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Abstract ─ The multiscale simulation usually leads to 

dense meshes discretization for fine structures, thus 

making time step size of the spectral-element time-

domain (SETD) method extremely small to ensure 

stability for explicit scheme. In this paper, a hybrid 

explicit-implicit scheme for SETD is proposed to deal 

with the simulation of multiscale electromagnetic 

problems. The central-difference is applied for the 

coarse region with large cells and the Newmark-Beta 

scheme is for the fine region with small cells. Then a 

large size of time step can be selected in the whole 

domain instead of the one limited by the smallest cell. 

When solving the matrix equation formed by the 

implicit scheme, two approaches are employed. One 

uses the sparse matrix solver UMFPACK directly and 

the other involves an explicit and iterative scheme. 

Numerical results show that the hybrid method is an 

efficient alternative to conventional SETD method for 

multiscale simulation. 

 

Index Terms ─ Explicit-implicit, iterative Newmark-

Beta, multiscale, spectral-element time-domain (SETD) 

method. 
 

I. INTRODUCTION 
When handling the multiscale electromagnetic 

simulations, traditional techniques face great challenges 

as some small grids may appear in very fine structures, 

which will result in a very small size of time step for 

the whole domains to obtain a stable solution [1]. 

Therefore, it will waste a lot of time because in other 

coarse domains a larger size of time step can be used. 

Unconditionally stable methods are often employed for 

the fine features as the time step size can be chosen in 

spite of the restriction between the time step size and 

the space step to guarantee stability [2]. However, most 

of the existing unconditionally stable techniques are 

implicit, which generally need a matrix solution. FDTD 

(finite-difference time-domain) is a very useful and 

simple time domain method [3]-[6], and some implicit 

methods are proposed based on FDTD such as the CN 

(Crank-Nicolson)-FDTD [5], ADI (alternating direction 

implicit)-FDTD [6]. Meanwhile, some FETD (finite-

element time-domain) based methods [7]-[10] are also 

developed to reach unconditional stability such as  

the CN (Crank-Nicolson)-FETD [8], ADI (alternating 

direction implicit)-FETD [9], the Newmark-Beta scheme 

[10] and so on. If the implicit method is adopted for the 

whole domain, it will lead to a very large matrix, which 

is computationally expensive. Some hybrid time-

stepping techniques are studied to improve the 

efficiency of the methods [11], [12]. Discontinuous 

Galerkin time-domain methods are very popular to deal 

with the multiscale simulations. The whole region is 

separated into a few subregions and different time-

stepping scheme can be applied in these subregions [11]. 

However, the derivation is troublesome and additional 

cost is required on the interface for communicating 

fields among different subregions. 

Here, a hybrid explicit-implicit scheme for 

spectral-element time-domain method is proposed and 

it is relatively simple and easy to implement. The 

spectral-element time-domain method makes use of 

Gauss-Lobatto-Legendre (GLL) polynomials and the 

mass matrix is diagonal or block-diagonal [13], so the 

inverse of the mass matrix can be easily obtained. One 

advantage of the proposed hybrid algorithm is that it is 

not derived with the help of the discontinuous Galerkin 

technique. As a result, the algorithm is easy to 

implement on the existing program without extra 

procedure for the interfaces of different subdomains. 

The simple central-difference is applied for the large 

elements region and the Newmark-Beta scheme is 

applied for the small elements region. Consequently, in 

the coarse region conditionally stability is realized and 

in the fine region unconditionally stability is realized. 

So the size of time step in the fine region could be 

chosen as large as the one in the coarse region instead 

of the one limited by the smallest mesh. Two 

approaches are used for the matrix solution in the fine 

region. The first one directly uses the sparse matrix 

solver UMFPACK [15] to solve the matrix equation. 

For the other, an iterative and explicit scheme is 

developed. Computational cost is also compared in the 
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demonstrated example. 

This paper is organized as follows. In Section II, 

the basic theory and formulations of explicit-implicit 

scheme for SETD are presented. Stability analysis is 

given in Section III and numerical results are given to 

demonstrate the validity of the proposed method in 

Section IV. Conclusions are summarized in Section V. 

