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Abstract— Recent advancements in graphics computing
technology has brought highly parallel processing power
to desktop computers. As multi-core multi-processor
computing technology becomes mature, a new front in
parallel computing technology based on graphics
processing units has emerged. This paper reports a
highly parallel symmetrical condensed node TLM
procedure for the NVIDIA graphics processing units.
The algorithm has been tested on three NVIDIA
processors, from low-end laptop graphics card to high-
end workstation graphics processors.

Index Terms— TLM, FDTD, GPU, SIMD,
domain, parallel computing, stream computing.
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I. INTRODUCTION

Graphics processing unit (GPU) based parallel
computing has been an important topic for the
computing industry for over a decade. Macedonia
addressed this topic in a computing magazine article in
2003 [1]. Most of the papers on GPU computing were
related to signal and image processing [2—-6]. Krakiwsky
et al. and Inman et al. applied the technique to accelerate
the FDTD algorithm [7, 8]. Takizawa et al. applied GPU
computing to heat transfer simulation [9]. Z. Luo et al.
and Harding et al. applied the paradigm to artificial
neural network [10] and genetic algorithm [11],
respectively.  Furthermore, a cluster of GPU based
computers can be created to execute grand challenge
problems [12]. Researchers at Stanford [13] have been
using this technique for years in protein folding
computation.

Developing general purpose numerical modules for
GPU was made easy by NVIDIA. The company
released its Compute Unified Device Architecture
(CUDA) Software Development Kit (SDK) in early
2007. The SDK enables programmers to develop GPU
code in a high level language, C-for-CUDA. Rossi et al.
reported the first implementations of a two- and a three-
dimensional transmission line matrix (TLM) [14-17]
program using the CUDA SDK [18]. This highly parallel
TLM code has been ported to the new released OpenCL

[19] environment. This makes it possible to run the
program on non-NVIDIA GPUs and on heterogeneous
computing hardware (for instance, GPU based
computers with multiple multi-core CPUs). This paper
addresses  the algorithm  design, programming
techniques, and performance issues for implementing
GPU based programs; in particular, the pros and cons of
choosing CUDA and OpenCL will be discussed.

1. GPU COMPUTING

Modern GPU designs architectures are based on the
Single Instruction Multiple Data (SIMD) computing
paradigm. This hardware architecture utilizes multiple
processors to perform similar tasks on vast quantities of
data. The appeal for GPUs exists not only because of
their computational ability, but also given that they are
relatively inexpensive and can be installed on existing
workstations. The NVIDIA GPUs used in this project
are GeForce 8800 Ultra, Quadro FX 570M and Quadro
FX5600 graphics cards [20]; these GPUs have 4 to 16
multi-processors with 8 processors each for a total of 32
to 128 processors. The GPUs have a maximum of 1.5
GB of GDDR3 global memory. A schematic that depicts
the computing model of the NVIDIA GPU using a layer
of a TLM mesh is shown in Fig. 1. The figure illustrates
a typical iteration cycle. The data structure to be
processed (called a mesh) is defined in both the CPU
and the GPU. After seeding a data structure with initial
conditions, the host transfers the data to the GPU's
global memory and constant memory. A GPU function
(called a kernel) would then be invoked which would
execute on all multi-processors (4 to 16). This
computing paradigm is scalable by utilizing GPU
clusters internal or even external to a workstation [21].
Adaptation to GPUs is suitable for many science and
engineering applications. However, the parallelization of
existing algorithms may require intricate and complex
adaption efforts.

The driving forces behind the computing framework
depicted in Fig. 1 are the thread-blocks that control the
GPU executions, Fig. 2. A thread block is defined as a
grouping of threads that executes concurrently on the
GPU multi-processors. Multiple data elements could be
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assigned per thread (data block). A maximum of 512
threads per thread block are available for the GPUs,
therefore it is then necessary to partition the mesh into
data blocks. Each multi-processor would, in turn,
execute on a data block utilizing its thread-block and
then transfer the results back to the global memory.
After which the multiprocessor would download the next
available data block. The 16 multi-processors on the
graphics card used in this project worked concurrently
and are coordinated to process all data blocks in the
global memory.
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Fig. 1. NVIDIA CUDA based GPU computing
framework.

