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Abstract ─  The use of graphical processing units 
to perform numerical computations required by 
electromagnetic analyses have been shown over 
the past several years significant increase in  the 
computational speed. Most of the previous work 
concentrated on electromagnetic analyses that do 
not require matrix inversion.  This paper uses the 
NVIDIA’s compute unified device architecture 
(CUDA) language to develop and modify routines 
for matrix solution based on the LU 
decomposition procedure to enhance and speed up 
a class of electromagnetic simulations. This 
implementation is utilizing the CPU and GPU for 
the inversion procedure. Various implementations 
for real, complex, single precision and double 
precision will be examined. The performance 
details of the developed LU decomposition 
routines especially for complex and double 
precision arithmetic are presented.  
  
Index Terms ─ CUDA, GPU, CEM, LU 
Decomposition, Matrix Solvers.  
 

I. INTRODUCTION 
 

As computational power has increased 
exponentially over the past few decades, the need 
for solving complex systems of equations has 
grown equally in tandem. Even simple geometries 
can often lead to complex matrices whose size can 
easily be in the order of thousands. In order to 
accurately and quickly provide results from these 
simulations an appropriate solution method must 

be chosen. This paper will address the use of 
graphical processing units (GPU’s) based LU 
decomposition solvers for matrix solutions.  

 
The LU decomposition offers many 

advantages for solving dense matrices. Full 
inversion methods (such as Gaussian elimination) 
can allow for the solving of many right hand sides 
easily once the inversion is complete. However, 
full inversions often require large computational 
runtimes compared with LU decomposition. Many 
parts of LU decomposition lend itself well to 
implementation on the GPU due to its past 
widespread use on other various parallel 
computing systems [2-6].  

 
Using the NVIDIA compute unified device 

architecture (CUDA) interface, many of the 
computations required for LU decomposition can 
be offloaded to the GPU. While LU decomposition 
on the GPU has previously been demonstrated to 
outperform the CPU [3-4], past published work 
has been mainly limited to real matrices in single 
precision. In order for LU decomposition to be of 
widespread use in computational electromagnetics 
(CEM), any GPU implementation must be able to 
support complex values. Large matrixes will also 
require double precision support in order to 
maintain stability.  

 
In this paper the construction of LU 

decomposition solver on the GPU is performed 
using existing and newly developed routines. 
While many of the subroutines used in LU 
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decomposition can run on the GPU faster than the 
CPU, some portions of the code are still more 
appropriate to run on the CPU [2-3]. Maintaining 
data integrity between CPU and GPU for complex 
double precision numbers must be established. 
The inclusion of double-precision calculations will 
also be examined from a memory standpoint in 
optimizing the local cache memory in the GPU to 
achieve the fastest execution possible. 

 
II. Data Types and Computations 

Efficiency 
 

It is widely known that different data types 
can have a large effect on the computational 
runtime for any algorithm. For instance, going 
from any real data type to a complex one not only 
doubles the amount of memory required to move 
and store, but the complexity of even simple 
arithmetic operation increases by a significant 
amount. Complex addition and subtraction 
requires two separate additions or subtractions. 
Multiplication requires one addition, one 
subtraction, and four multiplications. Division 
requires eight multiplications, three additions, one 
subtraction, and two divisions. This increase in 
complexity for complex numbers can have major 
effects on the runtime of any algorithm.  

 
In addition, the change from single to double 

precision calculations can have a likewise effect 
on performance. The double precision 
performance of the NVIDIA Tesla C1060 is 
almost 12 times slower than single precision. An 
Intel Core i7 CPU has double precision speed only 
1.4 times slower. This major discrepancy is due to 
both the maturity of the arithmetic hardware and 
how this hardware is implemented. Double 
precision support on NVIDIA GPU’s are only a 
single generation old and are implemented by 
combining multiple single precision units together 
to create a double precision unit. Future generation 
of NVIDIA Fermi GPU’s are expected to have 
better double precision support according to the 
vendor information that are about to be released. 

 
In this paper we will consider various aspects 

in the comparison between solvers utilizing 
different data types. The amount of data to be 

transferred and stored in system, the increase in 
computations required for complex number, and 
the efficiency of double precision calculations will 
be taken into account. Comparisons will address 
all these issues within the results.  

 
III. LU Decomposition Solvers in CUDA 
 

The LU decomposition has been previously 
demonstrated on the GPU using CUDA and other 
programming techniques for single precision real 
matrices [3-4]. Published result produced speed 
gains approaching an order of magnitude over 
common CPU’s. These solvers mixed a 
combination of CPU Basic Linear Algebra 
Subprograms (BLAS) calls, CUDA CUBLAS 
(NVIDIA’s GPU based BLAS libraries) calls, and 
CUDA kernel. The BLAS libraries contain highly 
tuned functions commonly used in many programs 
to perform basic linear algebra. The published LU 
solvers were facilitated by the complete and 
mature development of CUBLAS libraries for 
single precision real data types. These solvers 
showed a speed increase of 6 to 12 times (relative 
to various hardware). However, the restriction of 
single precision real data types limits its 
usefulness for CEM simulations. Many common 
CEM problems require the solver to be available 
for any combination of single precision, double 
precision, real, and complex data. 

