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Abstract ─ Described herein is a novel approach 
for measuring the output impedance of a radio 
frequency (RF) power amplifier under actual 
operating (dynamic) conditions. The procedure 
involves loading the amplifier with three different 
values of resistance which are close to the 
intended load resistance value. Three separate 
experiments yield load excitation voltages (or 
powers) which permit direct calculation of the 
source complex impedance. The precision of 
determining the source impedance of the amplifier 
under test is only limited by the known tolerance 
of load resistance values used and the accuracy of 
measurements taken. The most important attribute 
of the technique described is that no requirement 
exists to alter the operating frequency. Also, the 
technique is applicable at microwave frequencies.  
  
Index Terms ─ Equivalent circuits, impedance 
measurement, power amplifiers, radio frequency 
amplifier.  
 

I. INTRODUCTION 
A need exists to determine the complex output 

impedance of an RF power amplifier. The 
excellent article by Abramovitz [1] gives possible 
amplifier topologies with predictions of input and 
output impedances but provides no guidance on 
experimentally measuring impedances. Other 
authors [2] describe impedance matching networks 
for optimizing power transfer and efficiency but 
do not directly measure the amplifier output 
impedance. Factually, this reference [2] notes 
significant discrepancies between simulation and 
laboratory measurements. Within the microwave 
bands load pull techniques can characterize 

amplifier output impedances. Recent articles using 
slide screw tuners indirectly characterize amplifier 
output impedance via calculations from reflection 
coefficients [3]. This method is totally impractical 
at low frequencies. Such a situation exists for a 
power supply voltage regulator of the feedback 
amplifier design. Voltage regulation is a low 
frequency phenomenon and the output of the 
regulator may exhibit undesirably high impedance 
at high frequencies. Serrano-Finetti [4] has 
suggested varying the regulator load sinusoidally 
to characterize the system output impedance. This 
approach addresses only low frequency 
characteristics.  

Classical discussions on amplifier output 
impedance focus on maximum power transfer [5-
7] or suggest measurement methods confined to 
VHF and frequencies beyond [8]. The study which 
follows suggests a practical method for 
characterization of amplifier output impedance. 
Though experimental results are discussed at 
VHF, the proposed method is applicable at 
microwave frequencies as well. A detailed error 
analysis of the method is also provided.  
 

II. DISCUSSION 
Amplifiers may be of narrowband (resonant) 

or wideband design.  A narrowband design will 
change output power as the operating frequency is 
altered necessitating “retuning.” By definition, 
however, a wideband design will not exhibit 
power output changes with respect to operating 
frequency changes.     In either case, the following 
measurement procedures and calculations are 
applicable. Thus, the amplifier’s source impedance 
can be determined at one frequency or many 
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frequency points. Also, proper modeling allows 
the technique to be extended through microwave 
frequencies. 

At any single operating frequency the output 
impedance of an amplifier may be modeled as a 
Thevenin equivalent circuit: An ideal voltage 
generator in electrical series with impedance (Z).  
[6, 9] This impedance, in general, can be complex:  
that is, Z=R+jX where R is the real (in phase) or 
resistive component and X is the imaginary 
(quadrature) or reactive component. Measuring the 
voltage which appears across a resistor placed at 
the amplifier output reveals nothing with regard to 
the amplifier’s impedance.  However, noting the 
voltage across a single load does establish a 
baseline for all measurements to follow. Since Z is 
complex and possesses two parts (real and 
imaginary) a minimum of two more experiments 
(measurements) must be conducted to determine 
the magnitudes of R and X.  For a stable amplifier 
R will always be positive. However, X may be 
either negative (capacitively reactive) or positive 
(inductively reactive). To mitigate the ambiguity 
of capacitive reactance and inductive reactance a 
modified version of the baseline measurement will 
be performed. 

The imaginary part of the impedance may be a 
consequence of multiple reactances of the two 
different types (capacitive and inductive). 
Moreover, as system operating frequency is 
changed the magnitude of impedance    may very 
well vary between peaks and troughs.  Temes and 
LaPatra give an excellent discussion of possible 
one port impedance characteristics [10]. 

