
 A Novel Enhancing Technique for Parallel FDTD Method using
Processor Affinity and NUMA Policy

Lei Zhao 1,2, Geng Chen 1, and Wenhua Yu 3

1 Center for Computational Science and Engineering, School of Mathematical Sciences
Jiangsu Normal University, Xuzhou, China
lzhaomax@163.com, gengchn@163.com

2 State Key Laboratory of Millimeter Waves

Southeast University, Nanjing, China

3 2COMU, State College, PA 16803, USA
wenyu@2comu.com

Abstract ─ The traditional multiple CPUs
mounted on one node in a high performance
cluster is based on Symmetric Multi-Processing
(SMP) architecture. The memory bandwidth is a
major bottleneck in the high performance
computing. Recently, Intel and AMD companies
developed the (Non-uniform Memory Access
(NUMA) architecture for the multi-CPU server
that is an important extension of the SMP
computer. In the NUMA architecture server, each
CPU has its own memory and can also be access
to the memory located the nearby of other CPUs
through the onboard network. For a parallel code,
we can allocate the data for each CPU inside its
local memory to accelerate the memory access. In
this paper, we investigate a way how to achieve
the high performance of parallel FDTD code on a
computer cluster that includes 21 nodes with 42
CPU and 168 cores. Numerical experiments have
demonstrated that different job binding schemes
can significantly affect the performance of parallel
FDTD code.

Index Terms – NUMA, parallel FDTD, processor
affinity, SMP.

I. INTRODUCTION
A high performance cluster has become a

popular hardware platform today for the
computational electromagnetic methods to solve

the electrically large problems. In three popular
computational electromagnetic methods, FDTD
method [1] is parallel in nature, and hence, has
high parallel performance than method of moment
(MoM) [2], finite element method [3] due to a
parallel FDTD method only requires the field
exchange on the interface between the adjacent
neighboring subdomains. For simulating
electromagnetic (EM) problem from electrically-
large and complex structures with FDTD method,
parallel technology is a powerful tool to provide
the necessary computing power and memory
resources [4-8]. The parallel performance of
FDTD code depends on not only the way how we
develop the parallel FDTD code and problem type,
but also on the hardware platform such as CPU
type, network system, Input/Ouput (I/O) system,
and the operating system as well. In this paper, the
parallel FDTD code is developed based on the
literature [7, 8] that uses the combination of Open
Multiple Processing (OpenMP) [9] and Message
passing Interface (MPI) library [10]. OpenMP is
developed for the efficient use of multi-core
processors and the MPI library is developed to use
the distributed resource.

For the same parallel FDTD code, we
investigate the performance of parallel FDTD code
on an intermediate cluster that includes 21 nodes
(42 CPUs with 168 cores) when we use the
different binding techniques and the running
environment variables. In all the numerical

638

1054-4887 © 2012 ACES

ACES JOURNAL, VOL. 27, NO. 8, AUGUST 2012

Submitted On: Jan. 29, 2012
Accepted On: June 24, 2012

experiments, we do not modify the parallel FDTD
code and keep the same hardware platform and
operating system as well. Each node in the cluster
includes two Intel Xeon X5520 2.67GHz
processor, which support the NUMA architecture.
Namely, it allows us to allocate the data for each
CPU in one node to its local memory. If one job
unit is assigned to one node, the communication
between two CPUs in one node is realized through
OpenMP. And the communication between the
nodes is realized by the MPI functions. Otherwise,
if one job unit is assigned to one core, all the
communication between the cores is realized by
the MPI functions. Furthermore, if one job unit is
assigned to each CPU, the communication
between the CPUs is realized by the MPI function
but the communication between the cores inside
each CPU is realized through OpenMP.

To achieve a good performance of the parallel
FDTD code on the high performance cluster, the
NUMA policy is used to extend the memory
bandwidth and reduce memory access time by
allocating the data for each CPU in its own local
memory. The advantage of NUMA architecture is
obvious from the numerical experiments. We also
investigate the effect of processor affinity [11] on
the parallel FDTD code performance by binding
each rank to the node, CPU, or core. In this paper,
all the test examples are carried out by using
GEMS software [12].

II. THEORY AND METHOD
Both the electric and magnetic field updates in

the FDTD method only require field information
from their nearest neighboring cells, which
requires much less communication information
than other methods that require the 3-D
communication data. Hence, the parallel FDTD
method gives much less burden on the network
system, and in turn, it generates the higher parallel
efficiency. To achieve the better parallel
performance, we install two sets of network
systems in a regular cluster, one of them is design
the data communication during the simulation and
usually is fast. And the second one is designed the
cluster management, namely, it allows
simultaneously to check the cluster status without
interrupting the data communication.

