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Abstract ─ A Block Matrix Preconditioner (BMP) 

for Volume and Surface Electric Field Integral 

Equations (V-EFIE and S-EFIE) for the analysis 

of electromagnetic scattering problems is 

presented. The V-EFIE operator is well-posed 

while the S-EFIE operator is ill-posed, so for the 

coupled V-EFIE and S-EFIE system, it is ill-

conditioned. Therefore, the solution time is very 

long if the iterative solution is applied to solve the 

system equations. The proposed scheme constructs 

a sparse matrix version of each block matrix, 

which is followed by the inversion of the resultant 

block sparse matrix using incomplete factorization. 

The proposed scheme enables the efficient 

electromagnetic analysis for the composite 

structures. Several numerical examples are 

proposed to demonstrate the efficiency of the 

scheme. 

 

Index Terms ─ Block matrix preconditioner, 

coupled volume-surface integral equation and 

iterative solution. 
 

I. INTRODUCTION 
Numerical analysis of electromagnetic 

scattering from composite structures comprising 

PEC and dielectric materials has been attracting 

researchers due to their kinds of useful 

applications, such as PEC targets coated dielectric 

radar absorbing materials, microstrip structures on 

finite substrates, etc. The integral equation 

methods using the Method of Moments (MoM) [1] 

have been among the most popular methods for 

their generality. The coupled Volume and Surface 

Integral Equations (VSIE) [2-3] formulation is a 

typical method for these problems. In this 

approach, the Volume Electric Field Integral 

Equation (V-EFIE) is applied in the dielectric 

region, while the Surface Electric Field Integral 

Equation (S-EFIE) is applied on the PEC surface. 

The V-EFIE operators are bounded and well-posed, 

even though applied to densely discretized cells 

[4]; while S-EFIE operators are often ill-posed, 

especially for the dense surface discretization [5-6]. 

As a result, the coupled V-EFIE and S-EFIE are 

ill-conditioned, so the iterative solution becomes 

so expensive. For some special problems, we can’t 

even get the expected results. In recent years, 

some technologies are proposed to reduce the 

iterations steps or make the solving process easier 

[7-14]. 

The Block Matrix Preconditioner (BMP) 

originally proposed by the FEM community [15-

16], is applied to address the convergence problem 

by the MoM for PEC [17] and penetrable objects 

[18]. In this paper, the similar procedure is applied 

for the coupled volume-surface integral equations 

system. To compute the BMP efficiently, we first 

create a sparse matrix from each block matrix by 

eliminating the small terms in the matrix entries 

and the inversion of the constructed sparse matrix 

is approximated using incomplete factorization. 

Finally, the BMP constructed using the proposed 

method is compared with the Incomplete LU 

Threshold Pivoting (ILUTP) preconditioner [19] 

to demonstrate their performance in terms of 

memory and computation time. 

This paper is organized as follows. The basic 

theory and formulations about the coupled VSIE 

and the block matrix preconditioner are given in 

section II. Numerical results obtained with the 

scheme described in this paper are shown and 

analyzed in section III and the remarks are 

included in section IV. 
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II. THEROY AND FORMULATIONS 

A. Coupled volume-surface electric field 

integral equations 

Consider a plane wave incident upon an 

arbitrarily shaped composite structure comprising 

PEC surfaces S  and dielectric volumes V in free 

space. It is assumed that the permeability is all 
0

  

for all of space, the permittivity are ̂  and 
0
  for 

the volumes V and free space, respectively. The 

dielectric volumes V are replaced by volume 

currents 
V

J  and the PEC surfaces S are replaced 

by surface currents
S

J . In this paper, time 

dependence 
j te 

is assumed and suppressed. Based 

on the boundary conditions of the total electric 

field, we can get the coupled volume-surface 

electric field integral equations as: 
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Here, 
incE  is the incident electric field, “tan” 

represents the tangential to the PEC surface. D  is 

the electric flux densities and 

      VD r J r j r ˆ , ̂ is the contrast 

parameter and     0
r r    ˆ ˆ ˆ . ( )VA r , 

( )V r , ( )SA r  and ( )S r  are the vector 

magnetic potentials and scalar electric potentials 

produced by the surface and volume currents, 

respectively. 