Irrespective of circuit sophistication, consider 
an operating amplifier delivering non-zero power 
to an arbitrary load at a single frequency. The 
output impedance of this amplifier may be 
modeled by one of the following: 1) a pure 
resistance, 2) a resistance in electrical series with 
an “equivalent” capacitive reactance, or 3) a 
resistance in electrical series with an “equivalent” 
inductive reactance. As a numerical illustration 
consider a 1.49 microHenry inductor in electrical 
series with a 6.8 picoFarad capacitor. Fig. 1 plots 
the reactance of the inductor by itself, the 
reactance of the series combination and the 
reactance of the capacitor by itself.  A plot could 
also be developed for a parallel connection. 
However, for the plot presented note that 
resonance occurs at f=50.0 MHz. Below this 
frequency the LC combination is capacitively 
reactive and above this frequency it is inductively 
reactive. It is only at extreme frequency values 
(high and low) that the composite LC reactance 
curve is asymptotic to the individual components 
reactance curves. In the analysis which follows it 
is assumed that the system under investigation is 
linear and time invariant.  Further, if the amplifier 
incorporates a form of automatic gain control (or 
output leveling) this must be disabled. 
 

III. ANALYSIS 
Refer to Fig. 2 which models the amplifier 

output as a Thevenin equivalent circuit (V in series 
with Z) with load R1 connected. The voltage V01 is 
noted across R1. The load resistance is then 
changed to a new and different value (R2).  In a 
similar fashion the voltage drop across this new 
value of load resistance is noted (V02). Proceeding 
to a load resistance different from the values of R1 
or R2 a new load (R3) is connected to the amplifier. 
Again, the voltage drop (V03) is noted across R3. 
The ordering of resistance values for R1, R2 and R3 
(low, medium and high) is unimportant.  However, 

 
Fig. 1. Series LC reactance vs. frequency. 
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Z

01V 1R

 
Fig. 2. Thevenin amplifier output model with 
attached load (R1). 
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best measurement accuracy is obtained by the 
widest possible spread of load resistance values. 
From a practical standpoint, properly designed 
amplifiers will easily withstand VSWR values of 
2.0 or below. Thus, if the intended load is R0 then 
other test loads selected might be on the order of 
0.5 R0 and 2.0 R0. Some test configurations may 
utilize an instrument which measures power to a 
load resistance. Laboratory tests performed in the 
development of this paper used a BIRD model 43 
in-line wattmeter. The instrument is useful up to 
frequencies of 2.3 GHz. At higher frequencies it is 
possible to develop precision loads monitored by a 
bolometer. This technique remains to be 
accomplished. Wideband load resistors used for 
this investigation were verified via a Hewlett 
Packard 8510C network analyzer.  

 In such cases where power to a load resistor is 
measured, the R.M.S. voltage across the load may 
be directly calculated by: 

01 01 1 02 02 2 03 03 3, ,V P R V P R V P R= = = . 
Noting that Z=R+jX we formulate the 

following: 

( )
1

01 2 2
1

VRV
R R X

=
+ +

,  (1) 

( )
2

2 21
1

01

VR R R X
V

 
= + + 

 
.  (2a) 

Similarly 

( )
2

2 22
2

02

VR R R X
V

 
= + + 

 
,  (2b) 

and 

( )
2

2 23
3

03

VR R R X
V

 
= + + 

 
.  (2c) 

The ratio of these equations is formulated: 

( )
( )

2 2 2 2
1021

1 2 2
01 2 2

R R XVRK
V R R R X

+ +   
= =   

+ +  
, (3) 

and 

( )
( )

2 2 2 2
1031

2 2 2
01 3 3

R R XVRK
V R R R X

+ +   
= =   

+ +   
. (4) 

Equations (3) and (4) may be combined to 
eliminate X: 

( )( )
( )( )
( )( )

2
1 1 2 2

2
1 2 2 3

2
2 1 1 0.

