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Abstract ─ The transverse electric (TE) 
polarization for shape reconstruction of a metallic 
cylinder by asynchronous particle swarm 
optimization (APSO) and steady-state genetic 
algorithm (SSGA) is presented. These approaches 
are applied to two-dimensional configurations. 
After an integral formulation, a discretization 
using the method of moment (MoM) is applied. 
Considering that the microwave imaging is recast 
as a nonlinear optimization problem, an objective 
function is defined by the norm of a difference 
between the measured scattered electric field and 
that calculated for an estimated shape of metallic 
cylinder. Thus, the shape of metallic cylinder can 
be obtained by minimizing the objective function. 
In order to solve this inverse scattering problem, 
two techniques are employed. The first is 
asynchronous particle swarm optimization. The 
second is steady-state genetic algorithm. Both 
techniques have been tested in the case of 
simulated measurements contaminated by additive 
white Gaussian noise. Numerical results indicate 
that the asynchronous particle swarm optimization 
outperforms steady-state genetic algorithm in 
terms of reconstruction accuracy and convergence 
speed.  
 
Index Terms - Asynchronous particle swarm 
optimization, inverse scattering, partially 
immersed conductor, and transverse electric wave.  
 

I. INTRODUCTION 
Microwave imaging is an application of 

electromagnetic inverse scattering that is capable 
of performing noninvasive evaluation on a test 
object and determining its shape and/or material 
properties. The application of electromagnetic 
scattering to retrieve the shape, location, and the 
property of an unknown scatterer embedded in a 
homogeneous space or buried underground has 
shown great potential in several application areas 
such as medical tomography, geophysics, non-
destructive testing, and object detection [1-11]. 
The reconstruction of the location, shape and/or 
size of metallic cylinders in a two-layer material 
medium may find its application for detection of 
landmine. 

From a mathematical point of view, inverse 
problems are intrinsically ill-posed and nonlinear 
[12]. Hence, only a finite number of parameters 
can be accurately retrieved. To stabilize the 
inverse problems against ill-posedness, usually 
various kinds of regularizations are used, which 
are based on a priori information about desired 
parameters. On the other hand, due to the multiple 
scattering phenomena, the inverse-scattering 
problem is nonlinear in nature. Therefore, when 
multiple scattering effects are not negligible, the 
use of nonlinear methodologies is mandatory [13]. 
Recently, inverse scattering problems are usually 
considered in optimization-based procedures, such 
as adjoint-field scheme [14], Gauss–Newton 
method [15] genetic algorithms (GAs) [16-19], 
differential evolution (DE) [20-23], particle swarm 
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optimization (PSO) [23-28], and level-set 
algorithm [29]. However, these papers only focus 
on transverse magnetic (TM) cases. 

It has been recognized that the 2D TE 
problems include two orthogonal electric field 
components in the transverse plane and thus leads 
to a vectorial mathematical formulation. 
Therefore, the computational load for exploiting 
such positive features is unavoidably increased as 
compared to the TM case with only one electric 
field component.  In other words, the TE-polarized 
case includes polarization charges at dielectric 
discontinuities, which are more difficult to model 
numerically. However, there are advantages of 
utilizing the TE-polarized data (as compared to the 
TM-polarized ones) since they may contain more 
useful information about the object of interest 
data. It should be noted that these two 
polarizations are physically uncoupled and they 
provide independent information about the object 
being imaged [29, 30], although this may not be 
"practically" true when the curvature radius of the 
perfectly conducting cylinder is larger than the 
wavelength [31, 32].  

Although particle swarm optimization and 
genetic algorithms have been confronted to 
numerical analysis and electromagnetic 
optimization problem [33-36], to the best of our 
knowledge, a comparative study about the 
performances of APSO and SSGA when applied 
to inverse scattering problems has not yet been 
investigated. Recently, there are a few reports on 
subject of 2D object about shape reconstruction 
problems by TE experimental data, such as genetic 
algorithms (GAs) [37-40] and level-set algorithm 
[29].  

 In this paper, the inverse scattering problem 
of the partially immersed perfectly conducting 
cylinder by TE wave illumination is investigated. 
We use the APSO to recover the shape of a 
partially immersed perfectly conducting cylinder. 
In section II, the theoretical formulation for the 
inverse scattering is derived. The numerical results 
for various objects of different shapes are 
presented in section III. Section IV gives the 
conclusions. 
 

