
CUDA Based LU Decomposition Solvers for CEM Applications

Matthew J. Inman1, Atef Z. Elsherbeni1, and C. J. Reddy2

1 Department of Electrical Engineering

University of Mississippi, University, MS 38677-1848, USA
atef@olemiss.edu , mjinman@olemiss.edu

2 Applied EM

 Hampton, VA 23666, USA
cjreddy@emssusa.com

Abstract ─ The use of graphical processing units
to perform numerical computations required by
electromagnetic analyses have been shown over
the past several years significant increase in the
computational speed. Most of the previous work
concentrated on electromagnetic analyses that do
not require matrix inversion. This paper uses the
NVIDIA’s compute unified device architecture
(CUDA) language to develop and modify routines
for matrix solution based on the LU
decomposition procedure to enhance and speed up
a class of electromagnetic simulations. This
implementation is utilizing the CPU and GPU for
the inversion procedure. Various implementations
for real, complex, single precision and double
precision will be examined. The performance
details of the developed LU decomposition
routines especially for complex and double
precision arithmetic are presented.

Index Terms ─ CUDA, GPU, CEM, LU
Decomposition, Matrix Solvers.

I. INTRODUCTION

As computational power has increased
exponentially over the past few decades, the need
for solving complex systems of equations has
grown equally in tandem. Even simple geometries
can often lead to complex matrices whose size can
easily be in the order of thousands. In order to
accurately and quickly provide results from these
simulations an appropriate solution method must

be chosen. This paper will address the use of
graphical processing units (GPU’s) based LU
decomposition solvers for matrix solutions.

The LU decomposition offers many

advantages for solving dense matrices. Full
inversion methods (such as Gaussian elimination)
can allow for the solving of many right hand sides
easily once the inversion is complete. However,
full inversions often require large computational
runtimes compared with LU decomposition. Many
parts of LU decomposition lend itself well to
implementation on the GPU due to its past
widespread use on other various parallel
computing systems [2-6].

Using the NVIDIA compute unified device

architecture (CUDA) interface, many of the
computations required for LU decomposition can
be offloaded to the GPU. While LU decomposition
on the GPU has previously been demonstrated to
outperform the CPU [3-4], past published work
has been mainly limited to real matrices in single
precision. In order for LU decomposition to be of
widespread use in computational electromagnetics
(CEM), any GPU implementation must be able to
support complex values. Large matrixes will also
require double precision support in order to
maintain stability.

In this paper the construction of LU

decomposition solver on the GPU is performed
using existing and newly developed routines.
While many of the subroutines used in LU

339

1054-4887 © 2010 ACES

ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010

decomposition can run on the GPU faster than the
CPU, some portions of the code are still more
appropriate to run on the CPU [2-3]. Maintaining
data integrity between CPU and GPU for complex
double precision numbers must be established.
The inclusion of double-precision calculations will
also be examined from a memory standpoint in
optimizing the local cache memory in the GPU to
achieve the fastest execution possible.

II. Data Types and Computations

Efficiency

It is widely known that different data types
can have a large effect on the computational
runtime for any algorithm. For instance, going
from any real data type to a complex one not only
doubles the amount of memory required to move
and store, but the complexity of even simple
arithmetic operation increases by a significant
amount. Complex addition and subtraction
requires two separate additions or subtractions.
Multiplication requires one addition, one
subtraction, and four multiplications. Division
requires eight multiplications, three additions, one
subtraction, and two divisions. This increase in
complexity for complex numbers can have major
effects on the runtime of any algorithm.

In addition, the change from single to double

precision calculations can have a likewise effect
on performance. The double precision
performance of the NVIDIA Tesla C1060 is
almost 12 times slower than single precision. An
Intel Core i7 CPU has double precision speed only
1.4 times slower. This major discrepancy is due to
both the maturity of the arithmetic hardware and
how this hardware is implemented. Double
precision support on NVIDIA GPU’s are only a
single generation old and are implemented by
combining multiple single precision units together
to create a double precision unit. Future generation
of NVIDIA Fermi GPU’s are expected to have
better double precision support according to the
vendor information that are about to be released.