K K K R R

K K K R R

K K R R

− +

+ − +

+ − + =

 (5) 

Let   
( )2 1K K A− = ,  (6) 

( )1 1 2K K K B− = ,  (7) 

( )1 2 2K K K C− = .  (8) 
Then,  

( ) ( ) ( )22 2
1 2 3 0A R R B R R C R R+ + + + + = ,  (9) 

or 
( ) ( )2

1 2 3

2 2 2
1 2 3

2 2 2

0.

A B C R ARR BRR CRR

AR BR CR

+ + + + +

+ + + =  
Now, 0A B C+ + = , therefore, 

( )
2 2 2

1 2 3

1 2 32
AR BR CRR

AR BR CR
− − −

=
+ +

.  (10) 

Before proceeding to calculate X it is prudent 
to determine if a reactive component of Z is 
present. A simple test to determine the presence of 
X is offered: 

Formulate: 

01
1

1G
RV V
R

 
= + 

 
,   (11) 

02
2

1H
RV V
R

 
= + 

 
,   (12) 

03
3

1J
RV V
R

 
= + 

 
.   (13) 

If VG=VH=VJ no reactance is present and there 
exists no need to calculate X: X=0. When VG, VH 
and VJ are all equal this voltage is the Thevenin 
open circuit voltage. If, however, VG, VH and VJ all 
differ the calculation of X may be carried forth. 

Now, since R is known refer back to either K1 
or K2 to find X.  Using K1: 

( )
( )

2 2
1

1 2 2
2

R R X
K

R R X

+ +
=

+ +
,    

or 
( ) ( )

( )

2 2
1 2 1 2

11
K R R R R

X
K

+ − +
=

−
, (14) 

and 
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( ) ( )
( )

1/22 2
1 2 1

11
K R R R R

X
K

 + − +
  =

−  
. (15) 

This last equation gives the magnitude of X.  
Unfortunately, the sign of the reactance is 
unknown. The sign of the reactance can be 
determined by altering the operating frequency.  
However, the technique put forth promised 
impedance determination without changing the 
frequency of operation.  This is still possible by 
adding a reactance in parallel with the test load 
resistance and observing output voltage effects 
with the presence or absence of the load reactance. 

Either a capacitor or an inductor may be 
shunted to the load resistance to determine the sign 
of the source reactance.  For example, if the source 
reactance is positive (inductive) a capacitor (which 
is not too large in value) shunted across the load 
resistance will cause the output voltage (and 
power) to increase. Alternately, if the source 
reactance is negative (capacitive) an inductor 
(which is not too small in value) shunted across 
the load resistance will cause the output voltage 
(and power) to rise.   

If the source reactance is inductive, there is a 
value of load capacitance (CPEAK) which will cause 
the load voltage to be a maximum.  Similarly, for a 
capacitive source reactance there is a load 
inductance (LPEAK) which will result in a maximum 
load voltage.  For testing purposes it is suggested 
to select either a load capacitor which is smaller 
than this “peaking” value or an inductor which is 
larger than this peaking value. This representation 
avoids ambiguity. That is, if C were too large (or L 
too small) output voltage would actually decrease. 
The value of peaking load reactance (capacitive or 
inductive) may be calculated by treating the 
generator/load combination as a voltage divider, 
finding the first derivative of load voltage with 
respect to load reactance, and setting the derivative 
to zero.  Recognizing that R is the source 
resistance and X is the source reactance the 
following occurs: 

2 2

LOAD
R XX

X
+

= .   (16) 

The load capacitance or inductance values 
shunted across the load resistance, which cause 
output voltage peaking, may be calculated 
directly: 

( )2 22PEAK
XC

f R Xπ
=

+
,  (17) 

2 2

2PEAK
R XL

fXπ
+

= .   (18) 

 
IV. DEMONSTRATION FOR COMPLEX 

SOURCE IMPEDANCE WITH BOTH 
REACTANCE TYPES 

Referring to Fig. 3, the Thevenin source shows 
a voltage generator of 17 volts R.M.S., a resistance 
of 26.0 ohms in series with an LC series 
combination consisting of a 1.49 microHenry 
inductor and a 6.8 picoFarad capacitor. System 
operating frequency is set to 49.0 MHz. At this 
frequency we directly calculate the series 
reactance of the LC as –j18.92 ohms. This 
Thevenin equivalent circuit is intended to drive a 
28.0 ohms load.   