Fig. 2. NVIDIA CUDA based GPU computing
framework.

1. SYMMETRIC CONDENSED NODE TLM

The three-dimensional symmetrical condensed node
(SCN) is depicted in Fig. 3. The fundamental procedures
in a TLM algorithm are the scattering, transfer and
reflection of voltage impulses, [17]. There are two
orthogonal transmission link lines in each port of the
TLM node. Voltage impulses travelling along the x-axis
are polarized in the y- or z-direction; similarly voltage
impulses on the y- and z-axis are polarized in the other
two orthogonal directions on the plane transverse to the
direction of propagation. Hence, there are a total of 12
voltage impulses in each symmetrical condensed node.
The scattering matrix for the symmetrical condensed
node TLM method is a 12x12 matrix [17]. Therefore, a
matrix multiplication operation can be used to obtain the
reflected voltage vector from the incident voltage vector.
The other two TLM operations are transfer of impulses
to the neighboring link lines and reflection of impulses
at material boundaries, Fig. 4. These two operations are
applied to the two orthogonally polarized voltage
impulses. All three TLM operations — scattering,
transfer and reflection of voltage impulses — are
localized operations which may be executed in parallel
to reduce computing time. A quad-core processor may
execute each operation concurrently for four TLM

y+
—»12 4
A
2
i %
X— X+
G/I 164
8
9
25 7—»1
5 y=
[V =[SI[7],
a a | la -a ]
a i a i —a a
a a | al —a
a la _-a | a
a| a —a a
a la a l-a
[s1- 4 a al a
e e e a__
a i —a i a a
-a la a |a
—a ai a i a
a-a | la a |

Fig. 3. SCN scattering algorithm.
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Fig. 4. TLM boundary operation.
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nodes. A traditional serial TLM program can be easily
parallelized by using OpenMP [22] compiler directives.
However, the number of cores on a single CPU is small
and the gain in performance by using OpenMP is
therefore still limited. With GPUs, numerical procedures
such those described above can be executed in parallel
on a much larger scale.

IV. IMPLEMENTATION

Efficient use of multiprocessor resources, especially
global memory transfer strategies, can help to achieve
close to the maximum theoretical operating speeds of
GPUs. Memory transfer rates between the global
memory and multiprocessors can be used as a
benchmark for GPU performance since much of the
kernel execution time (70% to 80%) may be spent in
accessing global memory. In the case of the Quadro FX
5600, the maximum theoretical memory bandwidth to
global memory is 76.8 GB/sec [21] or expressed as
read+write round trip: 38.4 GB/sec.

Memory coalescing is a performance enhancement
technique whereby access to global memory by
multiprocessors can be accelerated [20]. Global memory
(GDDR3 memory) consists of physical banks of
memory. Access to global memory by any of the
multiprocessors results in 400-600 clock cycles of
latency. In other words, each four byte float or integer
copied from or written to global memory takes 400-600
clock cycles. Since the GDDR3 global memory exists
physically as banks of memory, reads/writes can be
organized such that [20]:

1. The starting address of each half-warp (16

threads) falls on a 64 byte interval

2. Each thread of a half-warp reads/writes 4, 8 or

16 bytes consecutively
3. The threads of each half-warp must be spaced at
4, 8 or 16 byte intervals.

Figure 5 illustrates the differences in memory access
speed (GB/sec read-write round trip) between coalesced
code (~25 GB/sec) and non-coalesced code (~3 GB/sec).
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A speed-up of over 8 times for coalesced kernel code
warranted developing TLM kernel that adhered to
coalescing coding strategies.
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Fig. 5. GPU performance differences between coalesced

a non-coalesced memory configurations.
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Fig. 6. Coalesced global memory access by thread-
blocks of multiprocessors.