In this paper we will consider various aspects

in the comparison between solvers utilizing
different data types. The amount of data to be

transferred and stored in system, the increase in
computations required for complex number, and
the efficiency of double precision calculations will
be taken into account. Comparisons will address
all these issues within the results.

III. LU Decomposition Solvers in CUDA

The LU decomposition has been previously
demonstrated on the GPU using CUDA and other
programming techniques for single precision real
matrices [3-4]. Published result produced speed
gains approaching an order of magnitude over
common CPU’s. These solvers mixed a
combination of CPU Basic Linear Algebra
Subprograms (BLAS) calls, CUDA CUBLAS
(NVIDIA’s GPU based BLAS libraries) calls, and
CUDA kernel. The BLAS libraries contain highly
tuned functions commonly used in many programs
to perform basic linear algebra. The published LU
solvers were facilitated by the complete and
mature development of CUBLAS libraries for
single precision real data types. These solvers
showed a speed increase of 6 to 12 times (relative
to various hardware). However, the restriction of
single precision real data types limits its
usefulness for CEM simulations. Many common
CEM problems require the solver to be available
for any combination of single precision, double
precision, real, and complex data.

The development of solvers that support data

other than a real single precision on the
CUDA/GPU platform presents several unique
challenges to be addressed. These challenges
occur from the status of the CUBLAS libraries.
The CUBLAS libraries (previous to release 3.0)
only supported complete BLAS routines in single
precision real and only very limited support for
single and double precision complex. In the
utilized version 2.0 of CUBLAS for this paper,
only 2 out of 13 level 1 BLAS routines, 1 out of
16 level 2 BLAS routines, and 2 out of 6 level 3
BLAS routines were supported. The CUBLAS
version 3.0, recently released, claims full support
for all BLAS routines in all data types.

With the release of CUBLAS 3.0 it is now

possible to perform the LU decomposition directly
on the GPU without the aid of any CPU calls.

340 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010

However, this does not mean that the CUBLAS
functions outperform their CPU based
counterparts. Certain linear algebra functions still
perform significantly faster (such as factorization)
on the CPU compared to the GPU’s as utilized in
this paper. The algorithm presented here was
carefully profiled to determine when and which
parts of the LU decomposition routine can be
solved on the GPU with maximum efficiency.

The real single precision solver presented here

follows the published methodology of utilizing
both the CPU and the GPU as in [3-4] and the
established algorithms for parallel computing
systems [5]. The code has been programmed and
tuned by the authors using these methods. In order
to extend this solver for other data types, some of
the CUBLAS calls have been replaced with
custom developed kernels (GPU functions).

In the solvers presented here, the “*trsm”

function which is a standard BLAS routine used to
solve a triangular matrix, has been offloaded to the
CPU. The transpose functions have been
developed in CUDA to support all types of data
(complex and real in single and double precisions).
With this added support for the various data types,
the developed GPU code was tuned for various
block sizes which determines how much data gets
transferred, at a time, between the GPU and CPU.
Offloading the “*trsm” function back to the CPU
also presents problems in maintaining data
consistency. The transfer of data between
CUBLAS on GPU and Intel MKL BLAS on CPU
is simple when working with single (float) or
double precision real numbers. However, for
complex data, MKL BLAS and CUBLAS have
different data types and data structures to represent
the numbers. In order to accomplish consistent
data transfer, the MKL BLAS has been modified
so that its data structure is compatible with
CUBLAS data types. This modification allowed
the free exchange of data between CUBLAS on
the GPU and MKL BLAS on the CPU for
complex numbers.

The custom routines in CUDA for

transposition and pivoting were developed to
support all combinations of data types. Depending
on the data type needed, the additional data

overhead requires smaller blocks of the matrix to
be transferred at a single time (as a double
precision complex matrix has 4 times the data as a
single precision real matrix). The transpose
routines make use of local cache memory inside
the GPU in order to make this process as efficient
as possible.

