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Abstract—In this paper, we present an efficient 
parallel multilevel fast multipole algorithm 
(MLFMA) for three dimensional scattering 
problems of large-scale objects. Several parallel 
implantation tricks are discussed and analyzed. 
Firstly, we propose a method that reduces 
truncation number without loss of accuracy. 
Furthermore, a matrix-sliced technique, 
allowing data in the memory transforming into 
the hard disk, is applied here, in order to solve 
the problem of extremely large targets. Finally, a 
transition level scheme is adopted to improve 
the parallel efficiency. We demonstrate the 
capability of our code by considering a sphere 
of 220λ discretized with 48,879,411 unknowns 
and a square patch of 200λ discretized with 
10,150,143 unknowns. The bi-static RCS is 
calculated within 41.5 GB memory for the first 
object and 14.7 GB for the second one. 

 
Index terms—parallel algorithm, RCS 
calculation, multilevel fast multipole algorithm, 
electromagnetic scattering. 
 

I. INTRODUCTION 
Integral equation methods are widely used for 

solving electromagnetic scattering problems, 
and the multilevel fast multipole algorithm 
(MLFMA) has established itself as one of the 
most powerful among the different acceleration 
methods [1]. However, for many real-life 
problems, the discretization of these large-scale 
targets lead to millions of unknowns. The 
maximum size that can be solved is limited even 
with modern computers. Thus, it is necessary to 
develop an efficient parallel algorithm in order 
to solve these very large-scale problems. 

Of the various parallelization schemes for 
MLFMA, the most popular is the distributed 
memory architectures by constructing clusters of 

computers with local memories connected via 
fast networks [1]-[5]. However, the parallel 
implementation of MLFMA is not trivial, owing 
to the complicated structure of this algorithm. 
Without careful parallel schemes, the algorithm 
may fail to produce accurate results. Thus, a 
series of implementation tricks have been 
developed for the efficient parallelization of 
MLFMA in [2]-[5]. But even with these 
implementations, the algorithm has to face 
memory-hungry problem for many extremely 
large problems. 

In this paper, we present an efficient parallel 
MLFMA algorithm that integrating a series of 
implementation tricks proposed in [2]-[4]. In 
particular, a novel trick for reducing the 
truncation number is presented and the 
technique, that slices the matrix data and save it 
to the hard disk, is applied in our code, in order 
to optimize the memory usage and solve the 
memory-hungry problem. To demonstrate the 
capability of our parallel MLFMA code, the 
bi-static RCS of a sphere with a diameter of 
220λ, containing more than 50 million 
unknowns, and a patch of 200λ, containing 
about 10 million unknowns, are successfully 
solved. 

 
II. PARALLEL IMPLEMENTATION 

OF MLFMA 
 

A series of implementation tricks for parallel 
MLFMA are developed in [2]-[4], most of 
which focus on memory optimization. We can 
say that reducing the RAM requirement can 
never be over-emphasized. In this section, 
several tricks that integrating in our code will be 
introduced and analyzed.  
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A. Integral Equation Formulation 
In this section, we consider the scattering of 

electromagnetic waves from perfectly 
conducting objects. 

For a perfectly conducting object, the 
well-known electric-field integral equation 
(EFIE) can be written as [2] 
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In Equation (1),   is the impedance of free 
space, S is the surface boundary of the scatterer, 
and t̂  is the unit tangent vector at any given 
point on S. Furthermore, J


 is the unknown 

surface electric current, iE


is the incident 
electric-field vector, and I is the unit dyad. 

If the surface of the object is closed, it can 
also be described using the magnetic-field 
integral equation (MFIE) 
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where n  is the unit normal vector, and iH


is 
the incident magnetic-field vector. 

However, both EFIE and MFIE suffer from 
nonunique solutions at resonant frequencies. To 
alleviate this problem, for a surface-closed 
target, we used the combined-field integral 
equation (CFIE) which is defined by the relation 

 EFIE+ (1 )  MFIE          (3) 

where α∈  [0,1] is called the combination 
coefficient. 

In order to solve these equations numerically, 
we should model the surface with flat triangular 
patches and expand the current in term of RWG 
basis functions [7]. Applying Galerkin’s method, 
the integral equation is then reduced to a system 
of linear equations. The matrix element of EFIE 

and MFIE is given by 
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where ( )nf r  is the nth RWG basis function. 

The matrix element corresponding to CFIE 
can then be derived 
as (1 )E M

mn mn mnZ Z Z     . Then the integral 
equations reduce to the matrix equation 

   1 1[ ] [ ] [ ]N N N NZ J V             (6) 

where N is the number of unknowns. 

Equation (6) can be solved using an iterative 
method such as the Generalized Minimal 
Residual Algorithm (GMRES). The detailed 
discussions for the parallelized version of 
GMERS can be found in the literature [2]. 

