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Abstract ─ In this paper, the model of the rotor dynamics 

of the flywheel is given using a rigid rotor supported on 

magnetic bearings. The phase lag of the control loop is 

modeled by a simple time delay. Limits of stability and 

the associated vibration frequencies are described in 

terms of nondimensional magnetic bearing stiffness and 

damping and nondimensional parameters of flywheel 

speed and time delay. Compared to the theoretical values, 

the simulation results and experimental measurements 

show the stability boundaries of the PD controller have 

the same qualitative tendencies. 

 

Index Terms ─ Flywheel, magnetic bearing, PD 

controller, stability, time delay. 
 

I. INTRODUCTION 
As a new type of attitude control actuator of 

spacecraft, the magnetic levitation flywheel has many 

advantages such as no friction, high energy density, long 

life capability for up to 90 percent depth of discharge, 

peaking or pulse power capability and so on. Flywheels 

can be also an alternative to batteries and reaction wheels 

for the space system. Therefore magnetic levitation 

flywheel is an important direction of space technology 

development. 

Since 1960’s, developed countries have begun to 

work on the magnetic levitation flywheel [1-4]. After 

decades of development, the magnetic suspension 

flywheel technology have made great progress in the 

magnetic bearing structure design and optimization, the 

dynamics and mechanics analysis, modeling and model 

identification, control method, high performance sensors 

and power amplifier and so on; but there are still many 

technical difficulties. The vibration suppression control 

of maglev flywheel is a key to display the maglev 

flywheel space applications such as low loss, high 

precision, long life and other advantages [5]. 

The magnetic bearing system uses magnetic forces 

to levitate the shaft between opposing magnetic poles. 

The rotor is attracted to one pole or the other pole and is 

inherently unstable, then the magnetic bearing system of 

a flywheel is stabilized with an active control system. In 

the process of eddy current proximity sensors, anti-alias 

filters, digital controller, re-construction filter, power 

amplifier, the magnetic bearing forces, each of the 

components involved in the magnetic bearing and 

control system has a time delay associated with the 

components. The total time delay is the sum of the 

individual time delays [6]. Time-delayed systems, which 

have been studied for various applications and control 

systems, may admit rich dynamics, including bifurcations 

and chaotic motions [7-11]. Hosek [12] developed a 

single-step automatic tuning algorithm as a means  

of increasing robustness against uncertainties and 

variations in the mechanical properties of the absorber 

arrangement. In studying the stability robustness of 

systems with multiple independent and uncertain delays, 

Fazelinia [13, 14] used the building hypersurfaces to 

arrive at the complete stability robustness picture in the 

domain of the delays. In recent years, some scholars 

began to study the characteristics of magnetic suspension 

flywheel from a dynamics behavior aspect, thus 

providing theoretical guidance to suppress vibration [15-

19]. Based on decentralized PD controller, Polajzer [15] 

and Kascak [6] established the coupled dynamics model 

for the active magnetic bearing and analyzed the rotor 

critical speed using the Hopf bifurcation theory; Zhang 

[16] studied the global bifurcation and chaotic vibration 

for time-varying stiffness of the magnetic bearing, and 

discussed the bifurcation of the average equation using 

the normal form theory. Zhang [17] derived the averaged 

equation using the perturbation analysis method, then 

studied the transient and steady-state vibration response 

of the nonlinear magnetic bearing with the numerical 

simulation method. In these above research, only a few 

papers consider the effect of the time delay on the  
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stability of the magnetic flywheel. 

According to the details of the flywheel mechanical 

design and the performance requirements, many different 

approaches have been used, varying from PID to modal 

or adaptive methods [20]. For example, Pichot [21] 

discussed the benefits of a notch filter based controller in 

comparison to a PID control for a large flywheel. 

Palazollo [22] developed a modal control system which 

was applied to a 60,000 rpm flywheel. In this paper, we 

will use a P-D controller which causes the magnetic 

bearing to produce two forces: one is proportional to  

the displacement and the other is proportional to the 

derivative of the displacement, the velocity. 

