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Abstract– A new floating random-walk 
algorithm for the one-dimensional modified 
Helmholtz equation subject to Neumann and 
mixed boundary conditions problems is 
developed in this paper. Traditional floating 
random-walk algorithms for Neumann and 
mixed boundary condition problems have 
involved “reflecting boundaries” resulting in 
relatively large computational times. In a recent 
paper, we proposed the elimination of the use of 
reflecting boundaries through the use of novel 
Green’s functions that mimic the boundary 
conditions of the problem of interest. The 
methodology was validated by a solution of the 
one-dimensional Laplace’s equation. In this 
paper, we extend the methodology to the 
floating random-walk solution of the one-
dimensional modified Helmholtz equation, and 
excellent agreement has been obtained between 
an analytical solution and floating random-walk 
results. The algorithm has been parallelized and 
a near linear rate of parallelization has been 
obtained with as many as thirty-two processors. 
These results have previously been published in 
[1]. In addition, a GPU implementation 
employing 4096 simultaneous threads displayed 
a similar near-linear parallelization gain and a 
one to two orders of magnitude improvement 
over the CPU implementation. An immediate 
application of this research is in the numerical 
solution of the electromagnetic diffusion 

equation in magnetically permeable and 
electrically conducting objects with applications 
in dielectrometry and magnetometry sensors that 
have the ability to detect sub-surface objects 
such as landmines. The ultimate goal of this 
research is the application of this methodology 
to the solution of aerodynamical flow problems. 
 
Index Terms– Floating random-walk, Monte 
Carlo, modified Helmholtz equation, 
parallelizable algorithm, CUDA, GPU.  
 

I. INTRODUCTION 
The floating random-walk (FRW) method [2] 

is a statistical technique for the numerical 
solution of deterministic boundary value 
problems. It is a generalization of the Monte 
Carlo integration method [3], which is a 
statistical approach to estimating integrals, 
which, unlike many other techniques, is well-
suited to evaluating multi-dimensional integrals.  
We will discuss one such method, “Sample 
Mean Monte Carlo” [3], and then demonstrate 
how the technique is modified to form the basis 
for the FRW method. 

Consider a function )(xf  defined over the 
interval bxa ≤≤ . Our problem is to estimate 
the integral 

.)(∫=
b

a
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In the event that the integral is improper, 
absolute convergence is assumed. We select an 
arbitrary probability density function )(xp , with 
a corresponding random variable ξ . We define 
another random variable η  as 

( )
( ).ξ
ξη

p

f
=                            (2)                   

The expectation value of the random variable 
η , written as ( )ηE , is equal to the integral I , 
which can be expressed as 
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This integral can be evaluated by sampling the 
integrand with the help of a random-number 
generator, and averaging over a statistically 
significant number of samples. This approach is 
particularly suited to evaluating higher 
dimensional integrals, because the 
computational work of sampling the integrand 
does not increase substantially with the 
dimensionality of the integral. We will now 
describe how this Monte Carlo integration 
method can be generalized into the FRW 
method for the solution of boundary value 
problems. 

We consider a differential equation, with a 
differential operator L, 

[ ] ,)()( rr fUL =                         (4)                                                                                                                                                                  

where the solution U(r) is a function of the 
three-dimensional position vector r. The 
function f(r) is a source term. The Green’s 
functions for (4) are the solutions of the 
differential equation 

[ ] ,)()|( oo rrrr −= δGL                   (5)                                                                         
subject to specified boundary conditions. We 
assume that the operator L is of the Sturm-
Liouville [4] form: 

[ ] ,)()(. rr qpL +∇∇=                    (6)                                                                     
where )(rp  and )(rq are known functions of r . 

Using Green’s integral representation [4] U(r) 
can be written as 
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The first term on the right hand side of (7) is a 
volume integral involving the source term in the 
entire volume V of interest. The second and 
third terms are vector surface integrals over the 
surface S enclosing V, where sd  is a vector 
whose magnitude is equal to that of an 
infinitesimally small area unit on the surface S 
and directed normally outward from the center 
of the area unit.  The term G(r|ro) is often 
referred to as the volumetric Green’s function 
and the term  r|r or )(G∇ is called the surface 
Green’s function. The second term corresponds 
to the Neumann [4] boundary condition, 
whereas the third term corresponds to the 
Dirichlet boundary condition [4]. In traditional 
FRW algorithms, homogeneous Dirichlet 
boundary conditions are imposed on the Green’s 
function given by (5). As a result, the second 
integral in the right hand side of (7) goes to 
zero. To evaluate the solution to (4) at a 
particular point in the domain of interest, we 
consider [2] maximal spheres, cubes, or any 
geometrical object for which the solution to (5) 
is known. We then make random hops to the 
surface of that geometrical object based on any 
predefined probability density. The weights for 
such random hops are determined by sampling 
the remaining two integrands in (7). For 
example, in the case of a Dirichlet problem with 
no source term [i.e., 0)( =rf ], the contribution 
of the volume integral also goes to zero and the 
problem reduces to a Monte Carlo integration of 
an infinite-dimensional integral, as given by: 
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where nn ,1−γ  is the angle between 

