

GPU Based TLM Algorithms in CUDA and OpenCL

Filippo Rossi, Colter McQuay, and Poman So

Computational Electromagnetics Research Laboratory
Department of Electrical and Computer Engineering

University of Victoria, Victoria, BC, V8W 3P6, Canada

Abstract— Recent advancements in graphics computing
technology has brought highly parallel processing power
to desktop computers. As multi-core multi-processor
computing technology becomes mature, a new front in
parallel computing technology based on graphics
processing units has emerged. This paper reports a
highly parallel symmetrical condensed node TLM
procedure for the NVIDIA graphics processing units.
The algorithm has been tested on three NVIDIA
processors, from low-end laptop graphics card to high-
end workstation graphics processors.

Index Terms— TLM, FDTD, GPU, SIMD, time-
domain, parallel computing, stream computing.

I. INTRODUCTION
 Graphics processing unit (GPU) based parallel
computing has been an important topic for the
computing industry for over a decade. Macedonia
addressed this topic in a computing magazine article in
2003 [1]. Most of the papers on GPU computing were
related to signal and image processing [2–6]. Krakiwsky
et al. and Inman et al. applied the technique to accelerate
the FDTD algorithm [7, 8]. Takizawa et al. applied GPU
computing to heat transfer simulation [9]. Z. Luo et al.
and Harding et al. applied the paradigm to artificial
neural network [10] and genetic algorithm [11],
respectively. Furthermore, a cluster of GPU based
computers can be created to execute grand challenge
problems [12]. Researchers at Stanford [13] have been
using this technique for years in protein folding
computation.

Developing general purpose numerical modules for
GPU was made easy by NVIDIA. The company
released its Compute Unified Device Architecture
(CUDA) Software Development Kit (SDK) in early
2007. The SDK enables programmers to develop GPU
code in a high level language, C-for-CUDA. Rossi et al.
reported the first implementations of a two- and a three-
dimensional transmission line matrix (TLM) [14-17]
program using the CUDA SDK [18]. This highly parallel
TLM code has been ported to the new released OpenCL

[19] environment. This makes it possible to run the
program on non-NVIDIA GPUs and on heterogeneous
computing hardware (for instance, GPU based
computers with multiple multi-core CPUs). This paper
addresses the algorithm design, programming
techniques, and performance issues for implementing
GPU based programs; in particular, the pros and cons of
choosing CUDA and OpenCL will be discussed.

II. GPU COMPUTING
Modern GPU designs architectures are based on the

Single Instruction Multiple Data (SIMD) computing
paradigm. This hardware architecture utilizes multiple
processors to perform similar tasks on vast quantities of
data. The appeal for GPUs exists not only because of
their computational ability, but also given that they are
relatively inexpensive and can be installed on existing
workstations. The NVIDIA GPUs used in this project
are GeForce 8800 Ultra, Quadro FX 570M and Quadro
FX5600 graphics cards [20]; these GPUs have 4 to 16
multi-processors with 8 processors each for a total of 32
to 128 processors. The GPUs have a maximum of 1.5
GB of GDDR3 global memory. A schematic that depicts
the computing model of the NVIDIA GPU using a layer
of a TLM mesh is shown in Fig. 1. The figure illustrates
a typical iteration cycle. The data structure to be
processed (called a mesh) is defined in both the CPU
and the GPU. After seeding a data structure with initial
conditions, the host transfers the data to the GPU's
global memory and constant memory. A GPU function
(called a kernel) would then be invoked which would
execute on all multi-processors (4 to 16). This
computing paradigm is scalable by utilizing GPU
clusters internal or even external to a workstation [21].
Adaptation to GPUs is suitable for many science and
engineering applications. However, the parallelization of
existing algorithms may require intricate and complex
adaption efforts.