II. THEORETICAL FORMOLATION 
 
A. Direct problem 

Let us consider a perfectly conducting cylinder, 

which is partially immersed in a lossy 
homogeneous half-space, as shown in Fig. 1. 
Media in regions 1 and 2 are characterized by 
permittivities and conductivities (1, 1) and (2, 
2), respectively. In our simulation, a priori 
information is assuming that scatterer is a metallic 
cylinder. A perfectly conducting cylinder is 
illuminated by a TE plane wave. The cylinder is of 
an infinite extent in the z-direction, and its cross-
section is described in polar coordinates in the x, y 
plane by the equation  = F(). We assume that the 
time dependence of the field is harmonic with the 
factor ejt. Let in cH


 denote the incidence field 

from region 1 with incident angle 1 as follow, 
 

1 1 1( cos sin ) ˆinc jk y xH ze   


.          (1) 
  

H
inc

1

 1( < - )region y a

1 1( , ) 

2 2( , ) 
y a

 X

Y
2( - )region y a

( )F 

 

Fig. 1. Geometry of the problem in the (x,y) plane. 
 

Owing to the interface between regions 1 and 
2, the incident plane wave generates two waves 
that would exist in the absence of the conducting 
object. Since the cylinder is partially immersed, 
the equivalent current exists both in the upper half 
space and the lower half space. As a result, the 
details of Green’s function are given first as 
follows: 

 
(1) When the equivalent current exists in the 

upper half space, the Green’s function for the 
line source in the region 1 can be expressed as, 
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(2) When the equivalent current exists in the lower 

half space, the Green’s function for the line 
source in the region 2, is 
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For programming purposes, the scattered 

magnetic field can be expressed according to the 
following two cases, 
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with 
2 2( ) ( ) ' ( ) ( )m smJ j F F J       . 

Here, Jsm () is the induced surface magnetic 
current density, which is proportional to the 
normal derivative of the magnetic field on the 
conductor surface. G1(x, y; x', y') and G2(x, y; x', y') 
denote the Green’s function for the line source in 
regions 1 and 2, respectively. )2(

0H  is the Hankel 

function of the second kind of order zero. We 
might face some difficulties in calculating the 
Green’s function. The Green’s function, given by 
equation (2), is in the form of an improper 
integral, which must be evaluated numerically. 
However, the integral converges very slowly when 
r and r' approach the interface y = -a. Fortunately, 
we find that the integral in G1 or G2 may be 
rewritten as a closed-form term plus a rapidly 
converging integral. Thus the whole integral in the 
Green’s function can be calculated efficiently. 
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For a perfectly conducting scatterer, the total 
tangential electric field at the surface of the 
scatterer is equal to zero, 

                 
1

( )totn  H 0
j



   


             (6) 

with tot i sH H H 
  

, where n̂  is the outward unit 
vector normal to the surface of the scatterer and 

sH


 is the scattered field. For the direct scattering 
problem, the scattered field sH


 is calculated by 

assuming that the shape is known. For the inverse 
problem, assume the approximate center of 
scatterer, which in fact can be any point inside the 
scatterer, is known. Then the shape function F () 
can be expanded as, 

/ 2 / 2
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where Bn and Cn are real coefficients to be 
determined, and N+1 is the number of unknowns 
for the shape function. In the inversion procedure, 
the asynchronous particle swarm optimization is 
used to minimize the following cost function [36], 
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where Mt is the total number of measurement 
points. ( )s

exp mH r
 

 and ( )s
cal mH r
 

 are the measured 

and calculated scattered fields, respectively.  
 
B. Asynchronous particle swarm optimization 
(APSO) 

APSO starts with an initial population of 
potential solutions that is composed by a group of 
randomly generated individuals. Each individual is 
a D-dimensional vector consisting of D 
optimization parameters. The initial population 
may be expressed by {Xj: j = 1, 2, ..., Np}, where 
Np is the population size. Clerc [41] suggested the 
use of a different velocity update rule, which 
introduced a parameter  called constriction factor. 
The role of the constriction factor is to ensure 
convergence when all the particles tend to stop 
their movement. The flow chart of the APSO 
algorithm is shown in Fig. 2. The velocity update 
rule is then given by, 
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The symbols c1 and c2 are the learning coefficients 
used to control the impact of the local and global 
component in the velocity term of equation (9),  
is the constriction factor, 1 and 2 are both 
random numbers between 0 and 1. 
   

pbestx

gbestx

gbestx
gbestx gbestx

) )mu
gbest gbestCF x CF x( ( 

mu
gbestx

gbestx

2 2 1/ 2

1

1
{ ( ) ( ) / ( ) }

tM
s s s
exp m cal m exp m

mt

CF H r H r H r
M 

    

Fig. 2. The flowchart of the modified 
asynchronous PSO (APSO). 
 

The key distinction between a particle swarm 
optimization (PSO) and the asynchronous particle 
swarm optimization (APSO) is on the updating 
mechanism, damping boundary condition and 
mutation scheme. The current updating 
mechanism of asynchronous PSO use the 
following rule: just after the update of equation (9) 
for each particle the best positions xpbest and xgbest 
will be replaced if the new position is better than 
the current best ones such that they can be used 
immediately for the next particle. In this way, the 
swarm reacts more quickly to speed up the 
convergence.   
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Boundary conditions in PSO play a key role as 
it is pointed out in [42]. In this paper we have 
applied the damping boundary condition and 
mutation scheme. The mutation scheme plays a 
role in avoiding premature convergences for the 
searching procedure and helps the xgbest escape 
from the local optimal position. More details about 
the APSO algorithm can be found in [28]. 