This paper theoretically describes the stability 

boundaries of the magnetic bearing controller which 

levitates the high speed flywheel rotor. In Section 2, 

based on current stiffness and displacement stiffness of 

magnetic bearing, linear motion differential equation for 

maglev flywheel is established. Section 3 analyzes the 

stability limits and the associated vibration frequencies 

about two variables of these system parameters and 

control parameters. We give the simulation and 

experiment results in Section 4 and compare them to the 

theoretical values. Finally, the main conclusions drawn 

in this paper are summarized in Section 5. 

 

II. FLYWHEEL STABILITY ANALYSIS 
Figure 1 shows the rotor displacement of magnetic 

suspension flywheel with four axes and lateral axis of  

a flywheel [23]. The magnetic bearing sensors 
1 4s s  

are installed on the forward whirl and 
5 8s s  on the 

backward whirl, and the distance of the up and down 

sensor planes is l. The magnetic bearing axis is OZ and 

the direction of radial axis points to the sensor 

measurement point. From Fig. 1, the displacement 

signals of the rotor 1 8u u  are measured by the eight 

sensor measurement points of the magnetic suspension 

flywheel with four axes. By the differential process, we 

can get the displacement signals of the flywheel rotor 

1 2 1, ,x x y  and 
2y , as follows: 

 1 3 2 4
1 1, ,

s s

u u u u
x y

k k

 
   

 5 7 8 6

2 2
,

s s

u u u u
x y

k k

 
  , 

where 
sk  represents the sensor gain. 

Denote the displacement of the center of mass by x 

and y, then, 

 1 2 1 2,
2 2

x x y y
x y

 
  . 

Denote the angles motion of the center of mass 

about X an Y axes respectively:  

 

2 1 2 1,
y y x x

l l
 

 
  . 

In the definition of the angles, we use the upper 

plane parameters minus the under plane parameters, 

therefore   denotes the positive direction along the Y 

axis and   represents the negative direction along the X 

axis. 
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Fig. 1. The rotor displacement of magnetic suspension 

flywheel with four axes and lateral axis of a flywheel. 

 

The control currents 
1 2 3 4, , ,i i i i  are applied to the port 

voltage of the electromagnet according to these four 

position signals, the induced forces are: 

 
1 1 1x x iF k x k i  ,  

2 2 2x x iF k x k i  , (1) 

 
1 1 3y x iF k y k i  ,  

2 2 4y x iF k y k i  , (2) 

where xk   and ik  represent the control gains of the 

displacement and the current respectively. 

The rotor dynamics of the flywheel can be described 

in terms of the motion of the center of mass and rotations 

about the center of mass. For small displacements the 

lateral motion is uncoupled from the axial motion. The 

lateral equations of motion of the center of mass are: 

 
1 2 1 1 2 2( )

2
x i x i

m
x x k x k i k x k i     , (3) 

 
1 2 1 3 2 4( )

2
x i x i

m
y y k y k i k y k i     , (4) 

where m is the mass of the flywheel rotor. 

For small rotations, the equations of angular motion 

about the center of mass are: 

 
   2 4 1 3

2
d p x i x i

l
J J k y k i k y k i          , (5) 

 
   2 2 1 1

2
d p x i x i

l
J J k x k i k x k i          , (6) 

where   is a circular frequency of the flywheel, 
dJ  and 

pJ   are the transverse and polar moments of inertia 

respectively. 
pJ   and 

pJ 
 
are the gyro items. 

Using P-D controller, the control currents are as 

follows: 
 

1 1 1p di k x k x  ,  2 2 2p di k x k x  , (7) 

 3 1 1p di k y k y  ,
  4 2 2p di k y k y  , (8) 

where 
pk  and dk  are proportional and derivative feed- 
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back control gains respectively. Combining Equations 

(3)-(8), we have: 

  1 2 1 2 1 2( )( ) ( ),
2

x i p i d

m
x x k k k x x k k x x     

 (9) 

  1 2 1 2 1 2( )( ) ( ),
2

x i p i d

m
y y k k k y y k k y y       (10) 

  
2 2

,
2 2

d p x i p i d

l l
J J k k k k k         (11) 

  
2 2

.
2 2

d p x i p i d

l l
J J k k k k k       

 (12) 

The solution for the motion of the center of mass and 

that for the rotation about the center of mass is of the 

same form, if the shaft speed   is set equal to zero [24, 

25]. Therefore only motion of the rotation about the 

center of mass will be solved. The classical small signal 

stability analysis assumes an eigenvalue solution of the 

equation of motion. 