The driving forces behind the computing framework
depicted in Fig. 1 are the thread-blocks that control the
GPU executions, Fig. 2. A thread block is defined as a
grouping of threads that executes concurrently on the
GPU multi-processors. Multiple data elements could be

348

1054-4887 © 2010 ACES

ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010

ass
thr
the
dat
exe
the
Aft
ava
gra
and
glo

Fig

Fig

signed per th
reads per thr
erefore it is th
ta blocks. E
ecute on a d
en transfer th
fter which the
ailable data b
aphics card u
d are coordin
obal memory.

g. 1. NVIDIA
framew

g. 2. NVIDIA
framewo

hread (data b
read block ar
hen necessary
Each multi-p
data block ut
he results ba
 multiprocess
block. The

used in this p
nated to pro

A CUDA bas
work.

A CUDA base
ork.

block). A ma
re available
y to partition
processor w
tilizing its th
ack to the g
sor would dow
16 multi-pro

project worke
cess all data

ed GPU comp

d GPU comp

aximum of 5
for the GPU

n the mesh in
ould, in tur

hread-block a
global memor
wnload the ne
ocessors on t
ed concurrent
a blocks in t

puting

puting

12
Us,
nto
rn,

and
ry.
ext
the
tly
the

III. S
The

(SCN)
in a T
reflect
orthog
TLM n
are po
impuls
two or
directi
voltage
The sc
node T
matrix
reflect
The ot
to the
at mat
applie
impul
transf
localiz
to redu
execut

Fig. 3.

SYMMETR
e three-dimen
) is depicted i
TLM algorith
tion of volta

gonal transmi
node. Voltag

olarized in th
ses on the y-
rthogonal dire
on of propag
e impulses in
cattering ma
TLM method
x multiplicatio
ed voltage ve
ther two TLM
neighboring

terial boundar
ed to the tw
ses. All thre

fer and refle
zed operation
uce computin
te each ope

 SCN scatter

RIC CONDE
nsional symm
n Fig. 3. The
hm are the s
age impulse
ission link li

ge impulses tr
e y- or z-dire
and z-axis ar

ections on the
gation. Hence
n each symm
trix for the
is a 12×12 m

on operation c
ector from the
M operations

link lines an
ries, Fig. 4. T

wo orthogon
ee TLM ope

ection of vo
ns which may
ng time. A q
ration concu

ring algorithm

ENSED NO
metrical cond
 fundamental
scattering, tr
s, [17]. The
ines in each
ravelling alon
ection; simila
re polarized i
e plane transv
e, there are a

metrical conde
symmetrical

matrix [17]. T
can be used to
e incident vol
are transfer

nd reflection
These two op
ally polariz
erations —

oltage impul
y be executed
quad-core pro
urrently for

m.

DE TLM
densed node
l procedures
ransfer and
ere are two

port of the
ng the x-axis
arly voltage
in the other
verse to the

a total of 12
ensed node.

condensed
Therefore, a
o obtain the
ltage vector.
of impulses
of impulses
erations are
ed voltage
scattering,

lses — are
d in parallel
ocessor may

four TLM

349ROSSI, MCQUAY, SO: GPU BASED TLM ALGORITHMS IN CUDA AND OPENCL

Fig. 4. TLM boundary operation.

nodes. A traditional serial TLM program can be easily
parallelized by using OpenMP [22] compiler directives.
However, the number of cores on a single CPU is small
and the gain in performance by using OpenMP is
therefore still limited. With GPUs, numerical procedures
such those described above can be executed in parallel
on a much larger scale.

IV. IMPLEMENTATION
Efficient use of multiprocessor resources, especially

global memory transfer strategies, can help to achieve
close to the maximum theoretical operating speeds of
GPUs. Memory transfer rates between the global
memory and multiprocessors can be used as a
benchmark for GPU performance since much of the
kernel execution time (70% to 80%) may be spent in
accessing global memory. In the case of the Quadro FX
5600, the maximum theoretical memory bandwidth to
global memory is 76.8 GB/sec [21] or expressed as
read+write round trip: 38.4 GB/sec.