 
The development of solvers that support data 

other than a real single precision on the 
CUDA/GPU platform presents several unique 
challenges to be addressed. These challenges 
occur from the status of the CUBLAS libraries. 
The CUBLAS libraries (previous to release 3.0) 
only supported complete BLAS routines in single 
precision real and only very limited support for 
single and double precision complex. In the 
utilized version 2.0 of CUBLAS for this paper, 
only 2 out of 13 level 1 BLAS routines, 1 out of 
16 level 2 BLAS routines, and 2 out of 6 level 3 
BLAS routines were supported. The CUBLAS 
version 3.0, recently released, claims full support 
for all BLAS routines in all data types.  

 
With the release of CUBLAS 3.0 it is now 

possible to perform the LU decomposition directly 
on the GPU without the aid of any CPU calls. 
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However, this does not mean that the CUBLAS 
functions outperform their CPU based 
counterparts. Certain linear algebra functions still 
perform significantly faster (such as factorization) 
on the CPU compared to the GPU’s as utilized in 
this paper. The algorithm presented here was 
carefully profiled to determine when and which 
parts of the LU decomposition routine can be 
solved on the GPU with maximum efficiency. 

 
The real single precision solver presented here 

follows the published methodology of utilizing 
both the CPU and the GPU as in [3-4] and the 
established algorithms for parallel computing 
systems [5]. The code has been programmed and 
tuned by the authors using these methods. In order 
to extend this solver for other data types, some of 
the CUBLAS calls have been replaced with 
custom developed kernels (GPU functions).  

 
In the solvers presented here, the “*trsm” 

function which is a standard BLAS routine used to 
solve a triangular matrix, has been offloaded to the 
CPU. The transpose functions have been 
developed in CUDA to support all types of data 
(complex and real in single and double precisions). 
With this added support for the various data types, 
the developed GPU code was tuned for various 
block sizes which determines how much data gets 
transferred, at a time, between the GPU and CPU. 
Offloading the “*trsm” function back to the CPU 
also presents problems in maintaining data 
consistency. The transfer of data between 
CUBLAS on GPU and Intel MKL BLAS on CPU 
is simple when working with single (float) or 
double precision real numbers. However, for 
complex data, MKL BLAS and CUBLAS have 
different data types and data structures to represent 
the numbers. In order to accomplish consistent 
data transfer, the MKL BLAS has been modified 
so that its data structure is compatible with 
CUBLAS data types. This modification allowed 
the free exchange of data between CUBLAS on 
the GPU and MKL BLAS on the CPU for 
complex numbers. 

  
The custom routines in CUDA for 

transposition and pivoting were developed to 
support all combinations of data types. Depending 
on the data type needed, the additional data 

overhead requires smaller blocks of the matrix to 
be transferred at a single time (as a double 
precision complex matrix has 4 times the data as a 
single precision real matrix). The transpose 
routines make use of local cache memory inside 
the GPU in order to make this process as efficient 
as possible.  

 
Table 1 details the various functions used for 

the developed CPU+GPU based LU 
decomposition and where they are performed.  The 
basic algorithm iterates through the various block 
columns of the matrix and performs the 
decomposition as detailed in [5]. Each block is 
first transposed and the L/U matrices are updated 
on the GPU. The block is transferred to the 
computer system and factorization takes place on 
the CPU. The block then streams through the GPU 
for pivoting and back to the CPU. The block is 
then inverted and the L matrix is solved. The 
update for the U matrix is performed on the GPU, 
then the data is transferred back and the final U 
solve is done on the CPU.   

 
Table 1: Functions required for LU decomposition 

 

Transpose Block GPU (CUDA Kernel) 

Matrix Multiply GPU (CUBLAS) 

Factorization CPU (MKL BLAS) 

Pivot GPU (CUDA Kernel) 

Triangular Matrix 
Solve CPU (MKL BLAS) 

  
Each of the functions listed in Table 1 can be 

implemented on either the CPU or the GPU. For 
the factorization and the matrix solve routines, the 
CPU was more efficient in processing even with 
the added overhead of transferring the data. Both 
of these functions are not easily parallelized which 
explains why they are more efficiently performed 
on the CPU. The transpose and pivoting functions 
were written in CUDA and optimized for each 
data type and block size. This necessitated writing 
separate CUDA functions for each separate data 
type in order to maintain the highest processing 
speed possible. 
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IV. LU Solver Results 
 

The developed CUDA based LU solver was 
implemented on different systems for various data 
types. Similarly a pure CPU solver based on the 
Intel MKL library was used for all comparisons. 
The solvers were run on various CPU and 
CPU+GPU based configurations as detailed in 
Table 2. In all cases, the Intel MKL library uses all 
available cores on a CPU (2 cores on Core Duo, 
and 4 cores on i7). 
 

