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Abstract ─ The traditional multiple CPUs 
mounted on one node in a high performance 
cluster is based on Symmetric Multi-Processing 
(SMP) architecture. The memory bandwidth is a 
major bottleneck in the high performance 
computing. Recently, Intel and AMD companies 
developed the (Non-uniform Memory Access 
(NUMA) architecture for the multi-CPU server 
that is an important extension of the SMP 
computer. In the NUMA architecture server, each 
CPU has its own memory and can also be access 
to the memory located the nearby of other CPUs 
through the onboard network. For a parallel code, 
we can allocate the data for each CPU inside its 
local memory to accelerate the memory access. In 
this paper, we investigate a way how to achieve 
the high performance of parallel FDTD code on a 
computer cluster that includes 21 nodes with 42 
CPU and 168 cores. Numerical experiments have 
demonstrated that different job binding schemes 
can significantly affect the performance of parallel 
FDTD code.  
  
Index Terms – NUMA, parallel FDTD, processor 
affinity, SMP. 
 

I. INTRODUCTION 
A high performance cluster has become a 

popular hardware platform today for the 
computational electromagnetic methods to solve 

the electrically large problems. In three popular 
computational electromagnetic methods, FDTD 
method [1] is parallel in nature, and hence, has 
high parallel performance than method of moment 
(MoM) [2], finite element method [3] due to a 
parallel FDTD method only requires the field 
exchange on the interface between the adjacent 
neighboring subdomains. For simulating 
electromagnetic (EM) problem from electrically-
large and complex structures with FDTD method, 
parallel technology is a powerful tool to provide 
the necessary computing power and memory 
resources [4-8]. The parallel performance of 
FDTD code depends on not only the way how we 
develop the parallel FDTD code and problem type, 
but also on the hardware platform such as CPU 
type, network system, Input/Ouput (I/O) system, 
and the operating system as well. In this paper, the 
parallel FDTD code is developed based on the 
literature [7, 8] that uses the combination of Open 
Multiple Processing (OpenMP) [9] and Message 
passing Interface (MPI) library [10]. OpenMP is 
developed for the efficient use of multi-core 
processors and the MPI library is developed to use 
the distributed resource. 

For the same parallel FDTD code, we 
investigate the performance of parallel FDTD code 
on an intermediate cluster that includes 21 nodes 
(42 CPUs with 168 cores) when we use the 
different binding techniques and the running 
environment variables. In all the numerical 
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experiments, we do not modify the parallel FDTD 
code and keep the same hardware platform and 
operating system as well. Each node in the cluster 
includes two Intel Xeon X5520 2.67GHz 
processor, which support the NUMA architecture. 
Namely, it allows us to allocate the data for each 
CPU in one node to its local memory. If one job 
unit is assigned to one node, the communication 
between two CPUs in one node is realized through 
OpenMP. And the communication between the 
nodes is realized by the MPI functions. Otherwise, 
if one job unit is assigned to one core, all the 
communication between the cores is realized by 
the MPI functions. Furthermore, if one job unit is 
assigned to each CPU, the communication 
between the CPUs is realized by the MPI function 
but the communication between the cores inside 
each CPU is realized through OpenMP. 

To achieve a good performance of the parallel 
FDTD code on the high performance cluster, the 
NUMA policy is used to extend the memory 
bandwidth and reduce memory access time by 
allocating the data for each CPU in its own local 
memory. The advantage of NUMA architecture is 
obvious from the numerical experiments. We also 
investigate the effect of processor affinity [11] on 
the parallel FDTD code performance by binding 
each rank to the node, CPU, or core. In this paper, 
all the test examples are carried out by using 
GEMS software [12]. 
 

II. THEORY AND METHOD 
Both the electric and magnetic field updates in 

the FDTD method only require field information 
from their nearest neighboring cells, which 
requires much less communication information 
than other methods that require the 3-D 
communication data. Hence, the parallel FDTD 
method gives much less burden on the network 
system, and in turn, it generates the higher parallel 
efficiency. To achieve the better parallel 
performance, we install two sets of network 
systems in a regular cluster, one of them is design 
the data communication during the simulation and 
usually is fast. And the second one is designed the 
cluster management, namely, it allows 
simultaneously to check the cluster status without 
interrupting the data communication. 