Memory coalescing is a performance enhancement
technique whereby access to global memory by
multiprocessors can be accelerated [20]. Global memory
(GDDR3 memory) consists of physical banks of
memory. Access to global memory by any of the
multiprocessors results in 400-600 clock cycles of
latency. In other words, each four byte float or integer
copied from or written to global memory takes 400-600
clock cycles. Since the GDDR3 global memory exists
physically as banks of memory, reads/writes can be
organized such that [20]:

1. The starting address of each half-warp (16
threads) falls on a 64 byte interval

2. Each thread of a half-warp reads/writes 4, 8 or
16 bytes consecutively

3. The threads of each half-warp must be spaced at
4, 8 or 16 byte intervals.

Figure 5 illustrates the differences in memory access
speed (GB/sec read-write round trip) between coalesced
code (~25 GB/sec) and non-coalesced code (~3 GB/sec).

A speed-up of over 8 times for coalesced kernel code
warranted developing TLM kernel that adhered to
coalescing coding strategies.

Fig. 5. GPU performance differences between coalesced

a non-coalesced memory configurations.

Fig. 6. Coalesced global memory access by thread-

blocks of multiprocessors.

The TLM kernel is designed such that global memory
is grouped by voltage link lines (12 per TLM node), and
accessed by the multiprocessors in a coalesced manner
to take maximum advantage of the GPUs speed
performance, Fig. 6. The resolution of the Y and Z
dimensions of a mesh is each one node wide. However,
the X dimension is partitioned into 64 node segments.
The addressing is thus contiguous, first in the x-
direction, then the y-direction and finally the z-direction.
The thread-block dimension is defined at 64 threads,
where the kernel would read a voltage link line for 64
nodes at a time in the x-direction. For example, 64
values of V1 would be read for 64 nodes, then for V2
would be read for the same 64 nodes and so on until all
12 voltagess have been read so that the scattering

0

5

10

15

20

25

30

88 96 104 112 120 128 136 144 152 160 168 176 184 192 200 208

Re
ad

‐W
rit
e
Tr
an
sf
er
 R
at
e
(G
B/
Se
c)

Threads Per Thread‐Block

Read + Write Round Trip Transfer Rate
4 bytes/thread

V9V10V11V12 V1V2V3V4V5V6V7V8

Global Memory

V5V6

V1 V2

V3

V4V7

V8

Y

X

Z

Memory Grouped by Voltage Link-Lines and Coalesced Partitions

350 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010

pro
bac
7
con

Fig.

pro
the
dev
to
esp
use
the
to
Op
mix
can
pro
int
coh

con
of
fro
is t

pro
CU
Op
illu
Fig
rel
esp

1

1

2

2

Sp
ee

d
(M

eg
aN

od
es
/s
ec
)

ocedure may
ck to global m

showcases
nfiguring the

. 7. TLM co
codes w
(150,000
coalesce
Kernel.

V. OPE
The newl

ogramming in
e CUDA para
veloped using
implement an

pecially true i
ed instead of
e Driver API

memory an
penCL differs
xture of para
n utilize a
ocessors. The
egrating mu
hesive progra
 Figure 8 d

nstructs in the
the equivale

om CUDA to
the "Local Me
In additio

ogramming co
UDA kernel c
penCL metho
ustrates the c
g. 10. When
atively new A
pecially when

5.5
0

50

100

150

200

250

1 CPU

Per

commence o
memory is do

the perfo
TLM kernel

odes performa
were used to
0 nodes). Th
d GPU kern

ENCL IMPL
ly released
nterface (API)
adigm. In fac
g the CUDA f
n equivalent
if the NVIDI

f "C for CUD
standards are
nd functions
s in its ability
allel hardwar
mixture of

erefore Open
ultiple paral
amming parad
depicts some
e two APIs. A

ent constructs
OpenCL; the

emory" const
n to sys
onstructs, it is
code attribute

ods, Fig. 9.
code transform

compared
API hence it
n the proble

9.3 11.1

2 CPUs 3 CPUs

rformance C
(WR‐28 F

on 64 nodes.
one in a simil
ormance enh
in a coalesced

ance on 1 to
o analyze a
e GPU code
nel and a c

LEMENTA
d OpenCL
) has many fe
ct, once a pro
framework, it
version in O

IA's "Driver A
DA" [19]. Bot
e handle-base
s are requir
y to utilize a
re. An Open