Table 1 details the various functions used for

the developed CPU+GPU based LU
decomposition and where they are performed. The
basic algorithm iterates through the various block
columns of the matrix and performs the
decomposition as detailed in [5]. Each block is
first transposed and the L/U matrices are updated
on the GPU. The block is transferred to the
computer system and factorization takes place on
the CPU. The block then streams through the GPU
for pivoting and back to the CPU. The block is
then inverted and the L matrix is solved. The
update for the U matrix is performed on the GPU,
then the data is transferred back and the final U
solve is done on the CPU.

Table 1: Functions required for LU decomposition

Transpose Block GPU (CUDA Kernel)

Matrix Multiply GPU (CUBLAS)

Factorization CPU (MKL BLAS)

Pivot GPU (CUDA Kernel)

Triangular Matrix
Solve CPU (MKL BLAS)

Each of the functions listed in Table 1 can be

implemented on either the CPU or the GPU. For
the factorization and the matrix solve routines, the
CPU was more efficient in processing even with
the added overhead of transferring the data. Both
of these functions are not easily parallelized which
explains why they are more efficiently performed
on the CPU. The transpose and pivoting functions
were written in CUDA and optimized for each
data type and block size. This necessitated writing
separate CUDA functions for each separate data
type in order to maintain the highest processing
speed possible.

341INMAN, ELSHERBENI, REDDY: CUDA BASED LU DECOMPOSITION SOLVERS FOR CEM APPLICATIONS

IV. LU Solver Results

The developed CUDA based LU solver was
implemented on different systems for various data
types. Similarly a pure CPU solver based on the
Intel MKL library was used for all comparisons.
The solvers were run on various CPU and
CPU+GPU based configurations as detailed in
Table 2. In all cases, the Intel MKL library uses all
available cores on a CPU (2 cores on Core Duo,
and 4 cores on i7).

Table 2: System configurations

System

System 1

GHz Intel Core i7
6GB DDR3 PC12800
NVIDIA 280GTX 1GB
NVIDIA Tesla C1060 4GB

 

System 2
GHz Intel Core Duo
4GB DDR2 PC4700
NVIDIA 8800GTX 768 MB

Figure 1 shows the runtime results for the first

case of single precision real data for CPU and
CPU+GPU implementations on various systems.
This baseline case matches other published results
[3] in runtimes and speed gain. The CPU+GPU
implementations outperformed the CPU only
implementation anywhere from 3 to 12 times
based on the configuration of the CPU and GPU.

Fig. 1. Runtimes for real single precision LU
decomposition.

In the real single precision case, the
implementation is quite simple and the best speed
gain can be realized. When the solver is expanded
to double precision, the results show a moderate
decrease in speed for all the available cases as
seen in Figure 2. Only the NVIDIA 280 and Tesla
C1060 support GPU based double precision and
thus are shown here. The Intel Core i7 is the CPU
for both the CPU and CPU+GPU cases in this
figure. For this real double precision case, the
CPU only implementation increased the runtime
speed by roughly double across all the various
matrix sizes, while the CPU+GPU implementation
increased runtime by only around 90% over the
single precision case.

Fig. 2. Runtimes for real double precision LU
decomposition.

In the real double precision cases, the
CPU+GPU implementation achieved a speed gain
of seven times over the CPU only based
counterpart. Interestingly, even though twice the
amount of data is required to be moved for a
double precision case and known inefficiencies of
the GPU processing double precision data, the
CPU+GPU case only increased runtime by 90%.
This can be explained by examining the memory
access patterns in processing double precision
data. In algorithms such as LU decomposition,
data access to the memory of the CPU and GPU
are not optimal for the fastest transfer. The
addition of double precision data in these cases
actually increase the efficiency of memory access
since larger blocks of linear memory is being read
at a single time. The addition of double precision
arithmetic for these cases did not account for any

342 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010

noticeable increase in processing time. This is due
to the fact that in these cases the arithmetic is
fairly simple. The calculations were completed
before the next block of data has arrived from
memory even with the overhead of double
precision calculations.

The last implementation presented is the

complex double precision case. Figure 3 shows the
runtimes for various configurations. With the
addition of complex numbers, the runtimes have
slowed significantly over the real single precision
cases. The CPU only implementation runs
approximately 9 times slower while the
CPU+GPU implementation runs approximately
twenty times slower. It can still be seen that in all
cases the CPU+GPU implementation still
outperforms the CPU only implementation by
approximately two (2.66 Intel Core i7) to four (2.4
GHz Core Duo).