A centralized controller decouples the motion of  

the center of mass and the rotation about the center of 

mass. The controller terms have a time delay associated 

with the various components in the control loop. Let 

( ) [ , ,, , ]Tx t     and the equations of motion become: 

 ( ) ( ) ( )x t Px t Qx t    , (13) 

where 

2

2

0 1 0 0

0 0
2

,
0 0 0 1

0 0
2

px

d d

p x

d d

Jl k

J J
P

J l k

J J

 
 

 
 

  
 
 
 
 
 

2 2

2 2

0 0 0 0

0 0
2 2

.
0 0 0 0

0 0
2 2

i p i d

d d

i p i d

d d

l k k l k k

J J
Q

l k k l k k

J J

 
 
 
 
 
 
 
 
 
 

 

If the characteristic solution is assumed to be: 

 ( ) tx t Ae . 

We only consider the first term of the corresponding 

characteristic Equation of (13): 

 
2 2 2

2 0.
2 2 2

d p i d i p x

l l l
J i J k k e k k e k            (14) 

The characteristic equation does not have a real 

solution unless   is zero. If the eigenvalue is complex, 

let .i     The vibrations grow in time and the 

system is unstable with 0   and the vibrations decay 

in time and the system is stable with 0.   0   

defines the stability boundary. Substituting i   into 

[14] and separating the real and imaginary parts of [14], 

we obtain: 
2 2 2

2 cos sin 0
2 2 2

d p x i p i d

l l l
J J k k k k k         

 
2 2

sin cos 0
2 2

i p i d

l l
k k k k    . 

From the above imaginary and the real parts 

equations respectively, we can get the expression of    

and  , that is Equations (15) and (16). By means of 

solving the real and the imaginary parts equations group, 

we would get the expressions of the control parameters 

pk  and dk  ((17) and (18)): 

 1
arctan , 0,1,2,3, ,d

p

k
k k

k


 


    (15) 

2
21

( ( ( cos sin ))),
2

d x i p d

p

l
J k k k k

J
   


     (16) 

 
2 2

2 2 2

2

2
( ) ( ) ,

2 2
p d p x i d

i

l l
k J J k k k

l k
        (17) 

 
2 2

2 2 2

2

2
( ) ( ) .

2 2
d d p x i p

i

l l
k J J k k k

l k
 


      (18) 

Combing (15) with another one of (16), (17) and 

(18), we can get the stability boundary. For example, 

Equations (15) and (16) define the non-dimensional 

flywheel speed and the time delay at the transition 

between stable and unstable operation of the flywheel; 

Equations (15) and (17) describe curves in the ,pk   

parameter space which are parameterized by .  

Similarly, we can get any two variables from the 

transformation of the real part and the image part 

equations, for example, 
2

2

2

2sin
( ), cot .

2
d d p x p d

i

l
k J J k k k

l k


   


      (19) 

From (19), we can get the stability boundary for the 

flywheel in the ,p dk k  parameters space. 

We will illustrate these results with two examples. 

The realistic values for the physical parameters are given 

in Table 1. For magnetic suspension flywheel system, the 

gyro effect is very small when the rotor is static or rotates 

at low speed. Therefore by dividing into four single 

degree of freedom, the appropriate stiffness and damping 

can make the rotor suspend stably in this case. In this 

paper, the rotate speed is about 20  rad/s, which is 

below the critical value, and then the effect of the rotor 

is omitted. 
 

Table 1: Physical parameter values 

Jd Jp m l ki kx ks 
0.01kg·m2 0.02kg·m2 4kg 0.016m -150N/A 650000N/m 8000V/m 

 

Case (1) 

With the proportional gain 0.7pk   and the shaft 

speed 20 ,   we use (15) and (18) with 0k   to plot 

the time delay   and the derivative gain 
dk  as   is 

varied (Fig. 2). We do not show the curves with 0k   as 

they all lie on the right of the corresponding curve with 

0,k   and hence, do not form part of the stability 

boundary. 
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Fig. 2. The correlation of stability limits of a flywheel 

supported on magnetic bearings with time delay for 

0.7, 20 .pk    

 

Case (2) 

With the time delay 0.001s   and the shaft speed 

20 ,   we use (17) and (18) to plot the proportional 

gain 
pk and the derivative gain 

dk  as   is varied. 