 
B. A Novel Method for Reducing the 
Truncation Number 

In MLFMA, the memory requirement and the 
CPU time depend heavily on the truncation 
number, L, which is normally determined by the 
size of box, D [6]. We should determine the 
minimum value of D in order to reduce the 
truncation number, and thus save the memory 
requirement and CPU time. The relation 
between the truncation number L and D can be 
expressed as 

       lnL kD kD             (7) 

Previously, D is determined by the real size of 
box in each level. The truncation number L then 
can be calculated using equation (7). However, 
the value of D obtained in this way is not a 
minimum, for there are spaces for many boxes 
[4]. In [4], one method is proposed to determine 
the minimal D at each level by finding the 
maximum distance of the edge-distance located 
in each box.  
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In this section, we present another method, by 
finding the equivalent maximum distance in 
each box, to determine the value of D. The 
equivalent maximum distance on level L is 
defined as 

     2 2 2
max min max min max min( )d l x x y y z z     

 

where xmin, ymin, zmin and xmax, ymax, zmax are the 
minimum and maximum coordinates, 
respectively, among the triangular patch pair 
center points for each box on one level. Figure 1 
shows the relation of the equivalent maximum 
distance, d, and D concerning with the real size 
of box for a two-dimensional problem. The solid 
and dashed line represents d and D respectively, 
and the white nodes are the patch pair center 
points in the box. 

 

 

 

 

 

 

 

 
 
 
 
Fig. 1. The relation of d and D for a two- 
dimensional problem. 

We could calculate every d in every box at 
each level, find the maximal one, and designate 
it as the equivalent value of D. Thus, the 
truncation number at each level can be 
determined by  

        ( ) ln ( )L kd l kd l          (8) 

For the equivalent maximum distance d is less 
than the value of D, thus the truncation number, 
L, can be reduced without loss of the accuracy. 
For a target discretized with tens of millions 
unknowns, the time consuming on finding the 
equivalent maximum distance can be neglected. 
Also, this method can be efficiently parallelized. 
Figure 2 shows the Bi-static RCS of a sphere 
with a diameter of 4λ，the result shows our 

method agrees well with the MIE series. 

 
Fig. 2. The Bi-static RCS of our method and the 
MIE series. 

 
C. The Matrix-Sliced-to-Disk Technique 

For many extremely large targets even modern 
servers and computers will encounter 
memory-hungry problems. The memory in 
MLFMA is mainly consumed in setting up the 
matrix equation. The idea that transforms the 
matrix data into the hard disk is straight-forward. 
There are three main reasons for adopting this 
technique to our parallel MLFMA code: 

1) This approach allows us to solve extremely 
big problems without having to worry about the 
memory consumption. Memory is almost used 
for other parts of MLFMA such as the oct-tree 
rather than the matrix equation. 

2) From an economic and convenient point of 
view, this approach helps our code to be more 
scalable and meet the demand of some 
low-performance computers. With this approach, 
we can solve a problem with about one million 
unknowns on a single computer of only 2 GB 
memory. 

3) With the swift improvements in the hard 
drive storage technology, the difference of the 
I/O speed of memory and the hard disk will be 
reduced, making this approach more and more 
attractive, as shown in Fig. 3. 

Actually, this technique will cost slightly 
more time than without it, for the I/O operation 
of hard disk is relatively slower than that of 
memory. Thus it is necessary to compare the 
CPU time and the elapsed time (which express 
the total time from the start of a program to the 

O x 

y 

D d 
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end of it), in order to evaluate the efficiency of 
this technique. Sphere with different electrically 
sizes are considered here. The diameters of 
sphere range from 20 wavelengths to 220 
wavelengths. The CPU and elapsed time for 
different sizes are depicted in Figure. 3. All the 
calculations are carried out on one computer 
with 4 CPUs and a high performance SAS hard 
disk. The result shows that up to nearly 50 
million unknowns, the performance with this 
technique is only 4.5% slower than that without 
it. For the situation that the number of 
unknowns less than 10 million, the differences 
of with and without this technique can be well 
neglected. 

 

Fig. 3. The comparisons of CPU time and 
elapsed time for different electrical sizes of 
sphere. 

 
The solid-state store technique is the trend. 

With the technical improvement of high 
performance hard disk, the influence of this 
relatively slower I/O operation will be less 
significant. Thus, we can say that this technique 
will be much more practical in the future. 

 
D. The Transition Level Scheme 

An important part of parallel MLFMA is the 
parallel efficiency. Previously, the boxes were 
distributed equally among the processors. It is 
natural that this parallel approach can achieve 
good load-balancing in fine levels. However, it 
is difficult to achieve good load-balancing in the 
coarse levels with this approach, since the 
number of boxes is small in those levels. This 
usually degrades the parallel efficiency and 
performance of parallel MLFMA code. 