Fig. 3. Runtimes for complex double precision LU
decomposition.

The addition of complex data to the solver
showed a drastic effect on the runtimes of the
developed LU solvers. In order to understand how
the various implementations performed, it is
necessary to examine how the CPU only and the
CPU+GPU implementations compared against
themselves. Figure 4 shows the runtimes on the
Intel Core i7 for the CPU only implementations.

The addition of double precision to the

implementation increased the runtime by only
double. Since twice the data is being transferred in

this case, it can be concluded that for the real
single and double precision cases, the runtimes are
simply a matter of the memory transfer rates. In
the complex double precision case, the runtimes
lagged the real single precision case by a factor of
approximately 7. Since four times the data is
required to be transferred it can be seen that the
arithmetic itself becomes the limiting factor in
performance.

Fig. 4. Runtimes for CPU only LU decomposition.

Figure 5 shows the comparison for the
CPU+GPU cases running on the Intel Core i7 with
the NVIDIA Tesla C1060 GPU. As shown before,
the double precision increased the runtime relative
to the single precision by only around 90%. While
the data transferred did double, the GPU was able
to handle the data more efficiently and thus did not
require twice the time to make the transfer.
Likewise from the CPU only cases, the memory
transfer rates appear to be the limiting factor in the
runtimes for these cases. However, in the complex
double precision case, the slowdown is more
pronounced. The runtime for the complex double
precision is approximately twenty times slower
over the real single precision case. Just as with the
CPU only case, the complex double precision
implementation becomes limited not by the
memory access rate, but by the speed the system
can perform the computations. Since the current
CUBLAS on GPU is nowhere near as efficient as
the MKL BLAS on CPU in performing double
precision calculations, the GPU performance
suffers a larger runtime penalty.

343INMAN, ELSHERBENI, REDDY: CUDA BASED LU DECOMPOSITION SOLVERS FOR CEM APPLICATIONS

Fig. 5. CPU+GPU LU decomposition runtimes.

VI. Verification and Examples

To show the advantage of the CPU+GPU

based solver, few examples were tested. These
examples are based on a method of moments
(MoM) solution whose results are well
documented. Each of these examples will be used
to compare both the speed and the accuracy of the
CPU+GPU based solutions relative to the CPU
only solution. For simplicity, all examples will be
discretized with 4096 segments and run on an Intel
Core i7 with a NVIDIA 280GTX. The 4096
segments were choosen to show the performance
for a simulation of decent size. The CPU only
code utilizes all 4 cores of the Core i7 and the
CPU+GPU code utilizes the same with the
addition of the graphics card. All solutions were
computed with double precision complex solvers.

The first example is a simple wire dipole

antenna. This example will calculate the current
along a wire antenna of length L (0.1m) and
diameter A (0.2mm) that is excited by a magnetic
frill model as shown in Fig. 6. Sinusoidal basis
functions and mid-point integration procedure are
used for the solution of the resulting integral
equation.

Fig. 6. Dipole wire antenna configuration.

The CPU+GPU code was run against the
reference codes to ensure proper operation. Figure
7 shows the current along the wire in both codes.
The results show very good agreement with only
very minor differences in the magnitude of the
current. These differences which are less than
0.1% can be attributed to minor differences in how
the numbers were stored and calculated in the
various programs and the use of the GPU in the
simulation.

Fig. 7. Current distribution along the dipole wire
antenna.

The second example shows the calculation of

the current distribution along a PEC plate
illuminated by a TMz plane wave. Figure 8 shows
the configuration of this setup. In this setup the
width of the PEC plate is one wavelength and the
TMz plane wave incident to the face of the plate at
a 45 degree angle.

Fig. 8. PEC plate and excitation configuration.

1λ

TMz

45○

x

y

z

+ -

L

A

344 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010

This example was run and compared against
the reference code as seen in Fig. 9. The
CPU+GPU code again show excellent agreement
in calculating the surface current of the PEC plate.
The maximum error observed between the two
solvers is 0.08%.

Fig. 9. Current distribution along the PEC plate.

