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Abstract— Recent advancements in graphics computing 
technology has brought highly parallel processing power 
to desktop computers.  As multi-core multi-processor 
computing technology becomes mature, a new front in 
parallel computing technology based on graphics 
processing units has emerged.  This paper reports a 
highly parallel symmetrical condensed node TLM 
procedure for the NVIDIA graphics processing units.  
The algorithm has been tested on three NVIDIA 
processors, from low-end laptop graphics card to high-
end workstation graphics processors. 
 
Index Terms— TLM, FDTD, GPU, SIMD, time-
domain, parallel computing, stream computing. 

I. INTRODUCTION 
 Graphics processing unit (GPU) based parallel 
computing has been an important topic for the 
computing industry for over a decade. Macedonia 
addressed this topic in a computing magazine article in 
2003 [1].  Most of the papers on GPU computing were 
related to signal and image processing [2–6]. Krakiwsky 
et al. and Inman et al. applied the technique to accelerate 
the FDTD algorithm [7, 8]. Takizawa et al. applied GPU 
computing to heat transfer simulation [9]. Z. Luo et al. 
and Harding et al. applied the paradigm to artificial 
neural network [10] and genetic algorithm [11], 
respectively.  Furthermore, a cluster of GPU based 
computers can be created to execute grand challenge 
problems [12]. Researchers at Stanford [13] have been 
using this technique for years in protein folding 
computation. 

Developing general purpose numerical modules for 
GPU was made easy by NVIDIA.  The company 
released its Compute Unified Device Architecture 
(CUDA) Software Development Kit (SDK) in early 
2007.  The SDK enables programmers to develop GPU 
code in a high level language, C-for-CUDA. Rossi et al. 
reported the first implementations of a two- and a three-
dimensional transmission line matrix (TLM) [14-17] 
program using the CUDA SDK [18]. This highly parallel 
TLM code has been ported to the new released OpenCL 

[19] environment. This makes it possible to run the 
program on non-NVIDIA GPUs and on heterogeneous 
computing hardware (for instance, GPU based 
computers with multiple multi-core CPUs). This paper 
addresses the algorithm design, programming 
techniques, and performance issues for implementing 
GPU based programs; in particular, the pros and cons of 
choosing CUDA and OpenCL will be discussed. 

 

II. GPU COMPUTING 
Modern GPU designs architectures are based on the 

Single Instruction Multiple Data (SIMD) computing 
paradigm. This hardware architecture utilizes multiple 
processors to perform similar tasks on vast quantities of 
data.  The appeal for GPUs exists not only because of 
their computational ability, but also given that they are 
relatively inexpensive and can be installed on existing 
workstations.  The NVIDIA GPUs used in this project 
are GeForce 8800 Ultra, Quadro FX 570M and Quadro 
FX5600 graphics cards [20]; these GPUs have 4 to 16 
multi-processors with 8 processors each for a total of  32 
to 128 processors. The GPUs have a maximum of 1.5 
GB of GDDR3 global memory. A schematic that depicts 
the computing model of the NVIDIA GPU using a layer 
of a TLM mesh is shown in Fig. 1. The figure illustrates 
a typical iteration cycle. The data structure to be 
processed (called a mesh) is defined in both the CPU 
and the GPU. After seeding a data structure with initial 
conditions, the host transfers the data to the GPU's 
global memory and constant memory. A GPU function 
(called a kernel) would then be invoked which would 
execute on all multi-processors (4 to 16). This 
computing paradigm is scalable by utilizing GPU 
clusters internal or even external to a workstation [21]. 
Adaptation to GPUs is suitable for many science and 
engineering applications. However, the parallelization of 
existing algorithms may require intricate and complex 
adaption efforts. 