The source is respectively loaded with R1=14 
ohms, R2=28 ohms, and R3=56 ohms. The 
following results are recorded: 

 
R (load) Load Voltage (volts) 
R1=14 ohms V01=5.38 
R2=28 ohms V02=8.32 
R3=56 ohms V03=11.3 

 
Using (3) and (4), one can obtain 

1 0.597891129K = ,  

2 0.275722592K = . 
Then, using (6)-(8)  

0.322168536A = − , 
0.433039037B = ,  

0.1108705C = − . 
Using (10), R becomes 25.36737201 R = Ω , 
which checks within 2.433%. Next, one can 

17 / 49 / 0V MHz Deg

26Ω

1

14
R
Ω

1.49 Hµ 6.8pF
01V

17 / 49 / 0V MHz Deg

26Ω

1

14
R
Ω

1.49 Hµ 6.8pF
01V

 
Fig. 3. Thevenin source with complex 
impedance loaded by resistance R1. 
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determine if reactance X is non-zero. Using (11), 
(12) and (13): 

15.128GV =  volts, 
15.865HV =  volts, 
16.419JV =  volts. 

Since the values of VG, VH and VJ are different, we 
proceed to find the magnitude of X as 

19.5094182 X = Ω ,  
which checks within 3.11%.  

Finally, check sign of reactance: Test load 
reactances will be used to shunt the load 
resistance. The load resistance may be any value. 
Select R2=28 ohms.  Then, using (17) and (18), 

61.87 ,PEAKC pF=  
0.17 .PEAKL Hµ=  

Recall, without any shunt reactance V02=8.32 
volts. On hand, convenient values of C=27 pF and 
L=0.47 μH are used for testing.  

With C connected VLOAD ≅ 7.96 volts 
(decreased). 

With L connected VLOAD ≅ 8.54 volts 
(increased). 

The conclusion is that the generator reactance 
is capacitively reactive. Thus, 

25.367 19.509 Z R jX j≅ − = − Ω . 
It is interesting at this point to compare 

measured impedance magnitude versus actual 
impedance magnitude: 

2 225.367 19.509 32.00 MEASZ = + = Ω , 
2 226 18.92 32.155 ACTUALZ = + = Ω .  

A complete error (sensitivity) analysis is 
provided in the following section. 

 
V. ERROR ANALYSIS 

 
A. Sensitivity analysis 

The impedance of the Thevenin equivalent 
source of the test case is 

26 18.920532ACTUALZ j= − Ω . The load voltages 
can be calculated for ACTUALZ , the measurement 
resistors of 1 14R = Ω , 2 28R = Ω , and 3 56R = Ω , 
and the generator voltage of 17V as 

1 5.378635LV V= , 

2 8.318949LV V= , 

3 11.312521LV V= . 

Comparing these analytically calculated 
voltages with the measured voltages, one can find 
the percentage errors in these measurements as  

1 01

1
100 0.025370L

L

V V
V
−

× = , 

2 02

2
100 0.012623L

L

V V
V
−

× = , 

3 03

3
100 0.110683L

L

V V
V
−

× = . 

 
The resistance and reactance of the output 

impedance can be calculated using 1R , 2R , 3R , 

01V , 02V , and 03V , as described in Sections III and 
IV, more precisely as   

25.367373R = Ω , 
19.509418X = Ω . 

Compared with the ACTUALZ , the percentage 
errors in the calculated values out of the 
measurements are  

100 2.4332ACTUAL
R

ACTUAL

R R
Error

R
−

= × = , 

100 3.1124ACTUAL M
X

ACTUAL

X X
Error

X
−

= × = . 