In Yee’s scheme [1], the computational
domain is discretized by using a rectangular grid.
The electric fields are located along the edges of

the electric elements, while the magnetic fields are
sampled at the centers of the electric element
surfaces and are oriented normal to these surfaces,
this being consistent with the duality property of
the electric and magnetic fields in Maxwell’s
equations, as shown in Fig. 1.

If the computational domain is broken into
two subdomains, and the interface coincides with
the FDTD mesh. The electric fields on the
interface can be counted into either subdomain 1
or 2. For instance, if it is belong to the subdomain
1, we need to borrow the magnetic field 2

zH from
the subdomain 2 when we calculate the electric
field interface

yE on the interface.

.
21,121,221,121,2

ninterface,1ninterface,

























x
HH

z
HH

tEE

n
z

n
z

n
x

n
x

y
yy 

(1)

We need to borrow the electric field interface

yE on
the interface when we calculate the magnetic field

2
zH in the subdomain 2:

.
interface,1,21,2

21,221,2























 

x
EE

y
EEt

HH

y
n

yx
n

x

z

n
z

n
z



 (2)

In the MPI library, the communication of the

electric and magnetic fields between the
subdomains 1 and 2 are realized by the MPI
functions MPI_Send and MPI_Recv. The
information is changed through the high
performance network system. OpenMP is based on
the fine grid technique in the shared memory
system, and its information exchange is through a
shared memory. In the optimization of the parallel
FDTD code, we need to achieve a balance
between the minimum area of interface and
performance of network. Internal consistency
should be maintained

Uniform Memory Access (UMA) is a shared
memory architecture used in parallel computers, as
shown in Fig. 2. In the UMA model, all the
processors share the physical memory uniformly,
and access time to a memory location is
independent of which processor makes the request
or which memory chip contains the transferred

639 ACES JOURNAL, VOL. 27, NO. 8, AUGUST 2012

data. The UMA model is suitable for general
purpose and time sharing applications by multiple
users. Contrasted with UMA, NUMA is a shared
memory architecture that describes the placement
of main memory modules with respect to
processors in a multiprocessor system, as shown in
Fig. 3. Based on the idea, however, Intel and
AMD use the different technical paths to realize
the NUMA architecture.

To better understanding NUMA roles in
parallel FDTD method, we do many simulations
using GEMS with NUMA and UMA policy,
respectively. For example, the command for
running the GEMS project with NUMA is:

mpirun –np 9 -machinefile hosts nuamctl--

physcpubind=0-8,9-15 /gpfsAPP/GEMS
/GEMS_Solver test.gpv

and the command for running the GEMS project
without NUMA is:

mpirun -np 9 -machinefile hosts /gpfsAPP
/GEMS/GEMS_Solver test.gpv

In addition, job balancing plays an important

role in determining performance of the parallel
code. Proper job balancing can obtain good
performance of the parallel FDTD code on the
HPC system, while improper job balancing may
reduce the performance of parallel code for most
of the processors in the cluster to that of "waiting"
during the simulation process. Another important
factor that affects the parallel efficiency is the
division of the sub-domains according to the
allocation of the array in the computer's memory.
Processor affinity is a modification of the native
central queue scheduling algorithm in a symmetric
multiprocessing operating system. Taking
advantage of the fact that some remnants of a
process may remain in one processor's state from
the last time the process ran, we can enhance the
performance of parallel FDTD code on a HPC
cluster. For example, if we use two nodes (4
CPUS, 16 cores) to run GEMS with binding rank
to nodes, CPUs and cores, respectively, we should
first edit the rank files for banding nodes, CPUs
and cores as following:

For binding nodes:
 rank 0=host0 slot=0-7
 rank 1=host1 slot=0-7

For binding CPUs:
 rank 0=host0 slot=0-3
 rank 1=host0 slot=4-7
 rank 2=host1 slot=0-3
 rank 3=host1 slot=4-7
For binding Cores:
 rank 0=host0 slot=0
 rank 1=host0 slot=1
 rank 2=host0 slot=2
 rank 3=host0 slot=3
 rank 4=host0 slot=4
 …….

rank 7=host0 slot=7
rank 8=host1 slot=0

… ….
 rank 15=host1 slot=7
And the following commands will be used to

run GEMS testing project.

mpirun -np n -machinefile hosts -rf ranks

/opt/GEMS/bin64/GEMS_Solver test.gpv

x x

Subdomain 1 Subdomain2

1
zH 2

zH
interface
yE

1
yE

2
yE

2,1
xE

1,1
xE

2,2
xE

1,2
xE

Interface

x

y

Fig. 1. Distributions of electric and magnetic fields
near the subdomain interface.

