
263 ACES JOURNAL, Vol. 38, No. 4, April 2023

Shaping the Probability Density Function of the Output Response in a
Reverberation Chamber

Qian Xu1, Feng Tian1, Yongjiu Zhao1, Rui Jia2, Erwei Cheng3, and Lei Xing1

1College of Electronic and Information Engineering
Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

emxu@foxmail.com, yjzhao@nuaa.edu.cn, emxinglei@foxmail.com

2State Key Laboratory of Complex Electromagnetic Environment Effects on Electronic and Information System
Luo Yang 471003, China

jiarui315@163.com

3Department of Engineering Physics, Tsinghua University, Beijing
China and National Key Laboratory on Electromagnetic Environment Effects

Army Engineering University Shijiazhuang Campus, Shijiazhuang 050004, China
ew cheng@163.com

Abstract – This paper shows that the received power and
E-field in a reverberation chamber (RC) can be shaped
by tuning the statistical properties of input signals.
For a given probability density function (PDF) of an
RC response, the Fourier transform method can be
applied to find the PDF of the input signal. Numerical
and measurement verifications are given to validate the
theory. Limitations are also analyzed and discussed.

Index Terms – probability density function,
reverberation chamber.

I. INTRODUCTION
A reverberation chamber (RC) is a highly resonant

electrically large cavity which is equipped with
mechanical stirrers inside (Fig. 1 (a)). The stirrers
are used to tune the boundary conditions inside the
cavity to generate statistically isotropic and uniform
electromagnetic fields. In recent years, RCs have been
widely used in electromagnetic compatibility (EMC) and
over-the-air (OTA) testing [1, 2]. Unlike an anechoic
chamber which is designed as a deterministic system,
an RC was born to be a statistical environment. It has
been found that for a well-stirred RC, the received power
has an exponential distribution and the magnitude of the
rectangular E-field component (|Ex| ,

∣∣Ey
∣∣ or |Ez|) has a

Rayleigh distribution [3]. In vehicles, ships and planes,
when more cavities are cascaded or nested, the E-field
magnitude may no longer be Rayleigh distribution.

Due to the inherent statistical properties of an RC,
a Rayleigh distribution (or a Rician distribution) can be
well emulated, and theK-factors can be tuned statistically
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Fig. 1. (a) Typical measurement setup in an RC; the 

inner dimensions are 0.94 m × 1.16 m × 1.44 m. (b) 

Multi-cavity coupling model. 

 

However, it does not seem easy to emulate 

response with arbitrary statistical distributions. If more 

distribution functions are expected in the channel 

emulation, refined controls are necessary. This paper 

proposes a method to control the PDF of RC responses 

in the frequency domain (FD), which can be used for 
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(b)

Fig. 1. (a) Typical measurement setup in an RC; the inner
dimensions are 0.94 m × 1.16 m × 1.44 m. (b) Multi-
cavity coupling model.

[4–8]. By combining an RC with a channel emulator, a
complex channel response can be emulated [9–11].

However, it does not seem easy to emulate
response with arbitrary statistical distributions. If more
distribution functions are expected in the channel
emulation, refined controls are necessary. This paper
proposes a method to control the PDF of RC responses
in the frequency domain (FD), which can be used for the
emulation of multi-cavity statistics in a single RC instead
of actually using multiple connected cavities.
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In this paper, Section II presents the theory, Section
III starts from a simplified scenario and demonstrates
the product of two random variables analytically and
experimentally. Limitations and generalizations to multi-
cavity models are discussed in Section IV.

II. THEORY
In the FD, when an RC is well-stirred and the

magnitude of the input signal is a constant, the
magnitude of rectangular E-field (|Ex|) inside the RC has
a Rayleigh distribution [3]:

pY (y) = ye
− y2

2σ2y /σ
2
y , y = |Ex| , (1)

of which the expected value and the standard deviation
are σy

√
π/2 and σy

√
2−π/2, respectively. When the

statistical property of the input signal can be controlled,
the PDF of the RC response (Eout) can be tuned.
Generally, the product of two random variables Z =
X ×Y can be used to synthesize the output response
of a system, where X , Y and Z are the input variable,
transfer function and output variable, respectively. Thus,
the problem can be mathematically described as: for the
given PDFs of random variable Z and Y , and Z = X×Y ,
what is the PDF of random variable X?