This analysis reveals that although the 
measurement errors in the voltages are very small, 
the errors in the calculated values of output 
resistance and reactance are comparatively very 
large. The calculated values are very sensitive to 
the measurement errors. Therefore, one should 
carefully assess the accuracy of the obtained 
results.  

 
Fig. 4. Error in calculated output impedance when 
only V01 has error.   
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To further analyze the affect of measurement 
errors on the impedance calculations, the 
following analysis is performed. First, an error is 
introduced only to the measured voltage 01V  such 
that  

( )01 1 1LV V ε= × + , 

02 2LV V= , 

03 3LV V= , 
where ε is an error term. Then the errors RError  
and XError  are calculated and plotted versus ε  as 
shown in Fig. 4, which illustrates the extreme 
sensitivity of the calculations to measurement 
errors. Similar result can be obtained when error is 
introduced to only 02V  or 03V .  

When the same amount of error is introduced 
to all three measurements such that 

( )01 1 1LV V ε= × + , 

( )02 2 1LV V ε= × + , 

( )03 3 1LV V ε= × + , 
it has been found that the errors, RError  
and XError , effectively vanish. Therefore, if a 
measurement system introduces errors to the 
voltage measurements that are proportional to the 
measured voltages, then the calculated impedance 
values are reliable. 
 
B. Optimum choice of measurement resistances 

Section III describes a mathematical procedure 
to calculate unknown output resistance and 
reactance values of an amplifier through three 
measurements. Further, we will illustrate that; 
these values can be obtained through solution of a 
matrix equation.  

Notice that (2) can be rewritten as 
2

2 2 2 21
1 1 2

01

2 0RR R R R X V
V

+ + + − = , (19a) 

2
2 2 2 22
2 2 2

02

2 0RR R R R X V
V

+ + + − = , (19b) 

2
2 2 2 23
3 3 2

03

2 0RR R R R X V
V

+ + + − = . (19c) 

One can subtract (19b) from (19a) and (19c) 
from (19b) and obtain the following equations 

 

( )
2 2

2 2 22 1
1 2 2 12 2

02 01

2 R RR R R V R R
V V
 

− + − = −  
 

,(20a) 

( )
2 2

2 2 23 2
2 3 3 22 2

03 02

2 R RR R R V R R
V V
 

− + − = −  
 

.(20b) 

Equations (20a) and (20b) is a linear set of 
equations and can be put in the following matrix 
equation form 

Ax y= ,    (21) 
where 

( )

( )

2 2
2 1

1 22 2
02 01

2 2
3 2

2 32 2
03 02

2 2 2 2
2 1 3 2

2

2

,

2

,

.

T

T

R R R R
V V

A
R R R R
V V

y R R R R

x V R

  
− −     =    − −     

 = − − 

 =      
Solution of Ax y= yields R and 2V , which then 
can be used to calculate X. 
 

  
A system of equations is considered to be 

well-conditioned if a small change in the 
coefficient matrix or a small change in the right 
hand side results in a small change in the solution 
vector, while a system of equations is considered 
to be ill-conditioned if a small change in the 
coefficient matrix or a small change in the right 
hand side results in a large change in the solution 
vector [11]. The condition number of the system 
described by the example given is calculated using 
the measurement data in the previous sections as 

 
Fig. 5. Variation of condition number as a 
function of ∆ . 
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( ) 50.35Cond A = . The condition number for a 
well-conditioned system should be close to unity. 
The calculated condition number verifies that the 
system is not well conditioned. 

In the above calculation 
 ( ) 1Cond A A A−= ⋅ ,  

where A  is the row sum norm (also called  the 
uniform matrix norm) of matrix A . Thus,  

( )
2 2
3 2

3 2 2 2
03 02

2 R RA R R
V V
 

= − + −  
 

 (22.a) 

( ) ( )

( ) ( )

1

3 2 2 1
22 2 2
32 1 2

2 3 1 22 2 2 2
02 01 03 02

2 2
.