Fig. 2. UMA architecture.

640ZHAO, CHEN, YU: A NOVEL ENHANCING TECHNIQUE FOR PARALLEL FDTD METHOD USING PROCESSOR AFFINITY AND NUMA POLICY

Fig. 3. NUMA architecture.

III. NUMERICAL EXPERIMENT

RESULTS
In this section, we introduce a parallel

processing platform installed with Linux operating
system and investigate GEMS performance on the
platform. The HPC cluster shown in Table 1
includes 23 nodes (21 computation nodes and 2
master nodes) and each node has two CPUs with
Intel Xeon X5550 2.7GHz processor. The 10Gbps
Ethernet is used to connect the computation nodes.
To evaluate the performance of the FDTD code,
we define the performance as follows:

 

 
,

)(sec_
__

ondtimeSimulation
timestepsofNumberNNN

sMcellsePerformanc

zyx 


 (3)

where zyx NNN ,, are the number of grids in x, y
and z direction, respectively.

Firstly, NetPIPE [13] was used to test the
performance of a network inside a node and
internode. Table 2 gives NetPIPE results about the
bandwidth, which shows that the network speed
inside node is around 4 times of the internode. The
NetPIPE results about the latency is described in
Fig. 4, which shows the internode has a latency
that is over 3 times than that inside-node. To test
the job balancing role in determining performance
of the parallel FDTD, a job with different
processes has been run in one node of the HPC
cluster. Fig. 5 shows the performance of the
parallel code on one node with different processes,
which indicates that job balancing plays an
important role for performance of a parallel code.

An ideal case that is a hollow box with the
simplest excitation and output, and its domain is
truncated by using the Perfect Electric Conductor
(PEC) boundary condition, was used as an
example to study the impacts of processor affinity

on parallel FDTD performance. The project
settings including the number of unknowns,
excitation type, output parameters and binging
strategy (Binding each rank by node, by CPU and
by core) are identical in the cluster simulations.
Fig. 6 shows the performance of the parallel
FDTD with different banding strategy, which
indicates that parallel FDTD with banding rank to
CPU give the best performance, and the worst case
is banding rank to core. For example, the
performances of the parallel FDTD code using 18
nodes are 5300 Mcells/sec, 4900 Mcells/sec, and
2700 Mcells/sec for binding rank to CPUs, nodes
and cores, respectively. From the results shown in
Fig. 6, we can also see that the job balancing
between the internode and inside node play an
important role to obtain good performance. If we
bind each process to each core, we will suffer from
the high latency of messages transmitting for there
are more processes created between nodes.
Binding each process to each node, we will not use
the whole processor. However, if we choose to
bind each process to CPU, all processors can be
used and the latency of messages transmitting is
less than that by banding to core.

Then, NUMA policy is used to reduce
memory access time in the average case through
the fast introduction of local memory. For NUMA
providing each node with its own local memory,
memory accesses, parallel code with NUMA
policy can avoid throughput limitations. The
performances of GEMS with NUMA policy are
plotted in Fig. 7, where the numactl command is
used as a plugin of GEMS software. As a
compared date, the performances of GEMS
without NUMA policy are also shown in Fig. 7.
Comparing the results shown in Fig. 7, we can
obtain that the performance of GEMS with
NUMA is around 1.5 times than that without
NUMA. For example, the performances of GEMS
using 18 nodes of the HPC system are 3400
Mcells/sec and 5400 Mcells/sec for without
NUMA policy and with NUMA policy,
respectively.

Finally, we use the different options described
above to simulate a reflector antenna fed by a dual
mode circular horn, as shown in Fig. 8. The
thinner horn part is excited by TE11 mode. The
transit will generate the TM10 mode and have the
same magnitude and out of phase with the TE11
mode at the end of the thicker horn. This horn will

641 ACES JOURNAL, VOL. 27, NO. 8, AUGUST 2012

generate a very low slob by cancelling the fields
generated by the TE11 and TM10 modes.