A misleading procedure is to use X = Z/Y
to calculate the PDF of X , which is wrong. The
result will depend on specific set of Z and Y . This
procedure can be understood from the Mellin transform:
when using X ′ = Z/Y , the Mellin transform of the
PDF of random variable X ′ can be obtained as
MZ (s)MY (2− s)=MX (s)MY (s)MY (2− s) which is not
equal to MX (s) (only when MY (s)MY (2− s) = 1) [12].
To find the PDF of X , a direct method is to use the
Mellin and inverse Mellin transform, the result can be
obtained quickly as M−1[MZ (s)/MY (s)]. However, the
numerical Mellin and inverse Mellin transform are not
easy to calculate. In this paper, we adopt an approach
with Fourier transforms.

From Z = X ×Y , we have lnZ = lnX + lnY when
X and Y are positive. Suppose the PDF of lnZ , lnX and
lnY are plnZ(z), plnX(x) and plnY(y), respectively. We
have

HlnZ ( jω) = HlnX ( jω)HlnY ( jω) , (2)

where HlnZ ( jω), HlnX ( jω) and HlnY ( jω) are the
Fourier transforms of plnZ(z), plnX(x) and plnY(y),
respectively. (e.g., HlnX ( jω) =

∫ +∞

−∞
plnX(x)e− jωxdx).

Thus, the PDF of the input signal plnX(x) can be
calculated by using the inverse Fourier transform

plnX (x) = F−1 [HlnZ ( jω)/HlnY ( jω)] . (3)

Finally, by applying the variable transform eX to
lnX , the PDF of X (in linear unit) can be obtained.

III. DERIVATIONS AND VERIFICATIONS
When two RCs are nested or contiguous [13],

a double-Rayleigh PDF response can be obtained.
Suppose we want to emulate a double-Rayleigh PDF
response in a single RC. We can control the magnitude
of the input signal to have a random excitation. Assume
the magnitude of the input signal has a PDF of

pX (x) = xe
− x2

2σ2x /σ
2
x , x = |Ein| , (4)

and the RC has a transfer function (Y ) given in (1), the
PDF of the response has been obtained in [13] as

pZ (z) =
z

σ2
x σ2

y
K0

(
z

σxσy

)
, z = |Eout| , (5)

where K0(.) is the zero-order modified Bessel function of
the second kind, and the expected value and the standard
deviation of (5) are σxσyπ/2 and σxσy

√
4−π2/4,

respectively. |Ein| and |Eout| represent the magnitude of
the input signal (E-field) and the output signal (E-field),
respectively. From (4), the PDF of lnX can be obtained
as

plnX (x) = e2xe
− e2x

2σ2x /σ
2
x , x = ln |Ein| , (6)

of which the mean and the standard deviation are
ln2/2+ lnσx−γ/2 and π

√
6/12, respectively (γ≈0.5772

is the Euler-Mascheroni constant). The Fourier transform
of (6) is

HlnX ( jω) =
(√

2σx

)− jω
Γ(1− jω/2) . (7)

The Fourier transform of plnY (y) is the same as (7)
but σx is replaced by σy. It can be verified that the Fourier
transform of

plnZ (z) =
e2z

σ2
x σ2

y
K0

(
ez

σxσy

)
, z = ln |Eout| , (8)

is

HlnZ ( jω) =
(
2σxσ y

)− jω
Γ

2 (1− jω/2) . (9)

To verify this procedure numerically, Monte-Carlo
simulations are performed with parameters σx = 1
and σy = 4. We solve the PDF of X from Z and Y
using the numerical method and compare the results
with analytical expressions. 106 samples of X and Y
are generated with Rayleigh distributions. The output
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variable Z = X ×Y can be obtained. The histograms of
lnZ and lnY are illustrated in Fig. 2 (a) with analytical
expressions. The corresponding Fourier transforms are
presented in Fig. 2 (b), in which the numerical Fourier
transforms are calculated from the histograms. Finally,
the PDF of lnX is inverted numerically using (3)
and compared with original histogram and analytical
expression in Fig. 2 (c). It can be observed that the
numerical results agree well with analytical solutions
with acceptable small differences. These differences
are caused by the finite samples used in Monte-Carlo
simulations and the truncation errors in the Fourier and
inverse Fourier transform.