The last example shows the calculation of the

current distribution along a PEC cylinder
illuminated by a TMz plane wave. Figure 10 shows
the configuration of this setup with the diameter of
the PEC cylinder being one wavelength.

Fig. 10. PEC cylinder and excitation
configuration.

Figure 11 shows the current magnitude along
the PEC cylinder for both cases. As shown, the
agreement between the two codes is excellent. In
this case, the maximum error between the CPU
and CPU+GPU codes was less than 0.02%

Fig. 11. Current distribution along the PEC
cylinder.

All three of the sample cases show excellent

agreement with the CPU only solver and
successfully solved the problems utilizing the
GPU. For these cases a single solve time on the
CPU required approximately 6.3 seconds while the
CPU+GPU only required 3.2 seconds. Many cases
in computational electromagnetics, such as
computing the monostatic RCS of an object,
require solving for hundreds or more of right hand
sides. The speed increase shown for even a
moderate matrix of rank 4096 can halve the
solution time compared against a high end CPU. If
double precision is not required, the time savings
can be even greater.

VI. Conclusions

It has been shown that an LU decomposition
solver can be effectively implemented utilizing the
GPU for various data types from real single
precision to complex double precision. Due to the
nature of certain functions required for LU
decomposition, the use of the CPU to perform
various operations is necessitated.

While the complex double precision LU

decomposition solver did not maintain increase in
speed as for the real precision cases did, the
increase of two-fold can have a drastic effect on
CEM simulation times, especially for problems of
multiple right-hand sides. The decrease in speed
gain from the CPU+GPU implementation in the

1λ

TMz

x

y

z

345INMAN, ELSHERBENI, REDDY: CUDA BASED LU DECOMPOSITION SOLVERS FOR CEM APPLICATIONS

complex double precision cases can be easily
attributed to the immature state of double
precision arithmetic on this generation of GPU’s.
Future generations of GPU’s have been promised
to dramatically increase double precision
arithmetic computations speed which should allow
for greater utilization of the developed GPU
routines for faster solutions to a variety of CEM
and other applications.

REFERENCES

[1] M. J. Inman and A. Z. Elsherbeni, “Programming

video cards for computational electromagnetics
applications,” IEEE Antennas Propagation Mag.,
Vol. 47, Issue 6, pp. 71-78, 2005.

[2] K. Fatahalian, et. al., “Understanding the

Efficiency of GPU Algorithms for Matrix-Matrix
Multiplication”, Stanford University, 2004.

[3] V. Volkov and J. W. Demmel, Benchmarking
GPUs to tune dense linear algebra, SC08, 2008

[4] N. Galoppo, N. Govindaraju, M. Henson, and D.
Manocha, LU-GPU: Efficient Algorithms for
Solving Dense Linear Systems on Graphics
Hardware, Proceedings of the ACM/IEEE
conference on Supercomputing, 2005.

[5] E. Anderson, Z. Bai, J. Dongarra, A. Greenbaum,
A. Mckenney, J. Du Croz, S. Hammerling, J.
Demmel, C. Bischof, And D. Sorensen, LAPACK:
a portable linear algebra library for high-
performance computers, Supercomputing ’90,
1990.

[6] M. Baboulin, J. Dongarra, and S. Tomov. Some
Issues in Dense Linear Algebra for Multicore and
Special Purpose Architectures, LAPACK Working
Note 200, 1993.

[7] CUDA User Forums, http://forums.nvidia.com

Matthew Joseph Inman
received his B.S. in Electrical
Engineering in 2000 and his
Masters in Electromagnetics in
2003 from the University of
Mississippi. He is currently
pursuing Ph. D. studies in
electromagnetics there. He is

employed by the University of Mississippi as a
research assistant and graduate instructor teaching
a number of undergraduate courses. His interests
involve electromagnetic theories, numerical
techniques, antenna design and visualization.

