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Abstract ─ In this paper, a simple method is proposed to 

diagnose the position of the damaged sensors. The 

position of the damaged sensors is diagnosed on the basis 

of the null depth level and the number of nulls for the 

degraded radiation pattern. The method is initiated with 

tabulation of the array radiation pattern with a single 

damaged sensor. The corresponding pattern is set as the 

reference to the radiation pattern of the failed sensors. 

The tabulated damaged array sensors are compared to  

a configuration of the assumed damaged sensor. The 

radiation pattern with deeper null depth level will be  

the location of the damaged sensor. Moreover, the 

symmetrical sensor damaged (SSD) technique diagnose 

the position of damaged sensor, in which on the basis  

of nulls one can detect the location of damaged sensors. 

The proposed method diagnoses the location of damaged 

sensors on the basis of pattern without complex 

computation as compared to available methods. 

 

Index Terms ─ Array antenna, fault detection, null depth 

level, nulls. 
 

I. INTRODUCTION 
Detection of the damaged sensors in a phased array 

antenna is an important research topic for radar, satellite 

and microwave [1-5] applications. The array antenna 

with a large number of radiating sensors has the 

possibility of getting the failures for at least single unit 

of sensors. The sensor failures, damages the peak 

sidelobes level (PSL) and nulls [6-8]. To ensure the 

performances of array antenna are conformed to the 

desired requirements, failure sensors have to be detected 

regularly [9] and correction must be attempted [10-11]. 

Detection of the damaged sensors in an array antenna is 

unarguably the  main task to be addressed in array testing 

[12-18]. Correct diagnosis of the damaged sensors for a 

large array antenna is a big challenge in both theoretical 

and algorithm point of view. Several available techniques 

in the literature to diagnose the position of the damaged 

sensors from the measurement of healthy and the 

degraded radiation power patterns [19-25]. Several 

techniques had been proposed such as the genetic 

algorithm [26], back propagation algorithm [27], matrix 

method [28], exhaustive searches [29], MUSIC [30], 

compressed sensing as well as Bayesian compressive 

sensing (BCS) [31-32]. Recently, Zhu et al. [33] 

proposed a method which does not requires a priori 

knowledge of the malfunctioning sensors and permits 

some sensors with complete failure. Fuchs et al. [34] has 

developed a fast diagnosis of the array antennas from a 

small number of far-field measurements which requires 

a priori knowledge of the reference array power pattern. 

This method uses the sparse recovery algorithms to 

diagnose the damaged sensor positions from a small 

number of measurements. However, the aforementioned 

diagnosis of damaged sensors requires a complex 

computation for each of the configuration of the array 

factor.  

The symmetrical linear array is of great importance 

and has many advantages. In [35-36], the symmetrical 

element failure (SEF) gives better null depth level 

(NDL), while in [38] it requires half of the damaged 

pattern for the damaged sensor detection as compared to 

[37]. In [39], a linear symmetrical array antenna is used 

for failure correction, where the failed sensor signal is 

reconstructed from the symmetrical counterpart sensor 

by considering its conjugate. In this paper, a simple 

approach for the diagnosis of array antenna on the basis 

of the null depth level and nulls of the degraded far-field 

radiation power pattern is described using a linear 

symmetrical array. The method tabulates the radiation 

pattern of the array with single damaged sensor. Then, 

the corresponding radiation pattern the configuration  

of failed sensors under test is checked with the 

configuration of the damaged sensor. The radiation 

pattern with a deeper null depth level will be the location 
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of damaged sensor. The symmetrical sensor damaged 

(SSD) technique is used for the diagnosis of the damaged 

sensor, in which on the basis of the nulls one can detect 

the location of damaged sensors. This article is organized 

as follows. The problem formulation is described in 

Section 2, while Section 3 describes the proposed 

methodology of detecting the damaged sensors. 

Subsequently, Section 4 presents the simulation results 

of the proposed method. Finally, the conclusion is made 

in Section 5. 

 

II. PROMLEM STATEMENT 
Consider a linear reference array of 2 1K   number 

of sensors with far-field radiation pattern is given by [40-

41], 

     exp cos ,


 
K

i n i

n K

w jn kdAF    (1) 

where nw  is the weight vector of the reference array,  

k is the wave number 2 /   and d  is the distance 

between the antenna sensors. The degraded far-field 

power pattern of an array can be found using Equation 

(1) by making the weight excitation of that sensor equals 

to zero. The power pattern radiated by the degraded array 

can be identified by eliminating the weight excitation 

corresponding to the damaged sensors from the Equation 

(1). Furthermore, the degraded far field radiation pattern 

for the mth sensor damaged is given by the following 

expression: 

     exp cos .
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Fig. 1. Linear symmetrical array of 2 1K   number of 

sensors with 10w  sensor damaged. 