GPUs, CPU
nCL is a pow
llel platform
digm.
e equivalent
As shown in
s have meani
e only except
truct.
stemically r
s also necessa
e modifiers w
A short cod
mation conce
to CUDA,
is less efficie

em size is sm

12.2

38.

4 CPUs GPU

Comparison
Filter)

Writing resu
lar manner. F
hancement
d fashion.

o 4 CPUs. T
WR-28 filt

es have a no
coalesced GP

ATION
L applicati
eatures found
ogram has be
t is not difficu

OpenCL. This
API" method
th OpenCL a
d hence objec
red. Howev

a heterogeneo
nCL applicati
Us, and oth
werful API f

ms under o

programmi
the figure mo
ingful mappi
tion in the tab

replacing t
ary to substitu
with equivale
e segment th

ept is shown
OpenCL is

ent than CUD
mall. Figure

8

202.0

U GPU: Coalesced

n

ults
Fig

of

The
ter

on-
PU

on
in

een
ult
is

d is
and
cts
er,

ous
on

her
for

one

ng
ost
ng
ble

the
ute
ent
hat
in
a

DA
11

compa
TLM
million
compu

Fig. 8.

Fig. 9.

Fig. 10

We
highly
CUDA
both C
for im
such a
implem
achiev

ares the perfo
code. When
n nodes, t
utation speed.

 Equivalent
and OpenC

 Attribute tra

0. Kernel cod

VI
e have succe
 parallel

A/OpenCL en
CUDA and O
mplementing

s TLM on GP
mentation of
ved a 293 MN

ormance of o
n the structur
the two pr

programmin
CL.

ansformation

de transforma

I. CONCLU
ssfully desig
SCN TLM

nabled NVIDI
OpenCL are g

computationa
PU based hard
f the 3D S
Nodes/sec pe

our CUDA an
re size reache
rograms hav

ng constructs

table.

ation.

USION
ned and imp

M algorithm
IA GPU. It is
good program
al intensive a
dware. Our la

SCN TLM r
erformance o

nd OpenCL
es about 10
ve similar

 in CUDA

plemented a
m for the

s found that
mming APIs
applications
atest CUDA
routine has

of an empty

351ROSSI, MCQUAY, SO: GPU BASED TLM ALGORITHMS IN CUDA AND OPENCL

structure and 288 MNodes/sec with the filter
implemented. Ongoing research activities are focusing
on improving the speed of execution and adapting the

Fig. 11. Performance comparison — CUDA versus

OpenCL.

algorithms to solve various structures and
configurations. An investigation in utilizing a cluster of
4 NVIDIA GPUs on an Acceleware ClusterInABox™
Quad Q30 workstation is being conducted. The
implementations described above can be modified to
handle the generalized symmetrical condensed node
(GSCN) TLM algorithm developed by Trenkic et al.
[23, 24]. The total number of voltage impulses to be
stored per node would thus increases from 12 to 18.
This would reduce the number of nodes each multi-
processor thread-block can handle. However the GSCN
scattering procedure would not cause any significant
reduction on the overall performance as the bottleneck is
in the data transfer, not in number of floating point
operations. Hence, the performance results depicted in
figures 8 and 12 are still valid but the code would reach
the maximum acceleration at a smaller structure size.

ACKNOWLEDGMENT

The authors wish to acknowledge the financial
supports from the Canada Foundation for Innovation
(CFI) and the Natural Science and Engineering Research
Council (NSERC) of Canada.