The TLM kernel is designed such that global memory
is grouped by voltage link lines (12 per TLM node), and
accessed by the multiprocessors in a coalesced manner
to take maximum advantage of the GPUs speed
performance, Fig. 6. The resolution of the Y and Z
dimensions of a mesh is each one node wide. However,
the X dimension is partitioned into 64 node segments.
The addressing is thus contiguous, first in the x-
direction, then the y-direction and finally the z-direction.
The thread-block dimension is defined at 64 threads,
where the kernel would read a voltage link line for 64
nodes at a time in the x-direction. For example, 64
values of V1 would be read for 64 nodes, then for V2
would be read for the same 64 nodes and so on until all
12 voltagess have been read so that the scattering
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procedure may commence on 64 nodes. Writing results
back to global memory is done in a similar manner. Fig
7 showcases the performance enhancement of
configuring the TLM kernel in a coalesced fashion.
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Fig. 7. TLM codes performance on 1 to 4 CPUs. The

codes were used to analyze a WR-28 filter
(150,000 nodes). The GPU codes have a non-
coalesced GPU kernel and a coalesced GPU
Kernel.

V. OPENCL IMPLEMENTATION

The newly released OpenCL  application
programming interface (API) has many features found in
the CUDA paradigm. In fact, once a program has been
developed using the CUDA framework, it is not difficult
to implement an equivalent version in OpenCL. This is
especially true if the NVIDIA's "Driver API" method is
used instead of "C for CUDA" [19]. Both OpenCL and
the Driver API standards are handle-based hence objects
to memory and functions are required. However,
OpenCL differs in its ability to utilize a heterogeneous
mixture of parallel hardware. An OpenCL application
can utilize a mixture of GPUs, CPUs, and other
processors. Therefore OpenCL is a powerful APl for
integrating multiple parallel platforms under one
cohesive programming paradigm.

Figure 8 depicts some equivalent programming
constructs in the two APIs. As shown in the figure most
of the equivalent constructs have meaningful mapping
from CUDA to OpenCL; the only exception in the table
is the "Local Memory™" construct.

In addition to systemically replacing the
programming constructs, it is also necessary to substitute
CUDA kernel code attribute modifiers with equivalent
OpenCL methods, Fig.9. A short code segment that
illustrates the code transformation concept is shown in
Fig. 10. When compared to CUDA, OpenCL is a
relatively new API hence it is less efficient than CUDA
especially when the problem size is small. Figure 11
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compares the performance of our CUDA and OpenCL
TLM code. When the structure size reaches about 10
million nodes, the two programs have similar
computation speed.
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Fig. 8. Equivalent programming constructs in CUDA
and OpenCL.

CUDA Kernel Code - OpenCL Kernel Code Replacement

gridDim get_num_groups(n)
blockDim get_local_size(n)
blockldx get_group_id(n)

threadidx get_local_id(n)

__global__ function (callable from

host, not callable from device) __kernel function (callable from host

__device__ function (not callable 7L,

from host)

__constant__ variable declaration __constant variable declaration
__device__ variable declaration __global variable declaration
_ shared__ variable declaration __local variable declaration

__syncthreads() barrier()

Fig. 9. Attribute transformation table.

CUDA Kernel Code OpenCL Kernel Code

Fig. 10. Kernel code transformation.

V1. CONCLUSION

We have successfully designed and implemented a
highly parallel SCN TLM algorithm for the
CUDA/OpenCL enabled NVIDIA GPU. It is found that
both CUDA and OpenCL are good programming APIs
for implementing computational intensive applications
such as TLM on GPU based hardware. Our latest CUDA
implementation of the 3D SCN TLM routine has
achieved a 293 MNodes/sec performance of an empty
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structure and 288 MNodes/sec with the filter
implemented. Ongoing research activities are focusing
on improving the speed of execution and adapting the
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Fig. 11. Performance comparison — CUDA versus
OpenCL.
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algorithms  to  solve various  structures and
configurations. An investigation in utilizing a cluster of
4 NVIDIA GPUs on an Acceleware ClusterinABox™
Quad Q30 workstation is being conducted. The
implementations described above can be modified to
handle the generalized symmetrical condensed node
(GSCN) TLM algorithm developed by Trenkic et al.
[23, 24]. The total number of voltage impulses to be
stored per node would thus increases from 12 to 18.
This would reduce the number of nodes each multi-
processor thread-block can handle. However the GSCN
scattering procedure would not cause any significant
reduction on the overall performance as the bottleneck is
in the data transfer, not in number of floating point
operations. Hence, the performance results depicted in
figures 8 and 12 are still valid but the code would reach
the maximum acceleration at a smaller structure size.
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