 
(a) 

 
(b) 

 
(c) 

Fig. 2. (a) The PDF plots of ln 𝑍  and ln 𝑌 , (b) the 

magnitude of the Fourier transforms, (c) the inverted 

PDF of ln 𝑋 and analytical expression. 
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Instead of using the magnitude of the E-field, the
derivations can also be verified using the received power.
Suppose

px2 (x) = e−
x

ux /ux, x = Px, (10)

where the expected value and the standard deviations are
both ux (ux= 2σ2

x ). The power transfer function Y 2 has

a PDF similar with (10). The PDF of the output power
Z2 = X2×Y 2 can be obtained as

pZ2 (z) =
2

uxuy
K0

(
2
√

z
uxuy

)
, z = Pout, (11)

where uy= 2σ2
y is the expected value of pY2 (y). The

expected value and the standard deviation of (11) can be
derived as uxuy and uxuy

√
3 respectively.

Measurement verifications were performed in an
RC with inner dimensions of 0.94 m × 1.16 m ×
1.44 m. Two stirrers were rotated synchronously with
1◦/step, and 360 stirrer positions were used. Twenty-one
frequency samples were collected in the frequency range
of 5.98 GHz – 6.02 GHz at each stirrer position. With
360 stirrer positions, we have 21×360=7560 samples
and the PDF of the magnitude of the measured S21 is
illustrated in Fig. 3 (a). By tuning the magnitude of the
input signal at each frequency and each stirrer position,
the output PDF can be shaped. Instead of using a constant
input magnitude, σx is used to control the mean value
of the voltage, random voltage samples with a Rayleigh
distribution of σx = 1 V/m were generated to excite the
RC as shown in Fig. 3 (b). The output histogram and
the analytical equation plot are illustrated in Fig. 3 (c).
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Not surprisingly, a double-Rayleigh PDF was obtained
for the RC response which agrees well with the analytical
expression.

IV. LIMITATIONS AND
GENERALIZATIONS

We have demonstrated that the PDF of the output
of an RC can be synthesized with controlled input.
This technique could be applied to scenarios involving
channel emulations in multi-cavities. However, the
output PDF cannot be arbitrary. Intuitively, one cannot
synthesize a constant output (the PDF is δ (x− x0)) to
eliminate the inherent statistical property of an RC. It
has been shown that the Fourier transform HX ( jω) of a
PDF pX (x) (also named as characteristic function with j
replaced by −− j) has some characteristics [14]:

1) HX (0)= 1, it is non-vanishing in a region around zero;
2) |HX ( jω)|≤1, it is bounded;
3) HX (− jω)=HX ( jω)∗, it is Hermitian.

Thus when two random variables are multiplied,
we have |HX ( jω)| |HY ( jω)|≤|HY ( jω)| and it is
impossible to generate |HZ ( jω)| > |HY ( jω)|. The
inequality for the relative standard deviations can be
derived as stdrel (Z) = stdrel(X × Y ) ≥ stdrel(Y ). The
proof is detailed as follows:

From the mean inequality we have
√

1
n ∑

n
i=1 x2

i ≥
1
n ∑

n
i=1 xi, thus the integral form is

√∫ +∞

−∞
pX (x)x2dx ≥∫ +∞

−∞
pX (x)xdx. When X and Y are positive random

variables (e.g., E-field magnitude, power):∫
∞

0
pX (x)x2dx≥

(∫
∞

0
pX (x)xdx

)2

, (12)