 r|r n1nrn
)( −∇ G and .nsd  The successive surface 

integrals in (8) relate to successive random hops 
across the problem domain and the weight 
factors of the form ( )n1-n rr |K  are derived from 
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the third integral term on the right hand side of 
(7) that corresponds to the Dirichlet boundary 
condition. A particular random walk is 
terminated at the boundary, where the solution 
is known, and the samples of successive weight 
factors multiplied by the solution at the 
boundary yield a particular sample of the 
solution. A numerical solution of (4) is obtained 
by averaging over a statistically significant 
number of such samples.  

The termination of the random walk becomes 
a problem for Neumann and mixed boundary 
condition problems where the solution is not 
known at all points of the domain boundary. In 
traditional random walk literature [5], these 
boundary conditions are formulated as partially 
“reflecting” as the random-walker has a chance 
of either being absorbed in the problem 
boundary or being thrown back into the problem 
domain. In a recent paper [6], we formulated a 
FRW algorithm for this particular problem 
where the reflection at problem boundaries was 
eliminated through the development of a 
Green’s function whose boundary conditions 
mimicked the boundary conditions of the 
problem of interest. In this paper, we extend the 
methodology to the solution of the one-
dimensional modified Helmholtz equation, 
subject to mixed boundary conditions. 
 

II. THE NEW FORMULATION 
Consider the equation 

,0
2

2

=
dx

Ud
                          (9)                                                                         

where U  is the dependent variable of interest 
defined in the problem domain .0 Lx ≤≤  The 
boundary conditions imposed on this problem 
are α=)0(U  and .)( β=LU   A traditional 
FRW algorithm for this problem will be based 
on a Green’s function given by 

( )02

2

xx
dx

Gd
−= δ ,                   (10)                                                                

defined on a problem domain ,hxh ≤≤−  with 
homogeneous Dirichlet boundary conditions 
( ) 0| 0 =− xhG  and ( ) .0| 0 =+ xhG  The solution 

to (10) in a zero-centered notation (i.e., 00 =x ) 
is given by 
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Based on the 1D version of the Green’s integral 
representation (7), the solution to (9) at the 
center of the one-dimensional problem domain 
can be written as 
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where no specific boundary conditions have 
been imposed on the Green’s function. Using 
the Green’s function given by (11), (12) can be 
reduced to 

).(
2

1
)(

2

1
)0( hUhUU −+=            (13)                                             

Thus, the solution to (9) at the center of the 
problem domain hxh ≤≤−  can be expressed 
in terms of the solution at the two end-points. In 
a traditional FRW algorithm, (13) is used to 
generate the random walks. The random walker 
either hops to the left or to the right with equal 
probability (without any restriction on the hop 
size) until it is absorbed at one of the 
boundaries. An estimate of the solution at any 
given point *xx = within the problem domain 

Lx ≤≤0 is given by 

( ) ,*

βα

βα βα
NN

NN
xU

+
+

=                 (14) 

where the number of times the random walker 
hits the 0=x  and the Lx =  boundary are αN  

and βN  respectively.  Now let us consider the 

solution of (9) defined on the problem domain 
,0 Lx ≤≤  but with the boundary conditions 

α=)0(U  and{ } .β=
=Lxdx

dU  It is obvious that 

a FRW scheme based on (13) will not find a 
reward at the Lx =  boundary. The termination 
at this boundary is based on a finite-difference 
based representation of the Neumann boundary 
condition [5] and the random-walker is either 
absorbed or reflected back into the problem 
domain. If the random walker is reflected back 
in the problem domain, once again random 
walks are generated based on (13). This partial 
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reflection at the boundary increases the 
computational time and as a result, Neumann 
and mixed boundary condition problems are 
considered difficult to be handled with the FRW 
method. 