Figure 3 shows both the static and dynamic stability for 

a magnetic flywheel with time delay. The proportional 

gain 
pk  for the static stability analysis is given by (14) 

with 0.   For both the static and dynamic stability 

analysis, if the real part of the eigenvalue   is defined 

positive, the vibrations grow in time and the system is 

unstable. If   is negative, the vibration will decay in 

time and the flywheel system is stable. 0   defines the 

stability boundary. 

 

 
 

Fig. 3. The correlation of stability limits frequency of a 

flywheel supported on magnetic bearings with time 

delay for 0.001 , 20 .s     

 

III. NUMERICAL SIMULATIONS 
In this section, we consider the flywheel system 

(11)-(12) with the physical parameters given in Table 1. 

According to the two examples in Section II (Fig. 2 and 

Fig. 3), we will compare these theoretical results with 

numerical simulations of the system (11)-(12). Using the 

DDE Toolbox for Matlab, we can get the numerical 

solutions for the angular motions ,   of the center of 

mass about X and Y axes and draw their trajectory. 

Together with (15) and (18), if the time delay and 

the derivative gain change, we will study the stability of 

the flywheel system with 0.7, 20 .pk    Choosing 

the point ( , ) (0.004,0.01)dk   which lies in the stable 

region of Fig. 2, from Fig. 4 (a), the angular motions 

,   of the center of mass about X and Y axes approach 

the trivial solution, indicating that it is asymptotically 

stable. Then we adjust the parameter 
dk  as 0.02 and  

the time delay   remains the same, that is the point 

( , ) (0.004,0.02)dk   is out of the stable region of Fig. 

2, the values of ,   grow quickly, which suggests  

that the flywheel system is unstable from Fig. 4 (b). If 

the derivative gain 0.02dk   remains unchanged and 

the time delay changes as 0.003 ,s   that is the point

( , ) (0.003,0.02)dk   lies in the stable region of Fig. 2 

again, the flywheel system will restore to the stable 

operation from Fig. 4 (c). 
 

 
  (a) 0.004 , 0.01ds k    

 
  (b) 0.004 , 0.02ds k    
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  (c) 0.003 , 0.02ds k     

 

Fig. 4. Numerical simulations of the maglev flywheel 

system (13),   and 
dk  as indicated. (a), (b), and (c) are 

(pseudo) phase portraits of the angular motions (  and 

 ) of the center of mass about X and Y axes. 

 

In another example of Section II, with (19), 

0.001 , 20 .s    Choosing the point ( , ) (1,0.02)p dk k   

which lies in the stable region of Fig. 3, from Fig. 5 (a), 

the angular motions ,   of the center of mass about X 

and Y axes approach the trivial solution, indicating that 

the equilibrium point is stable. Then we adjust the 

parameter 
pk  as 0.008 and the derivative gain 

dk
 
remains 

unchanged, that is the point ( , ) (1,0.008)p dk k   is out of 

the stable region of Fig. 3, the values of ,   grow 

rapidly, which suggests that the flywheel system loses 

the stability from Fig. 5 (b). If the derivative gain 

0.008dk   remains the same, the proportional gain 

changes as 0.6pk  , that is the point ( , ) (0.6,0.008)p dk k   

lies in the stable region of Fig. 3 again, the flywheel 

system will restore the stability from Fig. 5 (c). 

 

 
  (a) 1, 0.02p dk k   

 
  (b) 1, 0.008p dk k   

 
  (c) 0.6, 0.008p dk k   

 

Fig. 5. Numerical simulations of the maglev flywheel 

system (13). 
pk
 
and 

dk  as indicated. (a), (b), and (c) are 

(pseudo) phase portraits of the angular motions (  and 

 ) of the center of mass about X and Y axes. 