The electric flux densities D and surface 

currents 
S

J  are chosen as the unknowns in this 

paper. The volumes V and surfaces S are meshed 

by tetrahedrons and triangles. The SWG and RWG 

basis function are applied to represent electric flux 

densities D and surface currents S
J , respectively. 

After the Galerkin’s testing, equations (1) and (2) 

are converted to matrix equations: 

 

DDD DM D

MD MM M M

VZ Z I

Z Z I V

    
     

       
. (3) 

The impedance matrix  Z  consists of four 

parts:
DDZ   , 

DMZ   , 
MDZ    and 

MMZ   , 

which account for volume basis test volume basis, 

volume basis test surface basis, surface basis test 

volume basis and surface basis test surface basis, 

respectively.  I  and  V  are the vectors of 

expansion coefficients and tested incident filed. 

The detail forms of matrix equations are given as 

follows: 
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 (5) 

Green’s function used in the integral operators 

is the free-space Green’s function in the VSIE 

approach. Hence, the MLFMA can be easily 

applied to reduce the computational complexity 

and memory requirement [20]. The basic idea of 

the MLFMA is to convert the interaction of 

element-to-element to the interaction of group-to-

group. Here, a group includes the elements 

residing in a spatial box. The mathematical 

foundation of the MLFMA is the addition theorem 

for the scalar Green’s function in free space. Using 

the MLFMA, the matrix-vector product can be 
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split into near interaction part and far interaction 

part. The calculation of matrix elements in the 

near interaction part remains the same as in the 

MoM procedure. However, those elements in the 

far interaction part are not explicitly computed and 

stored. When the MLFMA is implemented in 

VSIE, we can obtain: 
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where ( , ')r rG  is the dyadic Green’s function, 

( )V

mpR k  and ( )S

mpR k  denote the distribution factor, 

( , )pqpq k r  denotes the translator factor and 

( )V

qnF k  and ( )S

qnF k  denote the aggregation 

distribution factor. They are given by the 

following equation: 
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B. Blocker matrix preconditioner 

An effective preconditioner can be 

incorporated into iterative methods to improve the 

convergence rate. The preconditioned matrix 

equation can be solved as follows: 

 
-1 -1=M ZI M V , (8) 

where M  is the precondition matrix, which 

should be a nonsingular matrix with the same 

order of Z . In general, the precondition matrix 

M should be chosen to make sure that the 

condition number of the preconditioned 

matrix
-1M Z  is less than that of matrix Z , which 

can reduce the computation time for iterative 

methods to solve the matrix equation. An improper 

choice for M  would worsen the preconditioned 

system. 

In equation (3), because matrices 
DDZ , 

MDZ , 

DMZ  and 
MMZ in the conventional MoM are all 

dense matrices, sparse versions of these matrices 

should be gotten when computing the inversion of 

a precondition matrix 
-1M [21]. Therefore, we 

should construct the sparse forms of these matrices. 

Firstly, the elements of the impedance matrix are 

normalized row by row, which makes the 

amplitude of the biggest element of each row to be 

1, so the other elements are all less than 1. Then a 

threshold  0,1  is set during the removing 

procedure, which can control the sparseness of 

matrix. If the normalized elements are less than  , 

the elements should be abandoned. The smaller   

is, the sparser the impedance matrix is. To control 

the account of saved elements of each row, a 

parameter 
maxK is chosen. If the number of saved 

elements of one row is greater than 
maxK , we just 

need to keep the 
maxK biggest elements. If the 

dimension of the impedance matrix is N, then total 

number of elements in the sparse matrix is less or 

equal 
maxK *N. The introducing of 

maxK is very 

helpful for allocating the array to store the 

preconditioner matrix during the coding procedure. 

For the amplitudes of elements in the four 

parts of coupled VSIE impedance matrix vary a lot, 

to ensure the strong coupling elements of each part 

are included in the sparse matrix, the procedure of 

constructing sparse matrices for the 
DDZ , 

MDZ , 

DMZ  and 
MMZ  are implemented, respectively. 

Once the block sparse matrices were 

constructed, the BMP can be computed using 

Gaussian elimination of the block matrix system. 

The 2×2 block matrix can be decomposed into 

matrix product: 
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and its inverse can be found as follows: 
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where 
DDI  and 

MMI  are the identity matrices of 

size 
D DN N  and 

M MN N ; 
DN  and 

MN  

indicate the number of SWG basis functions and 

RWG basis functions, respectively. 