In a recent paper [6], we proposed a 
philosophically different approach for Neumann 
and mixed boundary condition problems and 
applied it to the problem given in (9). In our 
approach, the boundary conditions imposed on 
the Green’s function mimic those of the problem 
of interest and as a result, the reflecting 
boundaries are converted to absorbing 
boundaries. In this paper, we use this approach 
to develop a FRW algorithm for the one-
dimensional modified Helmholtz equation given 
by 

,02

2

2

=− Uk
dx

Ud
                    (15)                                                                       

where U is the dependent variable of interest 
defined in the problem domain ,0 Lx ≤≤  and 
k  is a real number independent of .x  The 
boundary conditions imposed are χ=)0(U  and 

{ } .δ=
=Lxdx

dU   Our approach is motivated by 

the one-dimensional version of Green’s integral 
representation given by (12) and is based on a 
Green’s function )|( 0xxG  of (15) given by 

( ) ( ),| 00
2

2

2

xxxxGk
dx

Gd
−=− δ         (16)                                                          

defined in the problem domain hxh ≤≤−  with 
the boundary conditions ( ) 0| 0 =− xhG  and 

{ } .0=
=hxdx

dG  This Green’s function is 

explicitly given by 
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We use the boundary conditions that have been 
imposed on the Green’s function given by (17) 
and the one-dimensional Green’s integral 
representation given by (12) to obtain a 
representation of the solution ( )0xU  at a point 

hxh ≤≤− 0  given by 
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We now obtain a derivative of (18) with respect 
to 0x  and obtain a representation of the 
derivative of the variable of interest U  given by 
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Equations (18) and (19) are used to generate a 
FRW scheme that is different from the scheme 
based on (13). In order to estimate the solution 
at a given point, the random walker hops to 
either the left or the right with probability 2/1  
as given by (18). If the random walker moves to 
the left, there is a multiplicative weight factor 
given by [ ] hxxLL xxGW −=−= )|(2 0  and (18) is 
again used to generate the random walks in the 
next hop. On the other hand, if the random 
walker moves to the right, there is a 
multiplicative weight factor given by 

( )[ ] hxLR xxGW =−= 0|2  and (19) is used to 

generate the random walks in the next hop. As 
(19) is used to generate the random walks, the 
random walker moves to the left or the right 
with probability .2/1  If the random walker 
moves to the left, there is a multiplicative 
weight factor given by 

( )[ ]
hxxxRL xxGW

−=
−= 0|2

0
and (18) is used to 

generate the random walks in the next hop. On 
the other hand, if the random walker moves to 
the right, there is a multiplicative weight factor 
given by [ ]

hxxRR xxGW
=

−= )|(2 00
and (19) is 

used to generate the random walks in the next 
hop. A particular random walk terminates either 
in the left boundary with a reward χ  or at the 
right boundary with a reward ,δ  and an 
estimate of the solution is obtained by averaging 
over a statistically significant number of random 
walks. Thus, through the use of the Green’s 
function in (17), the partially reflecting 
boundary at Lx =  is converted to an absorbing 
boundary and there is no reflection. The results 
for the problem given by (15) will now be 
presented. 
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III. SOFTWARE RESULTS 
A mixed boundary condition problem for the 

modified Helmholtz equation given by (15) is 
chosen with ,3=L  ,5.0=k  1=χ  and .3=δ  
Fig. 1 plots the exact analytical solution and the 
FRW results and these are seen to be in 
excellent agreement. In the FRW simulations, 

6102×  random walks have been carried out for 
each solution point and the average error 
between the analytical results and the FRW 
solution was seen to be about 0.1 percent. Fig. 2 
shows the relative speed of parallelization with 
respect to single processor computation. It is 
seen that the relative speed of parallelization 
gets closer to unity as the number of random-
walks per solution point is increased. The 
increased deviation from linearity with decrease 
in the number of random-walks can be 
interpreted as the percentage increase in inter-
processor communication time with respect to 
actual computation time that occurs with 
decrease in the number of random-walks. 

 
Fig. 1. Analytical and FRW results for the 
solution of the modified Helmholtz equation 
plotted against normalized length ( ).' kxx =  
 

IV. GPU IMPLEMENTATION 
    While multiprocessor environments provide 
exceptional throughput advantages in scientific 
computing, GPUs have recently emerged as an 
alternative highly-parallel technology for 
general purpose computing.  GPUs contain a 
significantly higher core density than any 
commercially-available CPU, with the tradeoff 

 
 
Fig. 2. Relative speed of parallelization with 
respect to single processor computation. 
 
of a restricted and relatively more specific 
instruction set and the need for complex 
memory management by the designer. With the 
recent introduction [7] of the Compute Unified 
Device Architecture (CUDA) to developers on 
commodity NVDIA graphics cards, throughput 
gains of scientific applications can be increased 
by orders of magnitude. Using NVIDIA's CUDA 
application programming interface (API), we 
have implemented the previously-developed 
algorithm to explore and evaluate the merit and 
value of the approach.  Efficient parallelization 
is a significant logical problem that may be 
solved in different ways depending on the nature 
of the architectural environment and the 
algorithm under parallelization. CUDA’s shared 
memory model and layout of threads into 
blocks, for example, must be taken into account 
to maximally utilize the GPU’s resources.  
    The Helmholtz problem under study lends 
itself well to parallelization.  As the problem 
requires executing highly-repetitive code for 
millions of iterations per point at which the 
equation is solved, it can directly be parallelized 
by assigning each point to a thread within a 
thread block. Our final program was divided 
into three sections: 
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1)    A serial (CPU) part that set up initial 
conditions. 