Table 1: HPC cluster information

Computation
Nodes (21)

 Master
Nodes(2)

CPU type Intel Xeon E5520

Clock speed 2.67GHz

Number of
nodes

23

Available
memory

12GB (DDR3
1067MHz)

Operating
system

Cent OS (Linux)

Network
system

BNT 10Gbps
Ethernet

Table 2: NetPIPE testing results: bandwidth

Netpipe
Testing

Internode 8822.02 Mbps
Inside node 33462.93 Mbps

Fig. 4. NetPIPE testing results: latency.

Fig. 5. Testing results about job balancing problem.

Fig. 6. Parallel FDTD performance with different
binding strategy.

Fig. 7. Parallel PDTD performance with NUMA
and without NUMA.

Finally, we use the different options described

above to simulate a reflector antenna fed by a dual
mode circular horn, as shown in Fig. 8. The
thinner horn part is excited by TE11 mode. The
transit will generate the TM10 mode and have the
same magnitude and out of phase with the TE11
mode at the end of the thicker horn. This horn will
generate a very low slob by cancelling the fields
generated by the TE11 and TM10 modes.

Due to the symmetric property, we need only
to simulate one quart of the original problem. The
original domain size is 770 mm 770 mm 670
mm, and the one quart domain size is 385 mm 
385 mm  670 mm, which is discretized into 569
 569  1144 non-uniform cells. Output
parameters include the far field pattern and return

642ZHAO, CHEN, YU: A NOVEL ENHANCING TECHNIQUE FOR PARALLEL FDTD METHOD USING PROCESSOR AFFINITY AND NUMA POLICY

loss. This is a very large problem, which cannot be
solved by two nodes of the HPC directly even
using parallel FDTD method. The return loss of
the reflector antenna is plotted in Fig.9, and Fig.10
gives directivity of the parabolic reflector antenna
at working frequency 12GHz.

The comparison between with and without
NUMA option is shown in Fig. 11, where 4
computation nodes are used to simulate the
problem. Fig.11 shows that parallel FDTD with
banding rank to CPU give the best performance,
and the performance of GEMS with NUMA is
around 1.5 times than that without NUMA. To
investigate the parallel efficiency of the parallel
FDTD, 18 computation nodes are used to simulate
the parabolic reflector antenna fed by a dual mode
circular horn. The performance and consumed
time of parallel FDTD using 18 computation
nodes are illustrated in Fig. 12. Comparing the
results in Fig. 11 and Fig. 12, we can obtain that
the parallel efficiency of parallel FDTD is almost
90%. For example, when we run the parallel
FDTD code by binding each rank to CPU, the
consumed time of parallel FDTD with NUMA
using 4 nodes is 2 hours, and that using 18 nodes
is 23 minutes.

Fig. 8. Parabolic reflector antenna fed by a dual
mode circular horn.

Fig. 9. Return loss of the parabolic reflector
antenna.

 (A)

 (B)
Fig. 10. Directivity of the parabolic reflector antenna at
working frequency 12GHz. (A)  cut-plane with

090 (B) cut-plane with 090 .

643 ACES JOURNAL, VOL. 27, NO. 8, AUGUST 2012

(A)

 (B)
Fig. 11. Parallel FDTD with NUMA and without
NUMA using 4 computation nodes. (A) Performance of
parallel FDTD. (B) Consumed time of parallel FDTD.

(A)

 (B)
Fig. 12. Parallel FDTD with NUMA and without
NUMA using 18 computation nodes. (A) Performance
of parallel FDTD. (B) Consumed time of parallel
FDTD.

IV. CONCLUSION
In this paper, the processor affinity and NUMA

policy are used to enhance the performance of a
parallel FDTD code on a HPC cluster. By binding
each rank to the node, CPU and core, we
investigate the effect of processor affinity on
parallel FDTD code performance and find that the
processor affinity has significant impacts on the
performance. With the advantage of NUMA
policy that can reduce memory access time, the
parallel FDTD code using NUMA policy can
obtain better performance than that without
NUMA policy. The proposed methods for
optimizing the performance of parallel FDTD code
are suite for other parallel code, which is very
useful enhance the performance of a HPC cluster.

ACKNOWLEDGMENT

This work was supported in part by the Natural
Science Foundation of Jiangsu Province under
Grant No. BK2010174, in part by Natural Science
Foundation of the Jiangsu Higher Education
Institutions under Grant No. 10KJB510025, in part
by the Open Project of State Key Laboratory of
Millimeter Waves under Grant No. K201008, and
in part by Postgraduate Innovation Project of
Jiangsu Province under Grant No. CXZZ11_0899.