Atef Z. Elsherbeni is a
Professor of Electrical
Engineering and Associate
Dean for Research and
Graduate Programs, the
Director of The School of
Engineering CAD Lab, and the
Associate Director of The

Center for Applied Electromagnetic Systems
Research (CAESR) at The University of
Mississippi. In 2004 he was appointed as an
adjunct Professor, at The Department of Electrical
Engineering and Computer Science of the L.C.
Smith College of Engineering and Computer
Science at Syracuse University. On 2009 he was
selected as Finland Distinguished Professor by the
Academy of Finland and Tekes. Dr. Elsherbeni
has conducted research dealing with scattering and
diffraction by dielectric and metal objects, finite
difference time domain analysis of passive and
active microwave devices including planar
transmission lines, field visualization and software
development for EM education, interactions of
electromagnetic waves with human body, sensors
development for monitoring soil moisture, airports
noise levels, air quality including haze and
humidity, reflector and printed antennas and
antenna arrays for radars, UAV, and personal
communication systems, antennas for wideband
applications, antenna and material properties
measurements, and hardware and software
acceleration of computational techniques for
electromagentics. Dr. Elsherbeni is the co-author
of the book “The Finite Difference Time Domain
Method for Electromagnetics With MATLAB
Simulations”, SciTech 2009, the book “Antenna
Design and Visualization Using Matlab”, SciTech,
2006, the book “MATLAB Simulations for Radar
Systems Design”, CRC Press, 2003, the book
“Electromagnetic Scattering Using the Iterative
Multiregion Technique”, Morgan & Claypool,
2007, the book “Electromagnetics and Antenna
Optimization using Taguchi's Method”, Morgan &
Claypool, 2007, and the main author of the
chapters “Handheld Antennas” and “The Finite
Difference Time Domain Technique for Microstrip
Antennas” in Handbook of Antennas in Wireless
Communications, CRC Press, 2001. Dr.
Elsherbeni is a Fellow member of the Institute of
Electrical and Electronics Engineers (IEEE) and a
Fellow member of The Applied Computational

346 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010

Electromagnetics Society (ACES). He is the
Editor-in-Chief for ACES Journal and an
Associate Editor to the Radio Science Journal.

C. J. Reddy received B. Tech.
degree in Electronics and
Communications Engineering
from Regional Engineering
College (now National Institute
of Technology), Warangal,
India in 1983. He received his
M.Tech. degree in Microwave
and Optical Communication

Engineering and Ph.D. degree in Electrical
Engineering, both from Indian Institute of
Technology, Kharagpur, India, in 1986 and 1988
respectively. From 1987 to 1991, he worked as a
Scientific Officer at SAMEER (India) and
participated in radar system design and
development. In 1991, he was awarded NSERC
Visiting Fellowship to conduct research at
Communications Research Center, Ottawa,
Canada. Later in 1993, he was awarded a National
Research Council (USA)'s Research Associateship
to conduct research in computational
electromagnetics at NASA Langley Research
Center, Hampton, Virginia. Dr. Reddy worked as a
Research Professor at Hampton University from
1995 to 2000, while conducting research at NASA
Langley Research Center. During this time, he
developed various FEM codes for
electromagnetics. He also worked on design and
simulation of antennas for automobiles and aircraft
structures. Particularly development of his hybrid
Finite Element Method/Method of
Moments/Geometrical Theory of Diffraction code
for cavity backed aperture antenna analysis
received Certificate of Recognition from NASA.
Currently, Dr. Reddy is the President and Chief
Technical Officer of Applied EM Inc, a small
company specializing in computational
electromagnetics, antenna design and
development. At Applied EM, Dr. Reddy
successfully led many Small Business Innovative
Research (SBIR) projects from the US Department
of Defense (DoD). Some of the technologies
developed under these projects are being
considered for transition to the DoD. Dr. Reddy
also serves as the President of EM Software &
Systems (USA) Inc. At EMSS (USA), he is
leading the marketing and support of commercial

3D electromagnetic software, FEKO in the US,
Canada, Mexico and Central America.
Dr. Reddy is a Senior Member of the IEEE. He is
also a member of Applied Computational
Electromagetic Society (ACES) and serves as a
member of Board of Directors. He has published
more than 60 referred journal articles and
conference papers.

347INMAN, ELSHERBENI, REDDY: CUDA BASED LU DECOMPOSITION SOLVERS FOR CEM APPLICATIONS