In Yee’s scheme [1], the computational 
domain is discretized by using a rectangular grid. 
The electric fields are located along the edges of 

the electric elements, while the magnetic fields are 
sampled at the centers of the electric element 
surfaces and are oriented normal to these surfaces, 
this being consistent with the duality property of 
the electric and magnetic fields in Maxwell’s 
equations, as shown in Fig. 1. 

If the computational domain is broken into 
two subdomains, and the interface coincides with 
the FDTD mesh. The electric fields on the 
interface can be counted into either subdomain 1 
or 2. For instance, if it is belong to the subdomain 
1, we need to borrow the magnetic field 2

zH   from 
the subdomain 2 when we calculate the electric 
field  interface

yE  on the interface.   
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We need to borrow the electric field interface

yE on 
the interface when we calculate the magnetic field 
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In the MPI library, the communication of the 

electric and magnetic fields between the 
subdomains 1 and 2 are realized by the MPI 
functions MPI_Send and MPI_Recv. The 
information is changed through the high 
performance network system. OpenMP is based on 
the fine grid technique in the shared memory 
system, and its information exchange is through a 
shared memory. In the optimization of the parallel 
FDTD code, we need to achieve a balance 
between the minimum area of interface and 
performance of network. Internal consistency 
should be maintained  

Uniform Memory Access (UMA) is a shared 
memory architecture used in parallel computers, as 
shown in Fig. 2. In the UMA model, all the 
processors share the physical memory uniformly, 
and access time to a memory location is 
independent of which processor makes the request 
or which memory chip contains the transferred 
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data. The UMA model is suitable for general 
purpose and time sharing applications by multiple 
users. Contrasted with UMA, NUMA is a shared 
memory architecture that describes the placement 
of main memory modules with respect to 
processors in a multiprocessor system, as shown in 
Fig. 3. Based on the idea, however, Intel and 
AMD use the different technical paths to realize 
the NUMA architecture. 

To better understanding NUMA roles in 
parallel FDTD method, we do many simulations 
using GEMS with NUMA and UMA policy, 
respectively. For example, the command for 
running the GEMS project with NUMA is: 

 
mpirun –np 9 -machinefile hosts nuamctl--

physcpubind=0-8,9-15   /gpfsAPP/GEMS 
/GEMS_Solver test.gpv 
 
and the command for running the GEMS project 
without NUMA is: 

 
mpirun -np 9 -machinefile hosts /gpfsAPP 
/GEMS/GEMS_Solver test.gpv 
 
In addition, job balancing plays an important 

role in determining performance of the parallel 
code. Proper job balancing can obtain good 
performance of the parallel FDTD code on the 
HPC system, while improper job balancing may 
reduce the performance of parallel code for most 
of the processors in the cluster to that of "waiting" 
during the simulation process. Another important 
factor that affects the parallel efficiency is the 
division of the sub-domains according to the 
allocation of the array in the computer's memory. 
Processor affinity is a modification of the native 
central queue scheduling algorithm in a symmetric 
multiprocessing operating system. Taking 
advantage of the fact that some remnants of a 
process may remain in one processor's state from 
the last time the process ran, we can enhance the 
performance of parallel FDTD code on a HPC 
cluster. For example, if we use two nodes (4 
CPUS, 16 cores) to run GEMS with binding rank 
to nodes, CPUs and cores, respectively, we should 
first edit the rank files for banding nodes, CPUs 
and cores as following: 

For binding nodes: 
                    rank 0=host0 slot=0-7  
                    rank 1=host1 slot=0-7 

For binding CPUs:              
                    rank 0=host0 slot=0-3  
                    rank 1=host0 slot=4-7 
                    rank 2=host1 slot=0-3  
                    rank 3=host1 slot=4-7 
For binding Cores: 
                    rank 0=host0 slot=0  
                    rank 1=host0 slot=1 
                    rank 2=host0 slot=2  
                    rank 3=host0 slot=3 
                    rank 4=host0 slot=4 
                    ……. 

rank 7=host0 slot=7 
rank 8=host1 slot=0 

… …. 
                    rank 15=host1 slot=7  
And the following commands will be used to 

run GEMS testing project. 
 
mpirun -np n -machinefile hosts -rf  ranks 

/opt/GEMS/bin64/GEMS_Solver test.gpv 
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Fig. 1. Distributions of electric and magnetic fields 
near the subdomain interface. 