REFERENCES

[1] A. Taflove and S. Hagness, Computational
Electromagnetics: The Finite-Difference Time-
Domain Method, 3rd ed., Artech House, Norwood,
MA, 2005.

[2] Harrington, R. F., Field Computation by Moment
Methods, MacMillan, New York, 1968.

[3] J. M. Jin, The Finite Element Method in
Electromagnetics (2nd Edition), New York: John
Wiley & Sons, 2002.

[4] F. L. Teixeira, “A Summary Review on 25 Years
of Progress and Future Challenges in FDTD and
FETD Techniques,” Applied Computational
Electromagnetics Society (ACES) Journal, vol. 25,
no. 1, pp. 1-14, 2010.

[5] V. Demir, “A Stacking Scheme to Improve the
Efficiency of Finite-Difference Time-Domain
Solutions on Graphics Processing Units,” Applied
Computational Electromagnetics Society (ACES)
Journal, vol. 25, no. 4, pp. 323 - 330, 2010.

[6] X. Duan, X. Chen, K. Huang, H. Zhou, “A High
Performance Parallel FDTD Based on Winsock
and Multi-Threading on a PC-Cluster,” Applied
Computational Electromagnetics Society (ACES)
Journal, vol. 26, no. 3, pp. 241 - 249, 2011.

644ZHAO, CHEN, YU: A NOVEL ENHANCING TECHNIQUE FOR PARALLEL FDTD METHOD USING PROCESSOR AFFINITY AND NUMA POLICY

[7] W. Yu, R. Mittra, T. Su, Y. Liu, and X. Yang,
Parallel Finite Difference Time Domain Method,
Artech House, Massachusetts, June, 2006.

[8] W. Yu, R. Mittra, X. Yang, and Y. Liu,
Electromagnetic Simulation Techniques Based
FDTD Method, John Wiley and Sons, 2009.

[9] W. Gropp, E. Lusk, and A. Skjellum, Using MPI:
Portable Parallel Programming with the Message-
Passing Interface, 2nd ed., MIT Press, Cambridge,
MA, 1999.

[10] Optimizing software applications for NUMA Site:
http://software.intel.com.

[11] C. Zhang, X. Yuan, and A. Srinivasan, “Processor
Affinity and MPI Performance on SMP-CMP
Clusters,” IEEE International Symposium on
Parallel & Distributed Processing, Workshops and
PHD. Forum (IPDPSW), pp. 1-8, 2010.

[12] GEMS-A 3D Parallel EM simulation software
package, www.2comu.com, State College, PA,
16801, USA.

[13] http://www.scl.ameslab.gov/netpipe/.

Lei Zhao received a BS in
Mathematics from Jiangsu Normal
University, Xuzhou, China, in 1997,
and an MS in Computational
Mathematics and a PhD in
Electromagnetic Fields and
Microwave Technology from
Southeast University, Nanjing,

China, in 2004 and 2007, respectively. From August
2007 to August 2009, he worked in the Department of
Electronics Engineering, the Chinese University of
Hong Kong, as a research Associate. Since September
2009, he has worked in the School of Mathematical
Sciences, Jiangsu Normal University. He is also the
Director of the Center of Computational Science and
Engineering, which is affiliated with the Jiangsu
Normal University. He has published over 20 technical
papers. His current research interests include accurate
numerical modeling, biomedical EM compatibility, and
parallel computing in computational EM.

 Geng Chen was born in Suqian,
China, in February 1989. He received
the BS degree in Computational
Mathematics from Jiangsu Normal
University in 2012, and is currently
working toward the MS degree at
Jiangsu Normal University, Xuzhou,
China. His research interests include

parallel-processing techniques, numerical methods, and
software development.

Wenhua Yu joined the Department
of Electrical Engineering of the
Pennsylvania State University and
has been a group leader of the
Electromagnetic Communication
Lab since 1996. He received his
PhD in Electrical Engineering from
the Southwest Jiaotong University

in 1994. He worked at the Beijing Institute of
Technology as a Postdoctoral Research Associate from
February 1995 to August 1996. He has published five
books related to the FDTD method, parallel-processing
techniques, software-development techniques, and
simulation techniques, from 2003 to 2009. He has
published over 150 technical papers and four book
chapters. He founded the Computer and
Communication Unlimited company, and serves as
President and CEO. He is a Senior Member of the I
EEE. His research interests include computational
electromagnetic methods, software-development
techniques, parallel-processing techniques, simulation
and design of antennas, antenna arrays, and microwave
circuits.

645 ACES JOURNAL, VOL. 27, NO. 8, AUGUST 2012