The block matrix in equation (10) involves 

inversion of both the first block sparse

DDZ  and the 

Schur complement, which can be represented as 

follows:  
1

sparse sparse sparse sparse= MM MD DD DMS Z Z Z Z


 . For the 

time for computing the coupling of 

 
1

sparse sparse sparse

MD DD DMZ Z Z


 is very consuming, the 

Schur complement S  has been approximated as 

the inversion of sparse

MMZ during the construction of 

preconditioner in this paper, also the similar 

treatment has been taken in [18]. Finally, the 

proposed BMP 
-1M  can be determined as follows: 
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 (11) 

This preconditioner can be applied at each 

iteration in iterative methods via matrix 

multiplication. Because the BMP requires the 

inversion of each block matrix sparse

DDZ  and sparse

MMZ  

separately, different dropping parameters can be 

applied to the approximate inverse methods such 

as Incomplete LU (ILU) decomposition and the 

Sparse Approximate Inverse method (SAI). In this 

paper, the ILU decomposition preconditioner is 

applied, which is widely used and available in 

several solver packages. There are two popular 

drop strategies for ILU factorization; the level 

based drop strategy and the threshold based drop 

strategy, the former is denoted ILU( p ), where 

0p  is an integer denoted as the level of fill-in 

and the latter is ILUTP. For the ILUTP 

preconditioner is highly stable and has a fast 

convergence rate performance and it is chosen as 

the approximate inverse methods in this paper. 

 

III. NUMRICAL RESULTS 
In this section, three numerical examples are 

presented for the accuracy and efficiency of the 

approach in this paper. The iteration process is 

terminated when the 2-norm residual error is 

reduced by 
-31 10  and the restarted GMRES (30) 

is selected as the iterative method, where 30 is the 

dimension size of Krylov subspace for GMRES. 

Zero vector is taken as initial approximate solution 

for all examples. During the construction of sparse 

forms of preconditioner matrices, the choice for   

and 
maxK is very important. For   and 

maxK  is 

set as 0.01 and 200, respectively. The larger 
maxK  

(the smaller   ）is, the less the number of steps 

needed for iteration solution, but it will cost more 

time and memory requirement for constructing 
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precondition matrix. Actually, there is a balance 

between the number of steps for iteration solution 

and time and memory requirement for constructing 

precondition matrix. If the computational platform 

is powerful (huge memory and large number of 

CPUs) and we just care for the fast convergence of 

the solution, 
maxK can be chosen as large as 

possible. In this paper, all the numerical examples 

are performed on the PC with an Intel Core 2 (3 

GHz CPU) and 3.2 GB RAM, so   and 
maxK  is 

set as 0.01 and 200, respectively; which are 

suitable numbers for the computational platform 

used in this paper. For electric small objects, the 

maxK can be set as largely as possible, because the 

time and memory requirement needed for 

constructing precondition matrix won’t be an 

obstacle. For electric large objects, the choice for 

maxK mainly depends on the computational 

platform. 
For the first example, we consider a 

conducting sphere coated by dielectric material. 

The permittivity of dielectric material is 

=2r .The radii of the inner and outer surface of 

the dielectric shell are 
00.2  and 

00.25 , 

respectively. 
0  is the wavelength in the free 

space. The surface of the conducting sphere is 

discretized into 480 triangles and the volume of 

the dielectric shell into 1674 tetrahedrons, yielding 

a total number of 4627 unknowns including 720 

RWG basis and 3907 SWG basis. Figure 1 shows 

the bistatic Radar Cross-Section (RCS) for a 

normally incident plane wave on the sphere. It is 

observed that the results obtained by the ILUTP 

preconditioned and BMP preconditioned VSIE are 

all in excellent agreement with Mie series solution, 

which are analytical results. Figure 2 shows the 

convergence history when the BMP and the 

ILUTP preconditioner are used to solve the 

coupled VSIE system resulting from the use of the 

MoM. 
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Fig. 1. The bistatic RCS ( Phi=0 ) of a coated 

sphere with inner and outer radii are 
00.2 and 

00.25 , =2r . 
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Fig. 2. The convergence history of the coated 

sphere. 