The driving forces behind the computing framework 
depicted in Fig. 1 are the thread-blocks that control the 
GPU executions, Fig. 2. A thread block is defined as a 
grouping of threads that executes concurrently on the 
GPU multi-processors. Multiple data elements could be 
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Fig. 4. TLM boundary operation. 

 
nodes.  A traditional serial TLM program can be easily 
parallelized by using OpenMP [22] compiler directives.  
However, the number of cores on a single CPU is small 
and the gain in performance by using OpenMP is 
therefore still limited. With GPUs, numerical procedures 
such those described above can be executed in parallel 
on a much larger scale. 
 

IV. IMPLEMENTATION 
Efficient use of multiprocessor resources, especially 

global memory transfer strategies, can help to achieve 
close to the maximum theoretical operating speeds of 
GPUs. Memory transfer rates between the global 
memory and multiprocessors can be used as a 
benchmark for GPU performance since much of the 
kernel execution time (70% to 80%) may be spent in 
accessing global memory. In the case of the Quadro FX 
5600, the maximum theoretical memory bandwidth to 
global memory is 76.8 GB/sec [21] or expressed as 
read+write round trip: 38.4 GB/sec. 

Memory coalescing is a performance enhancement 
technique whereby access to global memory by 
multiprocessors can be accelerated [20]. Global memory 
(GDDR3 memory) consists of physical banks of 
memory. Access to global memory by any of the 
multiprocessors results in 400-600 clock cycles of 
latency. In other words, each four byte float or integer 
copied from or written to global memory takes 400-600 
clock cycles. Since the GDDR3 global memory exists 
physically as banks of memory, reads/writes can be 
organized such that [20]: 

1. The starting address of each half-warp (16 
threads) falls on a 64 byte interval 

2. Each thread of a half-warp reads/writes 4, 8 or 
16 bytes consecutively  

3. The threads of each half-warp must be spaced at 
4, 8 or 16 byte intervals. 
 

Figure 5 illustrates the differences in memory access 
speed (GB/sec read-write round trip) between coalesced 
code (~25 GB/sec) and non-coalesced code (~3 GB/sec). 

A speed-up of over 8 times for coalesced kernel code 
warranted developing TLM kernel that adhered to 
coalescing coding strategies. 

 

 
Fig. 5. GPU performance differences between coalesced 

a non-coalesced memory configurations. 
 
 

  
Fig. 6. Coalesced global memory access by thread-

blocks of multiprocessors. 
 

The TLM kernel is designed such that global memory 
is grouped by voltage link lines (12 per TLM node), and 
accessed by the multiprocessors in a coalesced manner 
to take maximum advantage of the GPUs speed 
performance, Fig. 6. The resolution of the Y and Z 
dimensions of a mesh is each one node wide. However, 
the X dimension is partitioned into 64 node segments. 
The addressing is thus contiguous, first in the x-
direction, then the y-direction and finally the z-direction.  
The thread-block dimension is defined at 64 threads, 
where the kernel would read a voltage link line for 64 
nodes at a time in the x-direction. For example, 64 
values of V1 would be read for 64 nodes, then for V2 
would be read for the same 64 nodes and so on until all 
12 voltagess have been read so that the scattering 
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structure and 288 MNodes/sec with the filter 
implemented. Ongoing research activities are focusing 
on improving the speed of execution and adapting the  

 
Fig. 11. Performance comparison — CUDA versus 

OpenCL. 
 
algorithms to solve various structures and 
configurations. An investigation in utilizing a cluster of 
4 NVIDIA GPUs on an Acceleware ClusterInABox™ 
Quad Q30 workstation is being conducted. The 
implementations described above can be modified to 
handle the generalized symmetrical condensed node 
(GSCN) TLM algorithm developed by Trenkic et al. 
[23, 24].  The total number of voltage impulses to be 
stored per node would thus increases from 12 to 18.  
This would reduce the number of nodes each multi-
processor thread-block can handle.  However the GSCN 
scattering procedure would not cause any significant 
reduction on the overall performance as the bottleneck is 
in the data transfer, not in number of floating point 
operations.  Hence, the performance results depicted in 
figures 8 and 12 are still valid but the code would reach 
the maximum acceleration at a smaller structure size. 
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