Table 2: System configurations 
 

System  

System 1

GHz Intel Core i7  
6GB DDR3 PC12800 
NVIDIA 280GTX 1GB 
NVIDIA Tesla C1060 4GB

 

System 2
GHz Intel Core Duo  
4GB DDR2 PC4700 
NVIDIA 8800GTX 768 MB

  
Figure 1 shows the runtime results for the first 

case of single precision real data for CPU and 
CPU+GPU implementations on various systems. 
This baseline case matches other published results 
[3] in runtimes and speed gain. The CPU+GPU 
implementations outperformed the CPU only 
implementation anywhere from 3 to 12 times 
based on the configuration of the CPU and GPU. 

  

 
 

Fig. 1. Runtimes for real single precision LU 
decomposition. 

In the real single precision case, the 
implementation is quite simple and the best speed 
gain can be realized. When the solver is expanded 
to double precision, the results show a moderate 
decrease in speed for all the available cases as 
seen in Figure 2. Only the NVIDIA 280 and Tesla 
C1060 support GPU based double precision and 
thus are shown here. The Intel Core i7 is the CPU 
for both the CPU and CPU+GPU cases in this 
figure. For this real double precision case, the 
CPU only implementation increased the runtime 
speed by roughly double across all the various 
matrix sizes, while the CPU+GPU implementation 
increased runtime by only around 90% over the 
single precision case.  

 
 

 
Fig. 2. Runtimes for real double precision LU 
decomposition. 
 

In the real double precision cases, the 
CPU+GPU implementation achieved a speed gain 
of seven times over the CPU only based 
counterpart.  Interestingly, even though twice the 
amount of data is required to be moved for a 
double precision case and known inefficiencies of 
the GPU processing double precision data, the 
CPU+GPU case only increased runtime by 90%. 
This can be explained by examining the memory 
access patterns in processing double precision 
data. In algorithms such as LU decomposition, 
data access to the memory of the CPU and GPU 
are not optimal for the fastest transfer. The 
addition of double precision data in these cases 
actually increase the efficiency of memory access 
since larger blocks of linear memory is being read 
at a single time. The addition of double precision 
arithmetic for these cases did not account for any 

342 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010



noticeable increase in processing time. This is due 
to the fact that in these cases the arithmetic is 
fairly simple. The calculations were completed 
before the next block of data has arrived from 
memory even with the overhead of double 
precision calculations. 

 
The last implementation presented is the 

complex double precision case. Figure 3 shows the 
runtimes for various configurations. With the 
addition of complex numbers, the runtimes have 
slowed significantly over the real single precision 
cases. The CPU only implementation runs 
approximately 9 times slower while the 
CPU+GPU implementation runs approximately 
twenty times slower. It can still be seen that in all 
cases the CPU+GPU implementation still 
outperforms the CPU only implementation by 
approximately two (2.66 Intel Core i7) to four (2.4 
GHz Core Duo).    

 

 
 
Fig. 3. Runtimes for complex double precision LU 
decomposition. 
 

The addition of complex data to the solver 
showed a drastic effect on the runtimes of the 
developed LU solvers. In order to understand how 
the various implementations performed, it is 
necessary to examine how the CPU only and the 
CPU+GPU implementations compared against 
themselves. Figure 4 shows the runtimes on the 
Intel Core i7 for the CPU only implementations.  

 
The addition of double precision to the 

implementation increased the runtime by only 
double. Since twice the data is being transferred in 

this case, it can be concluded that for the real 
single and double precision cases, the runtimes are 
simply a matter of the memory transfer rates. In 
the complex double precision case, the runtimes 
lagged the real single precision case by a factor of 
approximately 7. Since four times the data is 
required to be transferred it can be seen that the 
arithmetic itself becomes the limiting factor in 
performance.  

 

 
 

Fig. 4. Runtimes for CPU only LU decomposition. 
 

 

Figure 5 shows the comparison for the 
CPU+GPU cases running on the Intel Core i7 with 
the NVIDIA Tesla C1060 GPU. As shown before, 
the double precision increased the runtime relative 
to the single precision by only around 90%. While 
the data transferred did double, the GPU was able 
to handle the data more efficiently and thus did not 
require twice the time to make the transfer. 
Likewise from the CPU only cases, the memory 
transfer rates appear to be the limiting factor in the 
runtimes for these cases. However, in the complex 
double precision case, the slowdown is more 
pronounced. The runtime for the complex double 
precision is approximately twenty times slower 
over the real single precision case. Just as with the 
CPU only case, the complex double precision 
implementation becomes limited not by the 
memory access rate, but by the speed the system 
can perform the computations. Since the current 
CUBLAS on GPU is nowhere near as efficient as 
the MKL BLAS on CPU in performing double 
precision calculations, the GPU performance 
suffers a larger runtime penalty. 
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Fig. 5. CPU+GPU LU decomposition runtimes. 