 
III. Numerical Results 

We illustrate the performance of the proposed 
inversion algorithm and its sensitivity to random 
noise in the scattered field. Let us consider a 
perfectly conducting cylinder buried in a lossless 
half-space (1 = 2 = 0). The permittivity in each 
region is characterized by 1 = 0 and 2 = 2.7 0, 
respectively. The frequency of the incident wave is 
chosen to be 3 GHz with incident angles 1 equals 
to - 450, 00, and 450, respectively. The wavelength 
0 is 0.5 m. The purpose of this study is to 
reconstruct the shape of the partially immersed 
perfectly conducting cylinder by using the 
scattered fields at different incident angles. To 
reconstruct the shape of the cylinder, the object is 
illuminated by incident waves from three different 
directions and  8 measurements are made for each 
incident angle at the points equally separated on a 
semi-circle with the radius of 3 m in region 1 
along the interface y = -a, which is considered here 
as a test configuration for future application of 
landmine detection. To save computing time, the 
number of unknowns is set to be 7. Moreover, to 
avoid inverse crime, the discretization number for 
the direct problem is two times that for the inverse 
problem in the simulation. In forward problem, the 
shape function F() is discretized to 60. The 
related coefficients of the APSO are set below. 
The learning coefficients c1 and c2 are set to 2.8 
and 1.3, respectively [43]. The mutation 
probability is 0.1 and the population size is set to 
70. The operations coefficients for the NU-SSGA 
algorithm are set as below: The crossover 
probability and the mutation probability are set to 
be 0.02 and 0.05, respectively [19]. The 
population size Np is the same with APSO. The 
searching range for the unknown coefficients is 
chosen from 0 to 1.0. The relative error of shape 
function (RE) of the reconstructed shape is defined 
as, 

2/122
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where N' is cutting number of the object. Fcal(i) 
and F(i) are calculated shape function and is 
given the shape function. 

In the first example, the shape function is 
chosen to be ( ) (0.1 0.04cos2 )F     m. In this 
case, the final reconstructed shapes by NU-SSGA 
algorithm and APSO scheme at the 1000 th 
generation are compared to the exact shape in Fig. 
3. Figure 4 shows that the reconstruction relative 
error versus the number of iterations by NU-SSGA 
algorithm and APSO, respectively. It is clear that 
the APSO outperforms NU-SSGA.  

-0.2 -0.1 0 0.1 0.2
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

X-axis (m)

Y
-a

xi
s 

(m
)

 

 
Exact
Initial
APSO
SSGA

 
 

Fig. 3.  The reconstructed shape of the cylinder for 
example 1. 
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Fig. 4. Shape function error in each generation. 
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In the second example, the shape function is 
chosen to be F () = (0.1 + 0.03 cos2 + 0.025 
sin2 + 0.015 sin3) m. The reconstructed shape 
function for the best population member is plotted 
in Fig. 5 with the shape error shown in Fig. 6. The 
reconstructed shape error is 5.3 % by APSO and it 
is seen that the error comes from the bottom of the 
shape. It is noted that the APSO still outperforms 
NU-SSGA in term of reconstruction accuracy and 
convergence speed. 

For investigating the effect of noise, we add to 
each complex scattered field a quantity b+cj, 
where b and c are independent random numbers 
having a Gaussian distribution with zero mean, 
each random number is multiplied by the noise 
level times the rms value of the scattered field. 
The SNR applied include 40 dB, 30 dB, 20 dB, 10 
dB, and 5 dB in the simulations. The numerical 
results for examples 1 and 2 are plotted in Fig. 7. 
They show that the effect of the noise is tolerable 
for noise levels below 10 dB. 
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Fig. 5. The reconstructed shape of the cylinder for 
example 2. 
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Fig. 6. Shape function error in each  generation. 
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Fig. 7. Shape function error as a function of SNR 
for all examples. 

 
IV. CONCLUSION 

We have presented a study of applying the 
APSO and NU-SSGA to reconstruct the shapes of 
a partially immersed conducting cylinder 
illuminated by TE waves. The inverse problem is 
reformulated into an optimization one. Numerical 
results show that the APSO has better 
reconstructed results compared with NU-SSGA 
when the same number of iterations is applied. 
 Some numerical examples have been given, 
and good agreement between the exact and the 
reconstructed profiles is achieved by APSO in 
each case. The effect of noise on the overall 
reconstruction has also been investigated, and it is 
observed that the proposed method is able to 
provide good shape reconstruction as long as the 
normalized SNR is > 10 dB.  
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