyapunov condition (i.e., conditions 

(i) and (ii) given above) at the origin.  

After applying the control law 𝑢 = 𝛼(𝑥) + 𝑘𝑇𝑥 to 

(15), we obtain the system: 

 𝑥̇ = 𝑓(𝑥) + 𝑔(𝑥)(𝛼(𝑥) + 𝑘𝑇𝑥) + ℎ(𝑥)𝑤, (18) 

with external disturbance input 𝑤. 
 

Case 1 

Let us assume that the nominal system 𝑥̇ = 𝑓(𝑥) +
𝑔(𝑥)𝑢 is stabilizable and the CLF for nominal system 

(17) is known. We assume that for all x ≠ 0 there is a 

positive, proper function 𝑉 ∈ ℝ+ such that, 

  ∇𝑉(𝑥)[𝑓(𝑥) + 𝑔(𝑥)𝑢] < 0. (19) 

Then, this nominal control law must be redesigned to 

account for disturbance w in the actual system. Let us 

emphasize that the nominal CLF is chosen independently 

of any knowledge of the disturbance input matrix ℎ(𝑥). 
Then after including function ℎ(𝑥) in inequality (19), 

and to keep system (15) (with disturbance w) stable, 

function V must satisfy: 

 ∇𝑉(𝑥)[𝑓(𝑥) + 𝑔(𝑥)𝑢 + ℎ(𝑥)𝑤] < 0, ∀𝑥 ≠ 0. (20) 

Let us assume that CLF describes the kinetic energy 

of system (14), i.e., 

 𝑉 =  
1

2
(3𝑥1

2 + 2𝑥2
2 + 𝑥3

2). (21) 

Then, 

∇𝑉(𝑥)[𝑓(𝑥) + 𝑔(𝑥)𝑢 + ℎ(𝑥)𝑤] = 

 3𝑥1
2𝑤 + 2𝑥2𝑥3|𝑥3| + 3𝑥1𝑥2 + 𝑥3𝑢, (22) 

and the control law, which fulfils condition (20), is 

chosen as: 

𝑢 = −sat(3𝑥1
2𝑥3 + 2𝑥2|𝑥3| + 3𝑥1𝑥2𝑥3 + 𝑥3 − 𝑢0),(23) 

where 𝑢0 = −𝑘1𝑥1 − 𝑘2𝑥2 with 𝑘1, 𝑘2 – roots of some 

Hurwitz polynomial, and saturation function is given 

according to saturated control voltage defined as 

sat(𝑣(𝑡)) in order to enforce the constraint on the 

maximum voltage allowed. 

In this way, one obtains a globally stable closed-

loop system with |𝑥3| >  ≥ 𝑥1𝑥2, and for bounded 

disturbance  𝑤 < 𝑥2(𝑥3
2 − 1)/𝑥1, where  is a positive 

design constant. In fact, note that AMB system (14), with 

non-dimensional variables [𝑥1, 𝑥2, 𝑥3] given by (13) and 

for the absolute maximum values of the physical AMB 

parameters collected in Table 1, is on the stability border. 

Then, the complementary sensitivity function S for these 

values also has its maximum value and system (14) is the 

most sensitive to disturbance w. Therefore, the inequality 

𝑤 < 𝑥2(𝑥3
2 − 1)/𝑥1 should be met for maximum system 

variables, and it is easy to check that it holds true if 

𝑤<0.1377. Then, including the non-dimensionalized 

value in (13) and maximum value of ||𝑚𝑎𝑥= 0.0001 [m] 

(see Table 1), we get that <0.00001377. Thus, it is 

implied that the above inequality is always true.  

Note that in this case, the condition: |𝑥3| >  

follows from the fact that, in the case of an AMB system 

operated in zero-bias mode, we need a large change in 

flux resulting in large voltage commands (7) in order to 

produce a small control force. Design coefficient  is a 

part of the AMB control system and its value depends on 

the parameters of the AMB system (which are given in 

Table 1). The condition  ≥ 𝑥1𝑥2 is always met in the 

flux-controlled AMB. 
 

Case 2 

The stabilization problem for system (15) is solved 

if we can assign negative value to the time derivative of 

function V, thus the stability condition is given by: 

 𝐿𝑓𝑉(𝑥) + 𝐿𝑔𝑉(𝑥) + 𝐿ℎ𝑉(𝑥) < 0, (24) 

where we suppose that function 𝑉 is given by (21). 

Following (24) and for CLF given by (21), with 

condition: |𝑥3| >  ≥ 𝑥1𝑥2, the stable feedback loop can 

be written as 𝐿𝑓𝑉 + 𝐿𝑔𝑉 + 𝐿ℎ𝑉 = 3𝑥1
2𝑤 + 2𝑥2𝑥3|𝑥3| +

3𝑥1𝑥2 + 𝑥3𝑢. Then, the second control law is selected 

as: 

𝑢 = −sat (
1

2
(−3𝑥1

2 − 2𝑥2𝑥3|𝑥3| − 3𝑥1𝑥2 + 𝑥3) − 𝑢0), 

 (25) 

with, as previously, 𝑢0 =  −𝑘1𝑥1 − 𝑘2𝑥2 where 𝑘1, 𝑘2 

are roots of some Hurwitz polynomial, and the saturation 

function in (23) is given according to saturated control 

voltage defined as sat(𝑣(𝑡)) in order to enforce the  
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constraint on the maximum voltage allowed. 