 
VI. Verification and Examples 

 
To show the advantage of the CPU+GPU 

based solver, few examples were tested. These 
examples are based on a method of moments 
(MoM) solution whose results are well 
documented. Each of these examples will be used 
to compare both the speed and the accuracy of the 
CPU+GPU based solutions relative to the CPU 
only solution. For simplicity, all examples will be 
discretized with 4096 segments and run on an Intel 
Core i7 with a NVIDIA 280GTX. The 4096 
segments were choosen to show the performance 
for a simulation of decent size. The CPU only 
code utilizes all 4 cores of the Core i7 and the 
CPU+GPU code utilizes the same with the 
addition of the graphics card. All solutions were 
computed with double precision complex solvers. 

 
The first example is a simple wire dipole 

antenna. This example will calculate the current 
along a wire antenna of length L (0.1m) and 
diameter A (0.2mm) that is excited by a magnetic 
frill model as shown in Fig. 6. Sinusoidal basis 
functions and mid-point integration procedure are 
used for the solution of the resulting integral 
equation. 

 
Fig. 6. Dipole wire antenna configuration. 

 

The CPU+GPU code was run against the 
reference codes to ensure proper operation. Figure 
7 shows the current along the wire in both codes. 
The results show very good agreement with only 
very minor differences in the magnitude of the 
current. These differences  which are less than 
0.1% can be attributed to minor differences in how 
the numbers were stored and calculated in the 
various programs and the use of the GPU in the 
simulation.  

 

 
 

Fig. 7. Current distribution along the dipole wire 
antenna. 

 
The second example shows the calculation of 

the current distribution along a PEC plate 
illuminated by a TMz plane wave. Figure 8 shows 
the configuration of this setup. In this setup the 
width of the PEC plate is one wavelength and the 
TMz plane wave incident to the face of the plate at 
a 45 degree angle.  

 

 
Fig. 8.  PEC plate and excitation configuration. 

 

1λ 

TMz 

45○

x 

y 

z 

+ - 

L 

A

344 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010



This example was run and compared against 
the reference code as seen in Fig. 9. The 
CPU+GPU code again show excellent agreement 
in calculating the surface current of the PEC plate. 
The maximum error observed between the two 
solvers is 0.08%. 

 

 
 

Fig. 9. Current distribution along the PEC plate. 
 
The last example shows the calculation of the 

current distribution along a PEC cylinder 
illuminated by a TMz plane wave. Figure 10 shows 
the configuration of this setup with the diameter of 
the PEC cylinder being one wavelength. 
   

 
 

Fig. 10. PEC cylinder and excitation 
configuration. 
 

Figure 11 shows the current magnitude along 
the PEC cylinder for both cases. As shown, the 
agreement between the two codes is excellent. In 
this case, the maximum error between the CPU 
and CPU+GPU codes was less than 0.02% 

 

 
Fig. 11. Current distribution along the PEC 
cylinder. 

 
All three of the sample cases show excellent 

agreement with the CPU only solver and 
successfully solved the problems utilizing the 
GPU. For these cases a single solve time on the 
CPU required approximately 6.3 seconds while the 
CPU+GPU only required 3.2 seconds. Many cases 
in computational electromagnetics, such as 
computing the monostatic RCS of an object, 
require solving for hundreds or more of right hand 
sides. The speed increase shown for even a 
moderate matrix of rank 4096 can halve the 
solution time compared against a high end CPU. If 
double precision is not required, the time savings 
can be even greater. 

 
 

VI. Conclusions 
 

It has been shown that an LU decomposition 
solver can be effectively implemented utilizing the 
GPU for various data types from real single 
precision to complex double precision. Due to the 
nature of certain functions required for LU 
decomposition, the use of the CPU to perform 
various operations is necessitated. 

 
While the complex double precision LU 

decomposition solver did not maintain increase in 
speed as for the real precision cases did, the 
increase of two-fold can have a drastic effect on 
CEM simulation times, especially for problems of 
multiple right-hand sides. The decrease in speed 
gain from the CPU+GPU implementation in the 
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z 
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complex double precision cases can be easily 
attributed to the immature state of double 
precision arithmetic on this generation of GPU’s. 
Future generations of GPU’s have been promised 
to dramatically increase double precision 
arithmetic computations speed which should allow 
for greater utilization of the developed GPU 
routines for faster solutions to a variety of CEM 
and other applications.  
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