 
The second example is a disk-cone structure 

[22], shown in the inset of Fig. 3. The dielectric 
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cone ( =2r ) has a radius of 
01.2  and a height of 

00.6 . The disk also has a radius of 
01.2 . The 

number of the total unknowns is 13131, including 

658 RWG basis and 12473 SWG basis. Figure 4 

shows the convergence history when the BMP and 

the ILUTP preconditioner are used to solve 

thecoupled VSIE system resulting from the use of 

the FMM. 
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Fig. 3. The geometry of a disk-cone structure. 
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Fig. 4. The convergence history of the coated 

sphere. 

 

Table 1 summarizes the computational 

demands of the ILUTP and the BMP for the two 

objects. In the second column, the number of 

RWG basis functions and SWG basis functions are 

included in parenthesis. As shown in Table 1, both 

the required construction time and the solution 

time of the BMP are considerably less than those 

of the ILUTP. Moreover, the BMP requires less 

memory storage than the ILUTP. 

 

Next, we consider a Frequency-Selective Surface 

(FSS) structure with 64 (8×8) printed square-ring 

elements, as shown in Fig. 5. The size of the 

square ring is 1 5D mm  and 2 4D mm , the 

period is 6 6mm mm , the thickness of the 

dielectric substrate is 0.5mm  and relative 

permittivity is =3r . The surface of the square-

ring patches is discretized into 3072 inner lines 

and the volume of the dielectric into 60462 

triangles, yielding a total number of 63534 

unknowns for the FSS structure. Figure 6 gives the 

transmission coefficients of the FSS structure in 

the frequency band of 10 to 20 GHz, the plane 

wave incident upon the FSS normally is 

considered. For comparison, the results computed 

by the commercial software Designer are also 

shown in Fig. 6. Figure 7 shows the convergence 

history when the BMP and the ILUTP 

preconditioner are used to solve the coupled VSIE 

system resulting from the use of the FMM. It can 

be found out that the ILUTP preconditioned VSIE 

system cannot achieve the demanded iteration 

accuracy ( -31 10 ) within 4000 steps during the 

resonant frequency band (13 GHz-18 GHz), while 

the BMP preconditioned VSIE system can still 

Table 1: The computational demands of the ILUTP and BMP for the two objects 
 Unknowns 

(SWG, RWG) 

Preconditioner Construction 

Memory (MB) 

Construction 

Time (S) 

Steps of 

Iteration 

Solutionl 

Time (S) 

Coated 

sphere 

4627 

(3907, 720) 

ILUTP 7.4 28 79 3.87 

BMP 6.1 21 11 0.76 

Disk-

cone 

13131 

(12473, 658) 

ILUTP 23 215 480 126.8 

BMP 20 155 61 25.2 
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work. Table 2 summarizes the computational 

demands of iteration procedure for the ILUTP and 

the BMP of the FSS structure. 
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Fig. 5. The geometry of a FSS structure with 64 

(8×8) printed square-ring elements. 
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Fig. 6. Comparisons of transmission coefficients 

for the FSS structure between the results computed 

by Designer and by the proposed method in this 

paper. 
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Fig. 7. The convergence history of the FSS 

structure. 

 

Table 2: The iteration steps and solution time of 

the ILUTP and BMP for the FSS structure 
Frequency 

(GHz) 

Preconditioner Steps of 

Iteration 

Solution 

Time (S) 

10 ILUTP 1036 257 

BMP 30 25 

11 ILUTP 1631 424 

BMP 51 42 

12 ILUTP 2499 1786 

BMP 77 63 

13 ILUTP >4000 - 

BMP 364 296 

14 ILUTP >4000 - 

BMP 436 352 

15 ILUTP >4000 - 

BMP 563 458 

16 ILUTP >4000 - 

BMP 512 413 

17 ILUTP >4000 - 

BMP 486 391 

18 ILUTP >4000 - 

BMP 421 332 

19 ILUTP 2194 610 

BMP 302 239 

20 ILUTP 1330 342 

BMP 112 90 
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IV. CONCLUSION 
In this paper, a well conditioned coupled 

volume and surface electric field integral 

equations based on block matrix preconditioner 

combined with MLFMM is presented. The 

numerical results obtained by this scheme verified 

the accuracy and efficiency. Compared with the 

traditional ILUP preconditioner, the BMP 

preconditioner needs less iteration steps to achieve 

the expected precision and also shows a better 

performance in terms of construction time and 

memory usage. 
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