 

V. NUMERICAL EXAMPLES  
This section presents results obtained for AMB 

system (12) after applying zero-bias flux control with 

switching scheme (6) and with external disturbance .  

In this way, the first equation of AMB system (12) is 

replaced with 
𝑑

𝑑𝑡
𝑥1 = 𝑥2 + 𝑥1𝜔. The possibilities of 

compensating for disturbance  are investigated with 

control laws (23) and (25). The simplified 1–DOF model 

of the AMB (given in Fig. 1) was extended by magnetic 

saturation, coil resistance, voltage saturation and 

geometrical specifications such as: nominal air gap, 

number of coil turns over a single pole of the AMB 

stator, pole area, permeability of air, and electromagnetic 

force acting angle. The data for these AMB 

specifications are collected in Table 1. Variable x is the 

rotor displacement from the centre point (when x=0), and 

g0 is the nominal width of the air gap.  

 

Table 1: AMB specification 

Symbol Value Meaning 

|𝑥|𝑚𝑎𝑥 [m] 0.00025 Maximum rotor position 

|𝑥̇|𝑚𝑎𝑥  [m/s] 0.05 Maximum speed 

||𝑚𝑎𝑥  [Wb] 0.0005 Maximum control flux 

||𝑚𝑎𝑥 [m] 0.0001 
Maximum rotor position 

disturbance 

g0 [m] 0.00058 Nominal width of air gap 

m [kg] 2.5 Rotor mass 

N 108 Number of coil turns 

R [] 0.5 Coil resistance 

A [m2] 0.0014 Electromagnet pole area 

 [deg] 22.5 
Electromagnetic force 

acting angle 

sat [Wb] 0.0022 Saturation flux 

Bsat [T] 1.6 Saturation flux density 

vsat [V] 150 Saturation voltage 

isat [A] 5 Saturation current 

 
The AMB model detailed above, with dynamics 

(14) and switching scheme (6), was applied in 

Matlab/Simulink software. Numerical simulations were 

performed for position-flux zero-bias control, for bias 

flux 0 equalling zero. The system's trajectories and 

control input are illustrated for the given nonlinear 

controllers with zero-bias and voltage constraints. For 

this purpose, the initial conditions are assumed to be  

as follows: {
1
(0), 

2
(0)} = {0,0} and {𝑥(0), 𝑥̇(0),

(0)} = {0, 0, 0}. All simulations are performed with 

optimized gains k1 and k2 equal to 0.92 and 9.94, as 

previously done in work [10]. The amplitude of step 

disturbance w equals 0.1 [mm] in all simulations.  

The AMB system's responses to disturbance w,  

in zero-bias mode, for selected controller gains: 

𝑘1 = 0.92, 1, 1.5 and 𝑘2 = 9.94, 5, 5 are presented in 

Fig. 2. Disturbance  is successfully compensated with 

zero overshoot where the control voltage amplitude does 

not exceed 100 [V]. 

 

    

  
 

Fig. 2. Responses of closed-loop system with zero-bias 

to disturbances employing control law (23) for selected 

gains k1 and k2. 

 

Figures 3 and 4 show the results of simulations using 

control laws (23) and (25), with optimized controller 

gains: 𝑘1 = 0.92 and 𝑘2 = 9.94. Figure 3 shows the 

AMB system's responses to disturbance , and Fig. 4 

shows voltage 𝑣1, 𝑣2 and flux 
1
, 
2
 trajectories according 

to each active electromagnet.  

 

  

  
 

Fig. 3. Comparison of step responses between closed-

loop systems employing (23) and (25) controllers for 

k1=0.92, k2=9.94 with zero-bias. 
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Fig. 4. Voltage switching rule with zero-bias and control 

laws (23) and (25) for k1=0.92, k2=9.94. 

 

Figure 4 presents the idea of the voltage switching 

strategy used in zero-bias control with CLF and the flux 

and voltage signal responses to disturbance . In the 

results given (see Figs. 3 and 4), the maximum voltage 

is about 60 [V], and the settling time is equal to 0.02 [s]. 

For example, the saturation level in [33] and [35] is 

set to 30 [V], and in [30] vmax=10 [V]. But in [30], the 

settling time for rotor position is equal to 0.2 [s], which 

is 10 times longer than in our simulation results. 

However, in light of the given results, one may conclude 

that higher values of control voltage lead to shorter 

settling times. As observed in Figs. 2 and 3, the settling 

time decreases as voltage saturation level increases, as 

expected.  
 

VI. CONCLUSIONS 
In this paper, nonlinear CLF–based controllers have 

been proposed and effectively applied to the AMB flux-

controlled system with zero-bias and control voltage 

saturation. Specifically, when using the switching voltage 

rule with zero-bias operation, one must preclude the 

singularities present in the control law. The stability of 

the two designs has been discussed. The desired control 

performance was achieved despite control voltage 

saturation. Simulation results have shown that the novel 

and simple low-order controllers based on CLF gave 

equivalent results compared to high-order complex 

control, e.g., based on Artstein-Sontag’s theorem [29]  

or as given in [30]. The dynamic performance of the 

proposed control laws as well as the AMB system's 

responses are similar to the ideal model case. 

Future investigations into this topic will focus on a 

Lyapunov-based nonlinear dynamic output feedback 

control method for a 5-DOF AMB system. The fabricated 

test rig of the whole system and its details can be found 

in work [3, 36]. In the first step, the rotor will be assumed 

to be rigid for simplicity. In the second step, the 

nonlinear Lyapunov controller will be considered for 

control of the 5-DOF flexible rotor.  
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