∫
∞

0
pX (x)x2dx

∫
∞

0
pY (x)x2dx−

(∫
∞

0
pX (x)xdx

∫
∞

0
pY (x)xdx

)2

≥
(∫

∞

0
pX (x)xdx

)2
[∫

∞

0
pY (x)x2dx−

(∫
∞

0
pY (x)xdx

)2
]
,

(13)

√∫
∞

0 pX (x)x2dx
∫

∞

0 pY (x)x2dx− (
∫

∞

0 pX (x)xdx
∫

∞

0 pY (x)xdx)2∫
∞

0 pX (x)xdx
∫

∞

0 pY (x)xdx

≥

√∫
∞

0 pY (x)x2dx− (
∫

∞

0 pY (x)xdx)2∫
∞

0 pY (x)xdx
,

(14)

which is stdrel(X × Y ) ≥ stdrel(Y ). This means that
the relative standard deviation of the output cannot be
reduced when the input is also a random variable.

The results can be generalized to multiple cascading
cavities as shown in Fig. 1 (b). When the couplings

between cavities are small and the transfer functions are
independent, the output can be expressed in the form of
Y = ∏

n
i=1 Yi. If each Yi has a Rayleigh distribution with

parameter σi, the PDF of Y can be derived as

pΠ (y) = 2
n2−4n+2

2 y3−n
σ

n−4
Π
×

G
(
[[], []], [[a1,a2, . . . , an], []],

y2

2nσ2
Π

)
, (15)

where G(•) is the Meijer G-function defined in [15],
a1 = a2 = · · · = an = (n−2)/2 and σΠ = ∏

n
i=1 σi.

The expected value and the standard deviations are
(π/2)n/2

σΠ and 2−n/2σΠ

√
4n−πn respectively. When

n→ ∞, the relative standard deviation approximates to

lim
n→∞

2−n/2σΠ

√
4n−πn

(π/2)n/2
σΠ

= lim
n→∞

2−n/2√4n−πn

(π/2)n/2
∼
(

2√
π

)n
.

(16)

It is interesting to note that the relative standard
deviation does not depend on parameters σ1, σ2, . . . , σn
and is only a function of cavity number n. Similarly,
when each Y 2

i has an exponential distribution with
parameter ui, the PDF of the power transfer function
Y 2 = ∏

n
i=1 Y 2

i can be obtained as

p
Π2 (y) = y2−nun−3

Π
×

G([[], []], [[b1,b2, . . . , bn], []],
y

uΠ

), (17)

where b1 = b2 = · · · = bn = n− 2 and uΠ = ∏
n
i=1 ui.

The expected value and the standard deviations are uΠ

and uΠ

√
2n−1 respectively. Approximately, when n is

large, by applying the CLT (Central Limit Theorem),
lnY = ∑

n
i=1 lnYi. lnY can be approximated using a

normal distribution N(µ,σ). It can be found that µ =
n(ln2− γ)/2+ lnσΠ and σ = π

√
6n/12. By applying the

variable transform eY to lnY , a lognormal PDF for Y can
be obtained which is [16]

p(y) = e−
(µ−lny)2

2σ2 /
(

yσ
√

2π

)
, (18)

where the mean value and the standard deviations
are eµ+σ2/2 and

√
e2µ+σ2

(eσ2 −1), respectively. It is
interesting to note that, although the PDF can be well
approximated for lnY by using the CLT, because of the
exponential function, the mean value from the lognormal
PDF is biased, i.e. eµ+σ2/2 6= (π/2)n/2

σΠ.
Note that we have not considered the time domain

(TD) response in this work. To shape the power delay
profile of the output, we may need to shape the input
signal in the TD. This has been achieved by using
a channel emulator in [11]. It is also possible to use
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a single signal generator to achieve similar results,
however, to shape the output statistics in both FD and
TD is still challenging. We only emulate FD responses
in this paper, when the statistical properties of the FD
and TD response of a system are both in constraints, TD
operations (deconvolutions with the impulse responses)
would be necessary. To emulate this scenario, it would be
necessary to use the measured impulse responses from
multi-cavities and control the excited impulse signals
precisely in the TD if a single cavity is used.
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