A transition level scheme is proposed in [3] in 
order to improve the parallel efficiency. In the 
levels that are finer than the transition level, the 
boxes are distributed equally among the 
processors; in the levels that are coarser than the 
transition level, the far-field pattern and 
translation matrix are distributed equally among 
the processors. However, this scheme causes 
additional communication between processors.      
In order to reduce this problem of 
communication and to restrict each processor to 
communicate with only two nearby processors 
at most, it is proved in [4] that the transition 
level should be the level where the truncation 
number, L, is not less than twice the number of 
processors, p. To obtain good parallel efficiency, 
we usually choose L=2p. 

 
E. The Efficiency of Parallel MLFMA 

The efficiency of parallel algorithm is defined 
as 

1 100%
p

T
pT

  
 

where p is the number of processors, pT  is the 
CPU time consumed for p processors. 

To demonstrate the efficiency of our Parallel 
MLFMA, the bi-static RCS of a sphere of 
diameter 40λ is calculated. The total parallel 
efficiency and matrix-vector multiplication 
parallel efficiency is shown in Fig. 4. We can 
see that the efficiency is above 80% even for 16 
processors. 

 

 
Fig. 4. The parallel efficiency for a sphere of 
diameter 40λ from 1 to 16 processors. 
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III. CAPABILITY OF THE PARALLEL 
MLFMA 

A parallel MLFMA code has been developed 
by implementing several tricks presented in the 
above sections. To demonstrate the capability of 
our code, we first calculate the bi-static RCS of 
a sphere of diameter 220λ discretized with 
48,879,411 unknowns. The incident angle is 
(90°, 0°), and the scanning plane is xoy plane 
with 1801 sampling points from (0°, 180°). The 
parallelized GMRES is adopted to solve the 
matrix equation, and the residual error is 0.005. 
The simulation is carried out on one single 
computer with 8 Xeon 3.0 GHz CPUs and 64 
GB memory. The detail resources used in this 
calculation is shown in Table 1.  

 
Table 1. The computational resources for a 
sphere of 220λ by the parallel MLFMA. 

General 
Information 

CPU Time (min) 

Geometry size 
(wavelength) 

220 Geometry 
information 

5.6 

Number of 
processors 

8 Set up of 
near-field 

matrix 

199.1 

Number of 
iterations 

19 Set up of 
far-field 
matrix 

67.3 

Total memory 
(GB) 

41.5 Iteration and 
solution 

1121.5 

Total time (hr) 26.9 RCS 
calculation 

0.63 

 

Fig. 5. The bi-static RCS for a sphere of 
diameter 220λ. 
 

To further demonstrate the capability of our 
parallel MLFMA code, we calculate the bi-static 
RCS of a square patch of size of 200×200 
wavelengths with 10,150,143 unknowns. Since 
this is an open structure, EFIE is used to solve 
this problem. The patch is located in the yoz 
plane with its  center at the origin. The incident 
angle is (90°,0°) and the scanning plane is xoy 
with 1801 sampling points from (0°,180°). The 
parallelized GMRES is adopted to solve the 
matrix equation, and the residual error is 0.001. 
This simulation is carried out on one computer 
with 8 Xeon 3.0 GHz CPUs and 64GB memory. 
In this problem, only 4 CPUs are used. The 
detailed resources for this calculation are shown 
in Table 2. 
 

Table 2. The computational resources for a 
square patch of 200λ by the parallel MLFMA. 

General 
Information 

CPU Time (min) 

Geometry size 
(wavelength)

200 Geometry 
information 

2.6 

Number of 
processors 

4 Set up of 
near-field 

matrix 

40.1 

Number of 
iterations 

142 Set up of 
far-field 
matrix 

13.4 

Total memory 
(GB) 

14.7 Iteration and 
solution 

624.9 

Total time (hr) 11.5 RCS 
calculation 

0.37 

 

Fig. 6. The bi-static RCS for a square patch of 
length 200λ. 
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IV. CONCLUSIONS 
In this paper, several implementation tricks of 

parallel MLFMA have been introduced and 
analyzed. Firstly, we proposed a modified 
truncation number method in order to reduce the 
memory and CPU time usage; secondly, a 
technique that sliced matrix to hard disk is 
applied to fulfill the memory demand for 
extremely large problems; finally, a transition 
level scheme is introduced in order to improve 
the parallel efficiency. With these tricks, 
memory usage can be reduced. We demonstrate 
the capability of our code by considering a 
sphere of diameter 220λ, containing nearly 50 
million unknowns and a square patch with a 
length of 200λ, involving approximately 10 
million unknowns.  
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