2 2

A

R R R R
RR R RR R R R

V V V V

− =

− + −

   
− − − − −   

     (22.b) 
To simplify the analysis, if we choose equal 

increments in the measurement resistances such 
that ( ) ( )2 3 1 2R R R R− = − , then the condition 
number becomes 

( )
( )

2 2
3 2

3 2 2 2
03 02

2 2 2 2
3 2 2 1
2 2 2 2

03 02 02 01

4 2 R RR R
V V

Cond A
R R R R
V V V V

  
− + −     =

   
− − −   

   

.(23) 

In this equation, we can replace the measured 
voltages by the following using (1) 

( )

2
2 2 1

01 2 2
1

RV V
R R X

=
+ +

, 

( )

2
2 2

02 2 2
2

RV V
R R X

=
+ +

, 

( )

2
2 2 3

03 2 2
3

RV V
R R X

=
+ +

,  

to obtain the condition number in terms of source 
voltage and resistances as  

( )
( ) ( ) ( )( )( )

( ) ( )( ) ( ) ( )( )
2 22

3 2 3 2

2 2 2 2
3 2 2 1

4 2R R V R R R R
Cond A

R R R R R R R R

− + + − +
=

+ − + − + − +

. 

If we write 2 1 3 1, 2R R R R= + ∆ = + ∆ , then 
after some manipulations we can simplify the 
condition number expression as 

( )
( )( )2

14 2 2 3 2

2

V R R
Cond A

+ + ∆ +
=

∆
. (24) 

 
This form of condition number expression 

allows us to analyze what values of resistances 
would be better to use in the measurements to 
obtain a system with a smaller condition number. 
This equation reveals that ∆ needs to be large and 
R1 needs to be small in order to achieve a well 
conditioned system. Figures 5 and 6 illustrate the 
variation of condition number with R1 and ∆ .  

While choosing R1, R2, and R3, the main 
limiting factor would be the maximum allowable 
VSWR. If R and X can be estimated or are 
approximately known, they can be used to 
calculate maximum and minimum allowable 
measurement resistances. For a given VSWR 

1
1

S
+ Γ

=
− Γ

,     (25) 

where  
M

M

R R jX
R R jX

− −
Γ =

+ +
.    (26) 

Here, RM is the value of the measurement 
resistance to be determined for approximately 
known R and X values. Using (25) and (26), one 
can write  

( )
( )

( )
( )

2 2 2
2

2 2 2

1

1
M

M

S R R X
G

S R R X

− − +
Γ = = =

+ + +
. (27) 

Rearranging terms, one can obtain a quadratic 
equation as 

( )
( ) ( )2 2 22 1

0
1M M
R G

R R R X
G

− +
+ + + =

−
. (28) 

Solution of (28) for RM leads to 

 
Fig. 6. Condition number vs. ∆  for various 
values of R1.   
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2
2 2 2

2
1 1 12 4

2 2M
SR R R S X

S S
+  = ± − + − 

 
, (29) 

which yields the minimum and maximum 
allowable values of measurement resistances, i.e. 
R1 and R3, if R1<R2<R3. 

As a follow-up to the condition number 
analysis above, one can express (29) as 

2MR R= ± ∆ , where 
2

2
1

2
SR R

S
+

= ,  (30) 

2 2 2
2

12 4R S X
S

 ∆ = − + − 
 

,  (31) 

and 1 2R R= − ∆ . When used in (24), The values of 
∆ , based on (31), and 1R , based on (30) and (31), 
will yield the minimum condition number, thus the 
best well-conditioned system, subject to the 
maximum allowable VSWR in the system, if the 
measurement resistance values are to be chosen 
with equal increments of ∆ . 

 
VI. CONCLUSION 

Proper installation of an RF power amplifier 
requires knowledge of the amplifier output 
impedance. With such information, correct load 
matching is made possible. Matching 
considerations address power output, efficiency, 
spurious signal rejection qualities, and possible 
system longevity. Presented here is a 
straightforward way to determine the amplifier’s 
output impedance.  The method has been checked 
through operational tests and simulation. 
Additionally provided is a complete sensitivity 
analysis for the technique. 
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