REFERENCES

[1] M. Macedonia, "The GPU Enters Computing's
Mainstream", IEEE Computer, vol. 36, no. 10, pp.
106–108, October 2003.

[2] G. Shen, G. P. Gao, S. Li, H. Y. Shum and
Y. Q. Zhang, "Accelerating Video Decoding Using
GPU", IEEE Transactions on Circuits and Systems
for Video Technology, vol. 15, no. 5, pp. 685–693,
May 2005.

[3] J. Y. Hong and M. D. Wang, "High speed
processing of biomedical images using
programmable GPU", International Conference on
Image Processing, vol. 4, pp. 2455–2458, October
2004.

[4] Y. Heng and L. Gu, "GPU-based Volume
Rendering for Medical Image Visualization", 27th
Annual International Conference on Engineering in
Medicine and Biology, pp. 5145–5148, 2005.

[5] O. Fialka and M. Cadik, "FFT and Convolution
Performance in Image Filtering on GPU", IEEE
Proceedings of the Information Visualization,
pp. 609–614, July 2006.

[6] J. S. Meredith, S. R. Alam and J. S. Vetter,
"Analysis of a Computational Biology Simulation
Technique on Emerging Processing Architectures",
IEEE International Symposium on Parallel and
Distributed Processing, pp. 1–8, March 2007.

[7] S. E. Krakiwsky, L. E. Turner and M.
M. Okoniewski, "Graphics Processor Unit
Acceleration of Finite-Difference Time-Domain
Algorithm", Proceedings of IEEE International
Symposium on Circuits and Systems, vol. 5,
pp. V265 – V268, May 2004.

[8] M. J. Inman, and A. Z. Elsherbeni, “Programming
video cards for computational electromagnetics
applications”, IEEE Antennas and Propagation
Magazine, vol. 47, no. 6, pp. 71–78, December
2005.

[9] H. Takizawa, N. Yamada, S. Sakai, and
H. Kobayashi, "Radiative Heat Transfer Simulation
Using Programmable Graphics Hardware", 5th
IEEE/ACIS International Conference on Computer
and Information Science, pp. 29–37, July 2006.

[10] Z. Luo, H. Liu, and X. Wu, "Artificial Neural
Network Computation on Graphic Process Unit",
Proceedings of IEEE International Joint
Conference on Neural Networks, vol. 1, pp. 622–
626, August 2005.

[11] S. Harding, W. Banzhaf, "Fast Genetic
Programming and Artificial Developmental
Systems on GPUs", 21st International Symposium
on High Performance Computing Systems and
Applications, p. 2, May 2007.

[12] F. Zhe, Q. Feng, A. Kaufman and S. Yoakum-
Stover, "GPU Cluster for High Performance
Computing", Proceedings of the ACM/IEEE
Conference on Supercomputing, pp. 47, 2004.

352 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010

[13] folding.stanford.edu/FAQ-ATI.html
[14] F. V. Rossi, “Massively Parallel Two-Dimensional

TLM Algorithm on Graphics Processing Units,”
IEEE International Microwave Symposium, June
2008.

[15] F. Rossi and P. P. M. So, “Parallelized three-
dimensional TLM algorithms on a graphics
processing unit”, 25th International Review of
Progress in Applied Computational
Electromagnetics Symposium, pp. 110–114, March
2009.

[16] W. J. R. Hoefer, “The Transmission-Line Matrix
Method – Theory and Applications”, IEEE
Transactions on Microwave Theory and
Techniques, vol. MTT-33. No. 10, pp.882-893,
October 1995.

[17] P. B. Johns, “A symmetrical condensed node for the
TLM method,” IEEE Transactions on Microwave
Theory and Technique, vol-35, no. 4, pp. 370–377,
April 1987.

[18] http://www.nvidia.com/object/cuda_home_new.htm
l, April 2010.

[19] http://www.khronos.org/opencl/
[20] http://www.nvidia.com
[21] ClusterInABox Quad (Q30) Product Info,

http://www.acceleware.com/default/index.cfm/our-
products/clusterinabox-quad, November 2008.