 
 
Fig. 2. UMA architecture. 

640ZHAO, CHEN, YU: A NOVEL ENHANCING TECHNIQUE FOR PARALLEL FDTD METHOD USING PROCESSOR AFFINITY AND NUMA POLICY



 
 
Fig. 3. NUMA architecture. 

 
III. NUMERICAL EXPERIMENT 

RESULTS 
In this section, we introduce a parallel 

processing platform installed with Linux operating 
system and investigate GEMS performance on the 
platform. The HPC cluster shown in Table 1 
includes 23 nodes (21 computation nodes and 2 
master nodes) and each node has two CPUs with 
Intel Xeon X5550 2.7GHz processor. The 10Gbps 
Ethernet is used to connect the computation nodes. 
To evaluate the performance of the FDTD code, 
we define the performance as follows: 

 
 
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where zyx NNN ,,  are the number of grids in x, y 
and z direction, respectively. 

Firstly, NetPIPE [13] was used to test the 
performance of a network inside a node and 
internode. Table 2 gives NetPIPE results about the 
bandwidth, which shows that the network speed 
inside node is around 4 times of the internode. The 
NetPIPE results about the latency is described in 
Fig. 4, which shows the internode has a latency 
that is over 3 times than that inside-node. To test 
the job balancing role in determining performance 
of the parallel FDTD, a job with different 
processes has been run in one node of the HPC 
cluster. Fig. 5 shows the performance of the 
parallel code on one node with different processes, 
which indicates that job balancing plays an 
important role for performance of a parallel code. 

An ideal case that is a hollow box with the 
simplest excitation and output, and its domain is 
truncated by using the Perfect Electric Conductor 
(PEC) boundary condition, was used as an 
example to study the impacts of processor affinity 

on parallel FDTD performance. The project 
settings including the number of unknowns, 
excitation type, output parameters and binging 
strategy (Binding each rank by node, by CPU and 
by core) are identical in the cluster simulations. 
Fig. 6 shows the performance of the parallel 
FDTD with different banding strategy, which 
indicates that parallel FDTD with banding rank to 
CPU give the best performance, and the worst case 
is banding rank to core. For example, the 
performances of the parallel FDTD code using 18 
nodes are 5300 Mcells/sec, 4900 Mcells/sec, and 
2700 Mcells/sec for binding rank to CPUs, nodes 
and cores, respectively. From the results shown in 
Fig. 6, we can also see that the job balancing 
between the internode and inside node play an 
important role to obtain good performance. If we 
bind each process to each core, we will suffer from 
the high latency of messages transmitting for there 
are more processes created between nodes. 
Binding each process to each node, we will not use 
the whole processor. However, if we choose to 
bind each process to CPU, all processors can be 
used and the latency of messages transmitting is 
less than that by banding to core. 

Then, NUMA policy is used to reduce 
memory access time in the average case through 
the fast introduction of local memory. For NUMA 
providing each node with its own local memory, 
memory accesses, parallel code with NUMA 
policy can avoid throughput limitations. The 
performances of GEMS with NUMA policy are 
plotted in Fig. 7, where the numactl command is 
used as a plugin of GEMS software. As a 
compared date, the performances of GEMS 
without NUMA policy are also shown in Fig. 7. 
Comparing the results shown in Fig. 7, we can 
obtain that the performance of GEMS with 
NUMA is around 1.5 times than that without 
NUMA. For example, the performances of GEMS 
using 18 nodes of the HPC system are 3400 
Mcells/sec and 5400 Mcells/sec for without 
NUMA policy and with NUMA policy, 
respectively. 

Finally, we use the different options described 
above to simulate a reflector antenna fed by a dual 
mode circular horn, as shown in Fig. 8. The 
thinner horn part is excited by TE11 mode. The 
transit will generate the TM10 mode and have the 
same magnitude and out of phase with the TE11 
mode at the end of the thicker horn. This horn will 
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generate a very low slob by cancelling the fields 
generated by the TE11 and TM10 modes. 