 

II. THEORY AND FORMULATIONS 
To deal with the multiscale problem, we start from 

the vector wave equation: 
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The GLL element discretization is applied in SETD 

method, which can achieve the spectral accuracy. The 

Nth-order GLL basis function in a one-dimensional 

reference unit  1,1    is defined by [13]: 
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Consequently, when applying the 3-D standard 

reference unit, the basis functions are described as: 
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Therefore, the electric field can be expanded by the 

basis functions: 
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Then the Galerkin’s test is used and we have a 

discretized system of equations: 
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Where   represents the basis function in the 

physical domain and has the following mapping 

relationship with the basis function   in the reference 

domain [14]: 
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In the conventional SETD method, the derivative 

in Equation (5) is substituted via the central-difference 

in the entire computation domain: 

         1 2 12n n nT e T t S e T e    . (7) 

As the basis functions have the property of 

orthogonality and the GLL quadrature is used [16], the 

mass matrix [T] is diagonal or block-diagonal. 

Therefore, the inverse can be directly obtained. It could 

be a great advantage of the SETD method over the 

conventional FETD method whose mass matrix doesn’t 

have the block-diagonal characteristic. 

When handling some complicated electromagnetic 

problems such as the multiscale simulation, very small 

meshes usually appear in the fine features. Moreover, it 

is the same to other complex materials or structures 

because the curved hexahedrons are used and extremely 

small size meshes are unavoidably produced sometimes. 

Since the size of time step is limited by the spatial 

discretization of the simulation domain according to the 

CFL condition, the time step size may become very 

small because of small cells. It will result in a large 

number of simulation steps and the efficiency is low. 

Here, a novel hybrid explicit-implicit spectral-

element time-domain method is proposed to deal with 

this kind of problem. The fine structures can be 

wrapped by a proper box and treated as the fine region, 

the rest is treated as the coarse region. In the coarse 

region with large elements, the traditional central-

difference is employed, which is displayed in Equation 

(7). In the fine region with very small elements,  

the Newmark-Beta scheme is used to guarantee 

unconditional stability with a large size of time step, 

which is the same as the one used in the coarse domain: 
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Navsariwala and Gedney [10] have demonstrated 

that when the parameter is chosen to be 0.25  , the 

unconditional stability can be ensured. So the size of 

time step could be selected in spite of the stability 

condition: 
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As far as Equation (7) is concerned, the unknowns 

related to one node will form a block in the mass matrix, 

which is the characteristic of the spectral-element time-

domain method. So each node in an element can be 

solved independently in one time step. In Fig. 1, 

assuming there are two elements, the nodes in the red 

dashed box are marked as the coarse region while the 

rest nodes are marked as fine region. The two different 

regions do not have overlapped nodes, so no extra 

procedure for the interfaces of different regions is 

needed. In the coarse region, Equation (7) is solved 

explicitly. In the fine region, because the mass matrix in 

the left-hand side of (9) does not have the characteristic 

of block-diagonal, a solver is required to solve the 

matrix equation. The first approach uses the sparse  
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matrix solver UMFPACK [15], [17] with the solving 

process illustrated in Fig. 1. When computing Equation 

(9), the electric field 1ne   in the adjacent large cells is 

needed as a known quantity. As a result, in each time 

step, Equation (7) is solved ahead of Equation (9). 
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Fig. 1. Schematic diagram of the explicit-implicit scheme. 

 

When dealing with a large problem, using the 

UMFPACK solver is quite time-consuming. Moreover, 

the solver costs additional memory because of the LU 

factorization. In the second scheme, a new splitting 

scheme is proposed, where [S] can be split into two 

parts, one is a block-diagonal matrix the same as [T] 

and is merged with [T] to form a new matrix marked as 

[T’], the rest is marked as [S’] and it is moved to the 

right-hand side of the equation: 
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As the [T’] is block-diagonal, it possesses the 

advantage of the SETD method whose equations can be 

solved explicitly. Moreover, the linear system of (10) 

will be solved iteratively: 
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Where the subscript k represents the kth iteration. 

Firstly, the initial value of 1ne   in the right-hand side of 

the equation is set to be the previous time step value ne , 

after a few iterations for the solution 1

1

n

ke 


, the error is 

acceptable and it will then go to the next time step. 

 

III. STABILITY ANALYSIS 
The stability analysis of the system is divided into 

two parts. As for the coarse region, after applying the z-

transform of Equation (7), we obtain: 

      
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To make the scheme stable, z should be inside the 

unit circle of the complex z plane, which means the 

magnitude of z should be bounded by one. Further 

analysis results in the following equation: 

  
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where   is the eigenvalue of 1T S

 and the eigenvalues 

are non-negative and real. 

To make z in (13) bounded by 1, we can find that 

the time step should satisfy the condition: 
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where     represents the spectral radius of matrix   . 

As for the fine region, when using the Newmark-

Beta scheme, the system is unconditionally stable [10]. 