2)   A parallel version that ran 200,000 iterations 
of the algorithm for each point. 

3)   A serial finalization section that collected 
and displayed the results from the GPU. 

The implementation has been simplified 
through the use of global GPU memory that is 
retained for the execution lifetime of the 
application. Additional improvements of 100x 
to 150x speedup can be achieved by using the 
shared memory, visible between the threads of a 
block but not shared among other blocks.  This 
requires some overhead to load from global to 
shared memory at the beginning of the block 
and restore results to global memory at the end, 
but ‘reads’ and ‘writes’ from shared memory are 
comparable to register access time which is 
drastically faster than the 400-600 cycles 
required for global memory ‘reads/writes.’ The 
initial copy from global to shared memory is 
hidden by using thousands of threads that are 
more computationally intensive. 
    A 200,000-iteration test has been run on both 
a CPU and a GPU, with 16 points for the CPU 
and 4096 points for the GPU, the CPU 
completed its task in 2.57 seconds, while the 
GPU took 16.56 seconds.  This indicates a 
speedup of 39.7 (0.16s/point vs. 0.004s/pt) in 
favor of the GPU.  With additional 
improvements in memory handling, significant 
additional speedup may be possible.  The GPU 
implementation is based on 4096 parallel 
threads organized into 32 blocks of 128 threads 
each for purposes of coalesced memory access 
and thread scheduling.  To circumvent an 8-
second execution time limit imposed by the 
Linux drivers for the graphics card, tests 
involving more than 100,000 random walks 
were broken down into multiple sub-steps each 
running at most 100,000 walks.  Note that the 
imprecision visible in Figure 3 below is 
attributable both to the use of single-precision 
floating point calculations instead of double-
precision in our tests (the GPU in question, 
GeForce GTS 8800, does not contain double-
precision floating point units) and to the 
relatively low number of walks (i.e., 200000) for 
each point.  Although only nine representative 
points are shown on the graph, the Helmholtz 

solution was calculated for a full 4096-point 
span for ],5.1,0[' =x  where kxx ='  is the 
normalized length scale shown in Fig. 1. 
    The GPU implementation utilized the 
Mersenne Twister pseudorandom number 
generator (PRNG) written by NVIDIA [8].  It 
was used to generate a very large array of 
pseudorandom numbers before the random walk 
algorithm began; the algorithm then picked 
successive numbers out of the pre-calculated 
array.  The random number array of about 24 
million values was recalculated on the GPU in 
roughly 1 second using 4096 parallel threads; 
when the test was broken into multiple sub-
steps, a new set of PRNGs was calculated with a 
new seed for each sub-step. 
     

 
 
Fig. 3. GPU solution to the Helmholtz equation 
utilizing random walks. The solution at nine 
representative points from a total of 4096 is 
shown. 
 

V.   CONCLUSION 
Summarizing, a previously-developed FRW 

methodology [6] for Neumann and mixed 
boundary problems has been extended to the 
solution of the 1D modified Helmholtz equation. 
In this methodology, reflecting boundaries are 
converted into absorbing boundaries through the 
development of Green’s functions that mimic 
the boundary conditions of the problem of 
interest. The algorithm has been validated by an 
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analytical solution and excellent agreement has 
been obtained between analytical and numerical 
results. The algorithm has been parallelized in 
software and a near linear rate of parallelization 
has been obtained for as many as thirty-two 
processors.  On a commodity graphics card, a 
speedup of over two orders of magnitude over 
the software implementation has been obtained. 
Further work involving GPU implementation 
will therefore begin with further optimizing our 
current implementation and considering a 
method of higher parallelization by scheduling 
threads on the per-walk level rather than the per-
point level, which while introducing more 
overhead will allow for similar (and therefore 
lower) execution time between threads. Our 
future work in this area will involve the 
extension of this methodology to other 
important equations and to problems in two and 
three dimensions. The ultimate goal of this 
research is the utilization of this methodology 
for the solution of aerodynamical problems with 
Neumann and mixed boundary conditions. 
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