 
Table 1: HPC cluster information 
 
 
 
Computation 
Nodes (21)  
 
 Master 
Nodes(2) 

CPU type Intel Xeon E5520 

Clock speed 2.67GHz 

Number of 
nodes 

23 

Available 
memory 

12GB (DDR3 
1067MHz) 

Operating 
system 

Cent OS (Linux) 

Network 
system 

BNT 10Gbps 
Ethernet 

 
Table 2: NetPIPE testing results: bandwidth 

Netpipe 
Testing 

Internode 8822.02 Mbps 
Inside node 33462.93 Mbps 

 
 
Fig. 4. NetPIPE testing results: latency. 

 
Fig. 5. Testing results about job balancing problem. 

 

 
 
Fig. 6. Parallel FDTD performance with different 
binding strategy. 

 
 
Fig. 7. Parallel PDTD performance with NUMA 
and without NUMA. 

 
Finally, we use the different options described 

above to simulate a reflector antenna fed by a dual 
mode circular horn, as shown in Fig. 8. The 
thinner horn part is excited by TE11 mode. The 
transit will generate the TM10 mode and have the 
same magnitude and out of phase with the TE11 
mode at the end of the thicker horn. This horn will 
generate a very low slob by cancelling the fields 
generated by the TE11 and TM10 modes.  

Due to the symmetric property, we need only 
to simulate one quart of the original problem. The 
original domain size is 770 mm  770 mm  670 
mm, and the one quart domain size is 385 mm    
385 mm   670 mm, which is discretized into 569 
 569  1144 non-uniform cells. Output 
parameters include the far field pattern and return 
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loss. This is a very large problem, which cannot be 
solved by two nodes of the HPC directly even 
using parallel FDTD method. The return loss of 
the reflector antenna is plotted in Fig.9, and Fig.10 
gives directivity of the parabolic reflector antenna 
at working frequency 12GHz. 

The comparison between with and without 
NUMA option is shown in Fig. 11, where 4 
computation nodes are used to simulate the 
problem. Fig.11 shows that parallel FDTD with 
banding rank to CPU give the best performance, 
and the performance of GEMS with NUMA is 
around 1.5 times than that without NUMA. To 
investigate the parallel efficiency of the parallel 
FDTD, 18 computation nodes are used to simulate 
the parabolic reflector antenna fed by a dual mode 
circular horn. The performance and consumed 
time of parallel FDTD using 18 computation 
nodes are illustrated in Fig. 12. Comparing the 
results in Fig. 11 and Fig. 12, we can obtain that 
the parallel efficiency of parallel FDTD is almost 
90%. For example, when we run the parallel 
FDTD code by binding each rank to CPU, the 
consumed time of parallel FDTD with NUMA 
using 4 nodes is 2 hours, and that using 18 nodes 
is 23 minutes. 

 

 
Fig. 8. Parabolic reflector antenna fed by a dual 
mode circular horn. 

 
Fig. 9. Return loss of the parabolic reflector 
antenna. 

 
                                           (A) 

 
                                         (B) 
Fig. 10. Directivity of the parabolic reflector antenna at 
working frequency 12GHz. (A)   cut-plane with 

090  (B)  cut-plane with 090 . 
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(A) 

 
                                         (B) 
Fig. 11. Parallel FDTD with NUMA and without 
NUMA using 4 computation nodes. (A) Performance of 
parallel FDTD.  (B) Consumed time of parallel FDTD. 

                                        
(A) 

 
                                         (B) 
Fig. 12. Parallel FDTD with NUMA and without 
NUMA using 18 computation nodes. (A) Performance 
of parallel FDTD. (B) Consumed time of parallel 
FDTD.  

 

IV. CONCLUSION 
In this paper, the processor affinity and NUMA 

policy are used to enhance the performance of a 
parallel FDTD code on a HPC cluster. By binding 
each rank to the node, CPU and core, we 
investigate the effect of processor affinity on 
parallel FDTD code performance and find that the 
processor affinity has significant impacts on the 
performance. With the advantage of NUMA 
policy that can reduce memory access time, the 
parallel FDTD code using NUMA policy can 
obtain better performance than that without 
NUMA policy. The proposed methods for 
optimizing the performance of parallel FDTD code 
are suite for other parallel code, which is very 
useful enhance the performance of a HPC cluster. 
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