 

Assume that the sensor, 10w
 
in the array is damaged 

as shown in Fig. 1. The main objective is to detect the 

locations of the damaged sensors. Numerous techniques 

are found in the literature that diagnoses the locations of 

the damaged sensors. However, none of them is able to 

diagnose the damaged sensor locations on the basis of 

the radiation power pattern. The power pattern for the

10w  sensors damaged is shown in Fig. 2 by the red solid 

line. 

 

 
 

Fig. 2. Linear symmetrical Taylor pattern radiated by 21 

sensors with 
10w  sensor damaged. 

 

III. PROPOSED METHODOLOGY 
The proposed methodology to diagnose the locations 

of the damaged sensors is based on the deeper null depth 

level and the number of nulls. As assumed for the 

damaged of 
10w  sensor, the null depth level is lost as 

depicted in Fig. 2. The pattern of 
10w  damaged sensors 

is then compared with the available damaged patterns. 

After comparing with the available damaged patterns, 

the symmetrical counterpart of 
10w  as shown in Fig. 3 

will give a deeper null depth level, i.e., symmetrical 

sensor damaged (SSD) of 
10w  will give deeper nulls as 

shown in Fig. 4. Moreover, SSD technique predicts the 

location of the damaged sensors on the basis of the nulls. 

As the damaged sensors get nearer to the center of the 

array, the number of nulls reduces. If D represents the set 

of damaged sensors, i.e., all the possible patterns for a 

single damaged sensor. The degraded far-field power 

pattern of a set of D damaged sensors can be obtained by 

excluding the weight of the damaged sensor from the 

Equation (1) as shown in Equations (3) and (4): 

      ,


 D i i i

n D

AFAF AF    (3) 
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Fig. 3. Linear symmetrical array of 2 1K   number of 

sensors with 
10w  SSD. 
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Fig. 4. Linear symmetrical array of 21 number of sensors 

with 
10w  SSD. 

 

Assume that the number of patterns, radiated by  

the array with a known single damaged sensors. 

  


K

D i n K
AF   is the 2 1K   number of available 

damaged sensor patterns and  m iAF   is the pattern of 

the mth damaged sensor assumed to be failed. The 

method of detecting the damaged sensors in array 

antenna starts with the measurement of the damaged 

sensors pattern in 
m

  direction. Then, the cost function 

C compares the damaged patterns with a given 

configuration of the failed sensor as shown in Equation 

(5). The cost function which gives the deeper null depth 

level will be the location of the damaged sensors, i.e., the 

symmetrical counterpart sensor will give a deeper null 

depth level: 

    
2

1

.



M

m i D i

m

AFC AF    (5) 

Firstly, the 
10w

 
SSD gives a deeper null depth level 

which allows the sensors position to be easily detected. 

Secondly, the number of nulls for 
10w  SSD is 18 which 

is reduced by 2. 

 

IV. SIMULATION RESULTS 
In this section, consider a linear symmetrical array 

composed of 21 number of sensors which are placed 

symmetrically from the origin along the x-axis. 

Analytical procedure [42] is used for the healthy set-up 

to radiate in the direction of 90


  with sidelobe level 

of -30 dB. The radiation power pattern, shown in Fig. 5, 

has been created by taking a linear Taylor distribution 

with SLL=-30 and 6n  . So, there will be 20 number of 

nulls and one main beam for this healthy set up as shown 

in Fig. 5 by the blue solid lines. The number of nulls 

reduces as the sensors in the array become damaged near  

the centre of the array. At the first instant, it is assumed 

that the sensor 
9w  become damaged in the array. The 

pattern of damaged sensor 
9w
 
damaged is shown in Fig. 

5 by the red solid line. To detect the pattern of the 

damaged sensor 
9w  all the available damaged patterns, 

i.e.,   


K

D i n K
AF   are compared. The cost function in 

Eq. (5) is then compared for a given configuration of all 

the available damaged patterns and the sensor is assumed 

to be damaged. i.e.,
 9w . After comparison, the SSD  

of 
9w  gave a deeper null depth level. The technique 

proposed in this article which uses Eq. (1) to tabulate 

both of the healthy power pattern as well as the one 

damaged pattern calculated at all the directions of the 

given samples. The computation of cost function in Eq. 

(5) for a particular configuration of the damaged sensors 

is very fast, because it requires using the available 

damaged patterns in Eq. (4) and the pattern of the 

assumed failed sensor only. This simple methodology 

will improve the computational cost as compared to the 

available techniques. Moreover the SSD technique is 

able to diagnose the location of damaged sensors without 

the needs of complex calculation. On the basis of  the 

number of nulls of the degraded patterns, the position of 

the damaged sensors can be easily detected. For 
9w  SSD, 

the pattern achieves deeper null depth level. Therefore, 

our decision is to diagnose the positions of the damaged 

sensors on the basis of null depth level and nulls. In this 

case, the number of nulls for 
9w
 
SSD is 16. The number 

of nulls is reduced by 4 if 
9w  SSD is occurrig as shown 

in Fig. 6. In the simulation results, a total of M=16 

number of samples with no measurement error is 

considered. 