Convergence analysis is needed for the iterative 

Newmark-Beta method. If we describe the exact 

solution of Equation (9) as 1nu  , then the error of the 

kth iteration is [18]: 
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Substitute (16) and (17) into (15): 
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As a result, 
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We can find that only when the  2 ' 1 '
T St  

 
is 

smaller than one, the iterative method can be a 

convergent solver. 

When t  is chosen, 
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and 0.25  , we can finally get: 
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IV. NUMERICAL RESULTS 
To verify the performance of the proposed method, 

we carried out the simulation of a cavity as shown in 

Fig. 2. It is a PEC cavity and there is a dielectric ring 

inside. The dielectric constant of the ring was 2.06. 

Because the thickness of the ring was very thin, it 

leaded to a multiscale problem with very small cells in 

the ring. The hybrid method, together with the 

traditional SETD were employed to do the simulation 

and compute the resonate frequencies of the cavity. The 

number of the total discretized hexahedron was 10440 

with 240 for the fine domain and 10200 for the coarse 

domain. Unstructured hexahedron mesh grids are 

demonstrated in Fig. 3.  

To simulate the example, the traditional SETD 

required a time step of 1ps and 25000 steps while the 

explicit-implicit SETD using the UMFPACK was able 

to use 3730 steps to finish the simulation with a time 

step as large as 6.7ps. As for the explicit-implicit SETD 

using the iterative Newmark-Beta scheme, time step 

was chosen to be 3.3ps and it needed 7575 steps. It can 

be seen from Fig. 4 that the electric field waveform in 

time domain of one observation point inside the cavity 

agrees well with each other among the three methods. 

After the Fourier transform, the frequency spectrums of 

the electric field were shown in Fig. 5. 

Excellent agreements can also be observed. Finally, 

the computational costs of the three methods were listed 

in Table 1. 
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Fig. 2. A rectangular PEC cavity loaded with a dielectric 

ring: a1 = 207.25 mm, a2 = 440.75 mm, b = 242 mm,  

c = 43 mm, r1 = 9.5 mm, r2 = 10.0 mm, h=14.0 mm. 

 

 
 

Fig. 3. Mesh grids used to model the cavity. 

-1.5

-1

-0.5

0

0.5

1

1.5

0.0E+00 5.0E-09 1.0E-08 1.5E-08 2.0E-08 2.5E-08

Time(s)

N
o

rm
al

iz
ed

 e
le

ct
ri

c 
fi

el
d

Explicit-Implicit(UMFPACK)

Explicit

Explicit-Implicit(Iterative Newmark-Beta)

 
 

Fig. 4. Electric field in time domain calculated by three 

methods. 
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Fig. 5. Normalized frequency spectrum of the electric 

field. 

 

Table 1: Comparison of the computational cost among 

the hybrid explicit-implicit SETD method and the 

traditional SETD method 

 
Time Step 

(ps) 

CPU Time 

(min) 

Memory 

(MB) 

Explicit 1 67 1156 

Explicit-Implicit 

(UMFPACK) 
6.7 23 1639 

Explicit-Implicit 

(Iterative 

Newmark-Beta) 

3.3 25 1264 

 
We can clearly find out that the proposed methods 

are more efficient in terms of the simulation time. The 
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explicit-implicit SETD with the UMFPACK solver cost 

approximate 1/3 simulation time of the traditional 

method while sacrificed more memory. The iterative 

Newmark-Beta scheme required a little more CPU time 

than the UMFPACK method as the time step couldn’t 

be selected too large to ensure the convergence. In this 

example, the iterative number of the Equation is 8. 
 

V. CONCLUSION 
In this paper, we have proposed an explicit-implicit 

spectral-element time-domain method for the multiscale 

simulation. Explicit scheme is used in the coarse 

domain while implicit scheme is used in the fine 

domain. Explicit scheme can avoid solving the matrix 

equation. To solve the matrix equation generated by the 

implicit method, two schemes are developed. The first 

employs the UMFPACK and the second involves an 

iterative and explicit method. Comparisons have been 

made among different methods. The numerical results 

verify the correctness of the algorithm and demonstrate 

that the simulation time could be saved as the size of 

time step is much larger than the one chosen by 

conventional method. In addition, the method is very 

efficient when the unknowns of the fine domain are 

much smaller than those of the coarse domain. Because 

the discontinuous Galerkin technique is not involved in 

the proposed methods, conformal mesh grids must be 

ensured on the interface of different subdomains. How 

to use the nonconformal grids to make the methods 

more flexible will be our research topic in the future. 
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