 

Thus, the numerical simulations agree with the 

stable boundary diagrams of Figs. 2, 3 as predicted by 

the theory. When the values of the time delay, the shaft 

speed and the control parameters fall in the stable region 

(Fig. 2 and Fig. 3), the numerical solutions for the 

magnetic flywheel system will tend to be stable (Figs. 4 

(a), (c) and Figs. 5 (a), (c)). If these values in the unstable 

region, the numerical solutions for the magnetic flywheel 

system will lose their stability (Fig. 4 (b) and Fig. 5 (b)). 

These results suggest that the magnetic flywheel will 

remain stable in the experiment and practical application 

by choosing the appropriate parameters values according 

the theoretical results. 

 

IV. EXPERIMENT 
Test was performed in Changsha. We will use the 

physical parameters given in Table 1 and choose 

0.07, 20 .pk    
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For a given time delay, the derivative gain is varied 

noting the region of stable operation. The measured 

result for the forward whirl is shown as Fig. 6 (a), which 

describes the correlation of stability data of the forward 

whirl shown on Fig. 2. The region of stable operation is 

limited at small time delay by the derivative gain. That 

is, there is no stable region of operation if the time delay 

at a high value. Then using 0.001, 20 ,     for a 

given derivative gain, the proportional gain is varied 

noting the region of stable operation. The measured 

result Fig. 6 (b) shows the correlation of stability data of 

the forward whirl shown on Fig. 3.There is no stable 

region of operation if the proportional gain at a low 

value. The measured result for the forward whirl is 

shown in Fig. 6. The experiment results have the similar 

shaped regions of stability compared to the theoretical 

simulation. 

 

 
  (a) 20  

 
  (b) 0.7pk   

 

Fig. 6. The measured result for the forward whirl 

compared to the theoretical simulation. 

 

We have tried different pairs of 
pk  and   and the 

shapes of the curves defined by (15) and (18) and their 

behaviors as 
pk  and   are varied are similar to what is 

shown in Fig. 7. Figure 7 (a) shows the stability region 

for   fixed and varying 
pk . Increasing the value of 

pk  

decreases the size of the stability region. Figure 7 (b) 

shows the stability region for 
pk  fixed and varying  . 

Increasing   decreases the size of the stability region. 

 

 
 (a) 20  

 
 (b) 0.7pk   

 

Fig.7. The stability map for a flywheel supported on 

magnetic bearings with time delay for various values of 

the proportional gain 
pk  or the shaft speed  . 

 

Note that in all cases, the range of values of 
dk  for 

which the flywheel system is stable decreases as   

increases and there is a critical value of , c , such that 

the equilibrium point is unstable for any 
dk  if c  , 

where c  is the   value at the maximum. 

 

V. CONCLUSIONS 
In this paper, the stability boundaries of the 

suspension system of a magnetic flywheel with time-

delayed proportional, derivative feedback are studied. 

According to the characteristic equation of the 

flywheel system, we get the stable region in the any two 

parameters spaces of , , ,p dk k  . For example, a set of 

values of the time delay and the derivative feedback gain 
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for which the flywheel system is stable can then be 

described. For the parameter values that we investigated, 

the larger the proportional gain, the smaller the region of 

the stability; the lager the shaft speed, the smaller the 

region of the stability. At the same time, we should also 

control the time delay of the system, if the time delay 

larger than the critical value, the equilibrium position is 

unstable for any derivative gain. Numerical simulations 

of the full model confirmed the predictions of the 

analysis. Experimental measurements showed that the 

results of the modeling have the same qualitative 

tendencies as theoretical analysis. 

To completely understand the dynamic behavior of 

the flywheel system, further research needs be carried 

out. Although the magnetic flywheel has the similar 

magnetic bearing system with the magnetic train [26, 

27], but the principle of the flywheel is more complicated 

for considering the motion of the center mass and 

rotations about the center of mass. In the next step, with 

DR (delayed resonator) and CTCR (Cluster Treatment of 

Characteristic Roots) [12-14], we will carry up a more 

detailed stability treatment of delayed flywheel system 

to increase robustness against uncertainties and variations. 

Therefore it would be interesting to extend the dynamical 

behaviors research of the flywheel system such as Hopf 

bifurcation, chaotic behavior and so on. 
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