[22] http://OpenMP.org/wp/
[23] V. Trenkic, C. Christopoulos, and T. M. Benson,

“Development of a general symmetrical condensed
node for the TLM method”, IEEE Trans. on
Microwave Theory and Techniques, vol. MTT-44,
no. 12, pp. 2129–2135, December 1996.

[24] V. Trenkic, C. Christopoulos, and T. M. Benson,
“Advanced node formulations in TLM — the
adaptable symmetrical condensed node”, IEEE
Trans. on Microwave Theory and Techniques, vol.
MTT-44, no. 12, pp. 2473–2478, December 1996.

Filippo Rossi received the B.Eng.
degree in Electrical Engineering in 2008
from the University of Victoria,
Victoria, British Columbia, Canada.
Currently he is completing a Master of
Applied Science at the University of
Victoria. He is working at the

Computational Electromagnetics Research Laboratory
(CERL) at the University of Victoria in GPU computing,
as well as working with the Millimeter Instrumentation
team at the Herzberg Institute of Astrophysics, Victoria,
B.C., Canada.

Colter McQuay is an undergraduate
student at the University of Victoria,
B.C. in Electrical Engineering with a
specialization in Signal Processing and
Computer Music. Colter was born in
Kamloops B.C. in 1987. In 2009, his
research focused on implementing

TLM algorithms on GPU hardware using OpenCL ,
presenting a paper at the USRI Conference in Boulder
Colorado in Jan 2010. Currently Colter is involved in
writing an open source electromagnetic simulation
application using the code developed in previous
research.

Poman So is an Assistant
Professor at the University of Victoria.
He received the B.Sc. degree in
Computer Science and Physics from
the University of Toronto, Toronto,
Ontario, Canada, in 1985; the B.A.Sc.
and M.A.Sc. degrees in Electrical
Engineering from the University of

Ottawa, Ottawa, Ontario, Canada, in 1985 and 1987,
respectively; and the Ph.D. degree in Electrical
Engineering from the University of Victoria, Victoria,
BC, Canada, in 1996.

Dr. So possesses twenty years of hands-on object-
oriented software engineering experience in time-
domain computational electromagnetics. He developed
a number of electromagnetic wave simulators based on
the Transmission Line Matrix (TLM) method. Dr. So is
a co-founder of the Faustus Scientific Corporation and is
the creator and chief software architect of MEFiSTo, a
general purpose time-domain electromagnetic field
solver based on the Transmission Line Matrix method.
From July 1998 to June 2005, Dr. So was the Principal
Software Engineer at Faustus Scientific Corporation. In
July 2005, He joined the Department of Electrical
Engineering at the University of Victoria. His research
interests include object-oriented computational
electromagnetics, graphics processing unit (GPU) based
massively parallel TLM algorithms, time domain
modeling of advanced electromagnetic structures, and
modeling of bio-electromagnetic systems.

353ROSSI, MCQUAY, SO: GPU BASED TLM ALGORITHMS IN CUDA AND OPENCL

Dr. So is a Registered Professional Engineer in the
Province of British Columbia, Canada. He is a senior
member of The Institute of Electrical and Electronics
Engineers (IEEE), a member of Applied Computational
Electromagnetics Society (ACES), and a member of the
Canadian Medical and Biological Engineering Society
(CMBES). He has published over 100 refereed journal
and conference papers. Dr. So serves regularly a
reviewer for the IEEE Transactions on Microwave
Theory and Techniques, the IEEE Microwave and

Wireless Components Letters, the Applied
Computational Electromagnetics Society Journal,
International Journal of RF and Microwave Computer
Aided Engineering, the International Journal of
Numerical Modeling – Electronic Networks, Devices
and Fields by John Wiley and Sons Ltd. He is a member
of the Editorial Advisory Board for the International
Journal of Numerical Modeling – Electronic Networks,
Devices and Fields by John Wiley and Sons.

354 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010