 

 
 
Fig. 5. Linear symmetrical Taylor pattern radiated by 21 

sensors with 
9w  damaged sensor damaged. 
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Fig. 6. Linear symmetrical array of 21 number of sensors 

with 
9w  SSD. 

 

The same procedure is repeated to diagnose the 

location of the damaged sensor 
8w . The 

8w
 
sensor pattern 

is compared with a given configuration of the available 

damaged pattern and then the cost function in Eq. (5) 

gives a deeper null depth level with 
8w  SSD as shown in 

Fig. 7. At the same time, the number of the nulls for 
8w  

SSD is reduced by 6 and it is shown in Fig.7. Now, if  

the 
7w  sensor is damaged in an array of 21 number of 

sensors, pattern of damaged sensor 
7w  is compared with 

the given configuration of the available damaged pattern 

in cost function Eq. (5). Again, the 
7w  SSD gives a deeper 

null depth level as depicted in Fig. 8 

Moreover, the number of nulls for SSD is 12 which 

is reduced by 8. Therefore, the position of the damaged 

sensors can be easily detected from the degraded patterns 

on the basis of null depth level and number of nulls. 

From Table 1, it is obvious that if the damaged sensors 

gets nearer to the center of the array, the nulls are 

reduced by 2. For 
6w  SSD, the number of nulls is 10. For

5w  SSD, the number of nulls is 8. For other following 

cases, the number of null has decreased by 2 as seen in 

Table 1. This symmetrical changes of number of nulls in 

the array radiation pattern is of great interest for the 

researcher.As one can see from Fig. 2, due to a single 

failure sensor one can not decide which sensor is 

damaged. On the basis of the SSD technique, the 

sidelobes level also conforms the diagnosis of the 

damaged sensors. From Fig. 4 and Fig. 6 it is clear that 

for 
9w
 
SSD, the sidelobes level is higher than 

10w
 
SSD. 

Similarly, the sidelobes level for 
7w
 
SSD is higher than 

8w
 
SSD. From the simulation results it is clear that as 

the damage SSD nearer to the center of the array, the 

sidelobes level is increases while the number of nulls is 

reduces. 

 
 

Fig. 7. Linear symmetrical array of 21 number of sensors 

with 
8w  SSD. 

 

 
 

Fig. 8. Linear symmetrical array of 21 number of sensors 

with 
7w  SSD. 

 

Table 1: Detection of damaged sensor on the basis of 

number of nulls 

Symmetrical Sensor 

Samaged (SSD) 

Number of 

Nulls 

10w  18 

9w  16 

8w  14 

7w  12 

6w  10 

5w  8 

4w  6 

 

In this case the performance of the proposed method 

is compared with the conventional method [37-38]. In 

[37], the main goal is to diagnose the location of faulty 

sensors using bacteria foraging optimization (BFO) 

technique. Let us consider a linear array of 21 number  

of sensors. The damaged patterns were generated by 
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making their weights equals to zero. We considered that 

the 3rd, and 19th sensors are damaged in an array of  

21 number of sensors. For the detection of 3rd and 19th 

failure we require 
2

1

!
210

!( )!f

N

f N f


  
 number of 

different patterns by the conventional method [37], while 

the method [38] requires 105 number of patterns for the 

same scenario of the damaged sensors. But our proposed 

method requires no computation, just on the basis of 

radiation patterns and number of nulls one can decide the 

location of the damaged sensors. The damaged array 

pattern obtained by the conventional method [37] as 

depicted in Fig. 9 while the performance is shown in Fig. 

10. The same faulty scenario is diagnosed by [38] with 

half the number of samples poaints as shown in Fig. 11 

and Fig. 12. 

 

 
 
Fig. 9. Damaged array pattern with fault at 3rd and 19th 

sensors with 31 samples. 

 

 
 
Fig. 10. Performance of the conventional method [37] 

with 31 samples. 

 

 
 

Fig. 11. Performance of the conventional method [38] 

with 16 samples. 
 

 
 

Fig. 12. Performance of the conventional method [38] 

with 16 samples. 

 

V. CONCLUSION 
In this paper, a simple approach of the damaged 

sensor detection in an antenna array on the basis of the 

deeper null depth level and nulls have been proposed. By 

using this approach one can easily detect the location of 

damaged sensors on the basis of degraded far-field 

radiation pattern. From the simulation results, it is 

observed that if the damaged sensors nearer the center of 

the array, the number of the nulls are decreases by 2. 

From this observation, it is a valid problem for the 

researcher and hence the number of nulls reduces as the 

damaged sensors get closer to the center of array. This 

approach is directly applicable to the  L-type and circular 

arrays. 
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